Year 2019, Volume 7 , Issue 2, Pages 44 - 48 2019-06-30

Detection of Mechanical Heart Valve Thrombosis Using Support Vector Machine

Sabri ALTUNKAYA [1] , Onur İnan [2]


Thrombosis on the valve that prevents the movement of mechanical heart valves is a fatal disease requiring urgent intervention. Thrombosis is detected by echocardiographic findings and/or CT images. In this study, it has been tried to determine the formation of thrombosis by listening method which has been used for controlling the functionality of the heart valves for years. For this firstly heart sounds of patients with thrombosis and normal mechanical heart valves were recorded. Then the first and second heart sounds (S1 and S2) were separated from the recorded sounds. After the frequency spectrum of S1 and S2 were found using autoregressive spectrum estimation methods, six features were obtained regarding the frequency components. Then the features obtained are classified by support vector machine methods. The accuracy value was found to be 100% by using the 3 fold cross-validation. The average accuracy is 95.18% as a result of running the classifier 500 times using 3 fold-cross validation.
Mechanical Heart Valve, Heart Sounds, Support Vector Machine
  • Famaey, N., et al., Acoustical analysis of mechanical heart valve sounds for early detection of malfunction. Medical Engineering & Physics, 2010. 32(8): p. 934-939.
  • Altunkaya, S., et al., Statistically evaluation of mechanical heart valve thrombosis using heart sounds, in Lecture Notes in Engineering and Computer Science: Proceedings of The World Congress on Engineering. 2010: London, U.K. p. 704-708.
  • Dominik, J.Z., P., Heart valve surgery an illustrated guide. 2010, Berlin Heidelberg: Springer-Verlag.
  • Caceres-Loriga, F.M., et al., Prosthetic heart valve thrombosis: Pathogenesis, diagnosis and management. International Journal of Cardiology, 2006. 110(1): p. 1-6.
  • Roscitano, A., et al., Acute dysfunction from thrombosis of mechanical mitral valve prosthesis. Braz. J. Cardiovasc. Surg, 2005: p. 88-90.
  • Roudaut, R., et al., Fibrinolysis of mechanical prosthetic valve thrombosis - A single-center study of 127 cases. Journal of the American College of Cardiology, 2003. 41(4): p. 653-658.
  • Schlitt, A., et al., Effects of combined therapy of clopidogrel and aspirin in preventing thrombus formation on mechanical heart valves in an ex vivo rabbit model. Thrombosis Research, 2002. 107(1-2): p. 39-43.
  • Hylen, J.C., et al., Sound spectrographic diagnosis of aortic ball variance. Circulation, 1969. 39(6): p. 849-58.
  • Koymen, H., B.K. Altay, and Y.Z. Ider, A Study of Prosthetic Heart-Valve Sounds. Ieee Transactions on Biomedical Engineering, 1987. 34(11): p. 853-863.
  • Baykal, A., Y.Z. Ider, and H. Koymen, Distribution of Aortic Mechanical Prosthetic Valve Closure Sound Model Parameters on the Surface of the Chest. Ieee Transactions on Biomedical Engineering, 1995. 42(4): p. 358-370.
  • Sava, H.P. and J.T.E. McDonnell, Spectral composition of heart sounds before and after mechanical heart valve implantation using a modified forward-backward Prony's method. Ieee Transactions on Biomedical Engineering, 1996. 43(7): p. 734-742.
  • Kim, S.H., et al., Spectral analysis of heart valve sound for detection of prosthetic heart valve diseases. Yonsei Medical Journal, 1998. 39(4): p. 302-308.
  • Fritzsche, D., et al., Digital frequency analysis of valve sound phenomena in patients after prosthetic valve surgery: Its capability as a true home monitoring of valve function. Journal of Heart Valve Disease, 2005. 14(5): p. 657-663.
  • Sugiki, H., et al., Bileaflet mechanical valve sound analysis using a continuous wavelet transform. Journal of Artificial Organs, 2006. 9(1): p. 42-49.
  • Sugiki, H., et al., Wavelet analysis of bileaflet mechanical valve sounds. Journal of Artificial Organs, 2007. 10(1): p. 16-21.
  • Fritzsche, D., et al., Early detection of mechanical valve dysfunction using a new home monitoring device. Annals of Thoracic Surgery, 2007. 83(2): p. 542-548.
  • Sugiki, H., et al., Wavelet analysis of valve closing sound detects malfunction of bileaflet mechanical valve. Journal of Artificial Organs, 2008. 11(1): p. 29-37.
  • Zhang, D., et al. Detection of Mechanical Prosthetic Heart Valve Dysfunction Using Spectrum Estimation and Time-Scale Techniques. in IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application. 2008. Wuhan.
  • Romata, C., et al., Comparative classification of thrombotic formations on bileaflet mechanical heart valves by phonographic analysis. Journal of Artificial Organs, 2011. 14(2): p. 100-111.
  • Zhang, D., et al., Noninvasive detection of mechanical prosthetic heart valve disorder. Computers in Biology and Medicine, 2012. 42(8): p. 785-792.
  • Zhang, D. and M. Du. Diagnosis of prosthetic heart valve using locality preserving kernel fisher discriminant analysis and local discriminant bases. in 2015 8th International Conference on Biomedical Engineering and Informatics (BMEI). 2015. IEEE.
  • Tosoni, S., et al., Phonographic detection of mechanical heart valve thrombosis. Journal of Artificial Organs, 2017. 20(4): p. 394-398.
  • Altunkaya, S., et al., Comparison of first and second heart sounds after mechanical heart valve replacement. Computer Methods in Biomechanics and Biomedical Engineering, 2013. 16(4): p. 368-380.
  • Cortes, C. and V. Vapnik, Support-vector networks. Machine learning, 1995. 20(3): p. 273-297.
  • Yilmaz, N., O. Inan, and M.S. Uzer, A New Data Preparation Method Based on Clustering Algorithms for Diagnosis Systems of Heart and Diabetes Diseases. Journal of Medical Systems, 2014. 38(5).
  • Ivanciuc, O., Reviews in Computational Chemistry. Vol. 23. 2007: John Wiley & Sons, Inc. 291-400.
  • Polat, K. and S. Gunes, Hepatitis disease diagnosis using a new hybrid system based on feature selection (FS) and artificial immune recognition system with fuzzy resource allocation. Digital Signal Processing, 2006. 16(6): p. 889-901.
  • Reynolds, K.J. and R.O. Stephen, Acoustic analysis of the closing sounds of implanted prosthetic heart valves. J Acoust Soc Am, 1995. 98(1): p. 69-77.
  • Bagno, A., et al., Bileaflet mechanical heart valve closing sounds: in vitro classification by phonocardiographic analysis. Journal of Artificial Organs, 2009. 12(3): p. 172-181.
Primary Language en
Subjects Engineering
Journal Section Research Article
Authors

