Research Article
BibTex RIS Cite
Year 2020, Volume: 8 Issue: 4, 154 - 162, 31.12.2020
https://doi.org/10.18100/ijamec.800910

Abstract

References

  • Mevlüt U., Uğur Ö., K. Fen and B. Dergisi, “Karadeniz Fen Bilimleri Dergisi The Black Sea Journal of Sciences,” vol. 9, no. 1, pp. 58–69, 2019.
  • Yıldız M. , Bilişim Teknolojilerinin Uzman Sistem Boyutu İle Analizi, Sosyal Bilimler Meslek Yüksek Okulu Dergisi - Cilt :8 , sayı: 1-2 , sayfa : 189-212,2005.
  • D. A. Uğur, “Görüntü İşlemeye Giriş Introduction to Image Processing İçerik,” pp. 1–25, 2013.
  • Nursel Y., Konuşma Teorisi Ve Teknikleri, Kastamonu Eğitim Dergisi cilt:16 , No: 1 , sayfa : 249-266,Ü. Gazi, E. Sanatlar, and E. Bilgisayar,2008.
  • Burçin Ataseven, Yapay Sinir Ağları İle Öngörü Modellemesi,2005.
  • İsmail H. A., K. T. Üniversitesi, Bulanık Mantık : Bulanıklık Kavramı, pp. 80–85, 1999.
  • Emre Ç., Destek Vektör Makinelerinin Eğitimi İçin Yeni Yaklaşımlar,2008.
  • Gül G. , Çağtay T. , Uludağ G., “GENETİK ALGORİTMALAR ve UYGULAMA ALANLARI, Uludağ Üniversitesi iktisadi ve idari bilimler fakültesi sayı : 1 , sayfa 129 - 152 ,pp. 129–152, 2002.
  • insanlaşan makineler ve yapay zeka, İstanbul Teknik Üniversitesi Vakfı Yayını sayı : 75, 2017.
  • Muhammet A. , Enes Ç., Büyük Veri analizinde Yapay Zeka ve Makine Ögrenmesi uygulamaları, Mehmet Akif Ersoy Üniversitesi Sostal Bilimler Enstitüsü Dergisi Aralık 2017.
  • Muhammet K., Ceren Ç. “ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING APPLICATIONS IN BIG DATA ANALYSIS,Mart 2020
  • Seca Toker , Koronavirüs Salgını ile Mücadelede Büyük Veri Ve Yapay Zeka Çalışmaları Nisan 2020
  • S.Toroman,T.B. Alakus,I. Turkoglu, Convolutional capsnet: A novel artificial neural network approach to detect COVID-19 disease from X-ray images using capsule networks, Chaos, Solitons and Fractals Nonlinear Science, and Nonequilibrium and Complex Phenomena, 13 July 202
  • E. E. Hemdan, “COVIDX-Net : A Framework of Deep Learning Classifiers to Diagnose COVID-19 in X-Ray Images,” IEEE Commun. Surv. Tutorials, 2020.
  • T. T. Nguyen, “Artificial Intelligence in the Battle against Coronavirus (COVID-19): A Survey and Future Research Directions,” arXiv:2008.07343v1, no. September, 2020.
  • F. Shi et al., “Review of Artificial Intelligence Techniques in Imaging Data Acquisition , Segmentation and Diagnosis for COVID-19,” IEEE Rev. Biomed. Eng., pp. 1–13, 2020.
  • Z. Allam, G. Dey, and D. S. Jones, “Artificial Intelligence ( AI ) Provided Early Detection of the Coronavirus ( COVID-19 ) in China and Will Influence Future Urban Health Policy Internationally,” AL,MDP, pp. 156–165, 2020.
  • Z. Ceylan, “Science of the Total Environment Estimation of COVID-19 prevalence in Italy , Spain , and France,” Sci. Total Environ., vol. 729, p. 138817, 2020.

