Year 2020,
Volume: 01 Issue: 01, 5 - 8, 10.09.2020
Can Beker
,
Ali Emre Turgut
,
Kutluk Bilge Arıkan
,
Dilek Funda Kurtulus
Supporting Institution
TÜBİTAK
Thanks
Bu çalışma, TÜBİTAK 116M273 kodlu proje kapsamında desteklenmektedir.
References
- Babinsky, H., Baik, Y., Bansmer, S., Beran, P., Bernal, L., Gunaydinoglu, E., Jones, A., Kang, C.‐K., Konrath R., Kurtulus, D. F., Ol, M., Paquet, J‐B., Radespiel, R., Reichert, T., Rival. D. Shyy W., Ukeiley, L., Visbal, M.R., Yuan W., (2010) “Unsteady Aerodynamics for Micro Air Vehicles” NATO Technical Report, NATO RTO‐TR‐AVT‐149, March 2010, ISBN 978-92-837-0118-7, NATO Research and Technology Organisation
- Beker, C., Turgut, A. E. , Ozcan, O., Arikan, Kutluk. B. and Kurtuluş, D. F. (2017) “Design of a Novel Foldable Flapping Wing Micro Air Vehicle”. AIAC-2017-138, 9’uncu Ankara Uluslararası Havacılık-Uzay Konferansı, 20-22 Eylül 2017, Ankara.
- Beker, C., Turgut, A. E., Ozcan O., Arikan, Kutluk B. and Kurtuluş, D. F., (2019) “Fluid-Structure Interaction of a Four-Bar Flapping Wing Mechanism”. IX ECCOMAS Thematic Conference on Smart Structures and Materials, SMART 2019 ECCOMAS-2019, 8-11 Temmuz 2019, Paris, Fransa.
- Combes, S. A., Daniel, T. L. (2003) “Flexural Stiffness in Insect Wings. I. Scaling and the Influence of Wing Venation”. Journal of Experimental Biology, 206, p: 2979-2987. doi:10.1242/jeb.00523, June 2003
- Ellington, C. P., Van den Berg, C., Willmott, A. P., and Thomas, Adrian L. R. “Leading-edge vortices in insect flight”. Letters to Nature, 384(6610),626-630. doi:10.1038/384626a0, 1996
- Gerdes, J., Holness, A., Perez-Rosado, A., Roberts, L., Greisinger, A., Barnett, E., Kempny, J., Lingam, D., Yeh, C., Bruck, H. A. and Gupta, Satyandra K. (2014) “Robo Raven: A Flapping-Wing Air Vehicle with Highly Compliant and Independently Controlled Wings”. SOFT ROBOTICS, Volume 1, Number 4, doi: 10.1089/soro.2014.0019.
- Jones, K. D., Dohring, C. M., Platzer, M. F. (1998) “Experimental and Computational Investigation of the Knoller–Betz Effect”. AIAA Journal, Vol. 36, No. 7. doi: 10.2514/2.505, July 1998.
- Shyy, W., Liu, H. (2007) “Flapping Wings and Aerodynamic Lift: The Role of Leading-Edge Vortices”. AIAA Journal, 45(12), 2817–2819. doi:10.2514/1.33205, December 2007.
- Syaifuddin, M., Park, Yoon, J. K. and Goo, Nam S. (2005) “Design and evaluation of LIPCA-actuated flapping device” Smart Structures and Materials. Vol. 5764, doi:10.1117/12.599
- Kurtulus D.F. (2011) Introduction to micro air vehicles: concepts, design and applications, VKI LS 2011-04, Recent developments in unmanned aircraft systems (UAS, including UAV and MAV), ISBN-13 978-2-87516-017-1, April 2011, pp. 1-30.
- Nakata, T., Liu, H., Bomphrey, R. J. (2015) “A CFD-informed quasi-steady model of flapping-wing aerodynamics”. Journal of Fluid Mechanics, 783, 323–343. doi:10.1017/jfm.2015.537, September 2015.