Orcid: 0000-0002-0853-0095
Author: Sabri ALTUNKAYA
Country: Turkey


Orcid: 0000-0003-4573-7025
Author: Onur İnan (Primary Author)
Country: Turkey


Dates

Publication Date : June 30, 2019

Bibtex @research article { ijamec569835, journal = {International Journal of Applied Mathematics Electronics and Computers}, issn = {}, eissn = {2147-8228}, address = {}, publisher = {Selcuk University}, year = {2019}, volume = {7}, pages = {44 - 48}, doi = {}, title = {Detection of Mechanical Heart Valve Thrombosis Using Support Vector Machine}, key = {cite}, author = {ALTUNKAYA, Sabri and İnan, Onur} }
APA ALTUNKAYA, S , İnan, O . (2019). Detection of Mechanical Heart Valve Thrombosis Using Support Vector Machine. International Journal of Applied Mathematics Electronics and Computers , 7 (2) , 44-48 . Retrieved from https://dergipark.org.tr/en/pub/ijamec/issue/45258/569835
MLA ALTUNKAYA, S , İnan, O . "Detection of Mechanical Heart Valve Thrombosis Using Support Vector Machine". International Journal of Applied Mathematics Electronics and Computers 7 (2019 ): 44-48 <https://dergipark.org.tr/en/pub/ijamec/issue/45258/569835>
Chicago ALTUNKAYA, S , İnan, O . "Detection of Mechanical Heart Valve Thrombosis Using Support Vector Machine". International Journal of Applied Mathematics Electronics and Computers 7 (2019 ): 44-48
RIS TY - JOUR T1 - Detection of Mechanical Heart Valve Thrombosis Using Support Vector Machine AU - Sabri ALTUNKAYA , Onur İnan Y1 - 2019 PY - 2019 N1 - DO - T2 - International Journal of Applied Mathematics Electronics and Computers JF - Journal JO - JOR SP - 44 EP - 48 VL - 7 IS - 2 SN - -2147-8228 M3 - UR - Y2 - 2019 ER -
EndNote %0 International Journal of Applied Mathematics Electronics and Computers Detection of Mechanical Heart Valve Thrombosis Using Support Vector Machine %A Sabri ALTUNKAYA , Onur İnan %T Detection of Mechanical Heart Valve Thrombosis Using Support Vector Machine %D 2019 %J International Journal of Applied Mathematics Electronics and Computers %P -2147-8228 %V 7 %N 2 %R %U
ISNAD ALTUNKAYA, Sabri , İnan, Onur . "Detection of Mechanical Heart Valve Thrombosis Using Support Vector Machine". International Journal of Applied Mathematics Electronics and Computers 7 / 2 (June 2019): 44-48 .
AMA ALTUNKAYA S , İnan O . Detection of Mechanical Heart Valve Thrombosis Using Support Vector Machine. International Journal of Applied Mathematics Electronics and Computers. 2019; 7(2): 44-48.
Vancouver ALTUNKAYA S , İnan O . Detection of Mechanical Heart Valve Thrombosis Using Support Vector Machine. International Journal of Applied Mathematics Electronics and Computers. 2019; 7(2): 48-44.