Analysis of Artificial Intelligence Technologies Used In The Covid-19 Outbreak Process

Year 2020, Volume: 8 Issue: 4, 154 - 162, 31.12.2020
https://doi.org/10.18100/ijamec.800910

Abstract

In the course of the outbreak of coronovirus (Covid-19), which emerged in Wuhan, China at the end of 2019, and then spread all over the world, the biggest assistants in the fight against this virus were the technologies which used. Today, the areas where artificial intelligence is applied and the developments in the focus of artificial intelligence lead the technology. With Industry 4.0, there is no need for manpower to meet especially unqualified workforce in many business sectors. The idea of doing things by machines has begun to cause serious changes in the world. In order for the work to be done by the machines, importance has been given to the development of the decision making capabilities of the machines. The decision-making ability of the machines is based on previous periods. The lack of necessary computer hardware parts in testing the hypotheses made in the previous periods caused. It has not been applied in the past due to the high time and cost of hypotheses developed. Today, as a result of the rapid growth of technology, hardware elements with high processing capability can now be obtained at affordable prices. As a result of the acceleration of the developed hardware elements, many methods that took a long time in the past have reached the level that everyone can apply. We observe that what needs to be done for digital transformation in our country has been tested in many sectors. The most basic element for digital transformation is artificial intelligence technology. This is an indication that artificial intelligence technologies have started to be used in many areas of our lives. Accordingly, the use of artificial intelligence technologies in different areas, especially in medicine, played an important role in combating the epidemic during the coronavirus (Covid-19) epidemic process. In this study, the concept of artificial intelligence and the usage areas of artificial intelligence techniques are discussed in the literature section. Then, the applications developed using artificial intelligence technologies during the coronavirus (Covid-19) epidemic process were evaluated and the adequacy of the applications developed by analysing in the method section was discussed.

References

  • Mevlüt U., Uğur Ö., K. Fen and B. Dergisi, “Karadeniz Fen Bilimleri Dergisi The Black Sea Journal of Sciences,” vol. 9, no. 1, pp. 58–69, 2019.
  • Yıldız M. , Bilişim Teknolojilerinin Uzman Sistem Boyutu İle Analizi, Sosyal Bilimler Meslek Yüksek Okulu Dergisi - Cilt :8 , sayı: 1-2 , sayfa : 189-212,2005.
  • D. A. Uğur, “Görüntü İşlemeye Giriş Introduction to Image Processing İçerik,” pp. 1–25, 2013.
  • Nursel Y., Konuşma Teorisi Ve Teknikleri, Kastamonu Eğitim Dergisi cilt:16 , No: 1 , sayfa : 249-266,Ü. Gazi, E. Sanatlar, and E. Bilgisayar,2008.
  • Burçin Ataseven, Yapay Sinir Ağları İle Öngörü Modellemesi,2005.
  • İsmail H. A., K. T. Üniversitesi, Bulanık Mantık : Bulanıklık Kavramı, pp. 80–85, 1999.
  • Emre Ç., Destek Vektör Makinelerinin Eğitimi İçin Yeni Yaklaşımlar,2008.
  • Gül G. , Çağtay T. , Uludağ G., “GENETİK ALGORİTMALAR ve UYGULAMA ALANLARI, Uludağ Üniversitesi iktisadi ve idari bilimler fakültesi sayı : 1 , sayfa 129 - 152 ,pp. 129–152, 2002.
  • insanlaşan makineler ve yapay zeka, İstanbul Teknik Üniversitesi Vakfı Yayını sayı : 75, 2017.
  • Muhammet A. , Enes Ç., Büyük Veri analizinde Yapay Zeka ve Makine Ögrenmesi uygulamaları, Mehmet Akif Ersoy Üniversitesi Sostal Bilimler Enstitüsü Dergisi Aralık 2017.
  • Muhammet K., Ceren Ç. “ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING APPLICATIONS IN BIG DATA ANALYSIS,Mart 2020
  • Seca Toker , Koronavirüs Salgını ile Mücadelede Büyük Veri Ve Yapay Zeka Çalışmaları Nisan 2020
  • S.Toroman,T.B. Alakus,I. Turkoglu, Convolutional capsnet: A novel artificial neural network approach to detect COVID-19 disease from X-ray images using capsule networks, Chaos, Solitons and Fractals Nonlinear Science, and Nonequilibrium and Complex Phenomena, 13 July 202
  • E. E. Hemdan, “COVIDX-Net : A Framework of Deep Learning Classifiers to Diagnose COVID-19 in X-Ray Images,” IEEE Commun. Surv. Tutorials, 2020.
  • T. T. Nguyen, “Artificial Intelligence in the Battle against Coronavirus (COVID-19): A Survey and Future Research Directions,” arXiv:2008.07343v1, no. September, 2020.
  • F. Shi et al., “Review of Artificial Intelligence Techniques in Imaging Data Acquisition , Segmentation and Diagnosis for COVID-19,” IEEE Rev. Biomed. Eng., pp. 1–13, 2020.
  • Z. Allam, G. Dey, and D. S. Jones, “Artificial Intelligence ( AI ) Provided Early Detection of the Coronavirus ( COVID-19 ) in China and Will Influence Future Urban Health Policy Internationally,” AL,MDP, pp. 156–165, 2020.
  • Z. Ceylan, “Science of the Total Environment Estimation of COVID-19 prevalence in Italy , Spain , and France,” Sci. Total Environ., vol. 729, p. 138817, 2020.
There are 18 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Fatih İlkbahar 0000-0002-7964-3433

Eylul Sungu 0000-0002-4287-9434

Publication Date December 31, 2020
Published in Issue Year 2020 Volume: 8 Issue: 4

Cite

APA İlkbahar, F., & Sungu, E. (2020). Analysis of Artificial Intelligence Technologies Used In The Covid-19 Outbreak Process. International Journal of Applied Mathematics Electronics and Computers, 8(4), 154-162. https://doi.org/10.18100/ijamec.800910
AMA İlkbahar F, Sungu E. Analysis of Artificial Intelligence Technologies Used In The Covid-19 Outbreak Process. International Journal of Applied Mathematics Electronics and Computers. December 2020;8(4):154-162. doi:10.18100/ijamec.800910
Chicago İlkbahar, Fatih, and Eylul Sungu. “Analysis of Artificial Intelligence Technologies Used In The Covid-19 Outbreak Process”. International Journal of Applied Mathematics Electronics and Computers 8, no. 4 (December 2020): 154-62. https://doi.org/10.18100/ijamec.800910.
EndNote İlkbahar F, Sungu E (December 1, 2020) Analysis of Artificial Intelligence Technologies Used In The Covid-19 Outbreak Process. International Journal of Applied Mathematics Electronics and Computers 8 4 154–162.
IEEE F. İlkbahar and E. Sungu, “Analysis of Artificial Intelligence Technologies Used In The Covid-19 Outbreak Process”, International Journal of Applied Mathematics Electronics and Computers, vol. 8, no. 4, pp. 154–162, 2020, doi: 10.18100/ijamec.800910.
ISNAD İlkbahar, Fatih - Sungu, Eylul. “Analysis of Artificial Intelligence Technologies Used In The Covid-19 Outbreak Process”. International Journal of Applied Mathematics Electronics and Computers 8/4 (December 2020), 154-162. https://doi.org/10.18100/ijamec.800910.
JAMA İlkbahar F, Sungu E. Analysis of Artificial Intelligence Technologies Used In The Covid-19 Outbreak Process. International Journal of Applied Mathematics Electronics and Computers. 2020;8:154–162.
MLA İlkbahar, Fatih and Eylul Sungu. “Analysis of Artificial Intelligence Technologies Used In The Covid-19 Outbreak Process”. International Journal of Applied Mathematics Electronics and Computers, vol. 8, no. 4, 2020, pp. 154-62, doi:10.18100/ijamec.800910.
Vancouver İlkbahar F, Sungu E. Analysis of Artificial Intelligence Technologies Used In The Covid-19 Outbreak Process. International Journal of Applied Mathematics Electronics and Computers. 2020;8(4):154-62.

Cited By