- Senol G., Arıkan K.B., Kurtulus D.F. (2017) Experimental and Numerical Results of a Flapping Wing Four Bar Mechanism, 55th AIAA Aerospace Sciences Meeting, AIAA Scitech Forum, AIAA 2017-0498, 9-13 January 2017.
AEROELASTIC ANALYSIS OF A FLAPPING BLOW FLY WING
Year 2020,
Volume: 01 Issue: 01, 5 - 8, 10.09.2020
Can Beker
,
Ali Emre Turgut
,
Kutluk Bilge Arıkan
,
Dilek Funda Kurtulus
Abstract
In this study, a 3D model of the bio-inspired blowfly wing Callphere Erytrocephala is created and aeroelastic analysis is performed to calculate its aerodynamical characteristics by use of numerical methods. To perform the flapping motion, a sinusoidal input function is created. The scope of this study is to perform aeroelastic analysis by synchronizing computational fluid dynamics (CFD) and structural dynamic analysis models and to investigate the unsteady lift formation on the aeroelastic flapping wing for different angles of attack.
References
- Babinsky, H., Baik, Y., Bansmer, S., Beran, P., Bernal, L., Gunaydinoglu, E., Jones, A., Kang, C.‐K., Konrath R., Kurtulus, D. F., Ol, M., Paquet, J‐B., Radespiel, R., Reichert, T., Rival. D. Shyy W., Ukeiley, L., Visbal, M.R., Yuan W., (2010) “Unsteady Aerodynamics for Micro Air Vehicles” NATO Technical Report, NATO RTO‐TR‐AVT‐149, March 2010, ISBN 978-92-837-0118-7, NATO Research and Technology Organisation
- Beker, C., Turgut, A. E. , Ozcan, O., Arikan, Kutluk. B. and Kurtuluş, D. F. (2017) “Design of a Novel Foldable Flapping Wing Micro Air Vehicle”. AIAC-2017-138, 9’uncu Ankara Uluslararası Havacılık-Uzay Konferansı, 20-22 Eylül 2017, Ankara.
- Beker, C., Turgut, A. E., Ozcan O., Arikan, Kutluk B. and Kurtuluş, D. F., (2019) “Fluid-Structure Interaction of a Four-Bar Flapping Wing Mechanism”. IX ECCOMAS Thematic Conference on Smart Structures and Materials, SMART 2019 ECCOMAS-2019, 8-11 Temmuz 2019, Paris, Fransa.
- Combes, S. A., Daniel, T. L. (2003) “Flexural Stiffness in Insect Wings. I. Scaling and the Influence of Wing Venation”. Journal of Experimental Biology, 206, p: 2979-2987. doi:10.1242/jeb.00523, June 2003
- Ellington, C. P., Van den Berg, C., Willmott, A. P., and Thomas, Adrian L. R. “Leading-edge vortices in insect flight”. Letters to Nature, 384(6610),626-630. doi:10.1038/384626a0, 1996
- Gerdes, J., Holness, A., Perez-Rosado, A., Roberts, L., Greisinger, A., Barnett, E., Kempny, J., Lingam, D., Yeh, C., Bruck, H. A. and Gupta, Satyandra K. (2014) “Robo Raven: A Flapping-Wing Air Vehicle with Highly Compliant and Independently Controlled Wings”. SOFT ROBOTICS, Volume 1, Number 4, doi: 10.1089/soro.2014.0019.
- Jones, K. D., Dohring, C. M., Platzer, M. F. (1998) “Experimental and Computational Investigation of the Knoller–Betz Effect”. AIAA Journal, Vol. 36, No. 7. doi: 10.2514/2.505, July 1998.
- Shyy, W., Liu, H. (2007) “Flapping Wings and Aerodynamic Lift: The Role of Leading-Edge Vortices”. AIAA Journal, 45(12), 2817–2819. doi:10.2514/1.33205, December 2007.
- Syaifuddin, M., Park, Yoon, J. K. and Goo, Nam S. (2005) “Design and evaluation of LIPCA-actuated flapping device” Smart Structures and Materials. Vol. 5764, doi:10.1117/12.599
- Kurtulus D.F. (2011) Introduction to micro air vehicles: concepts, design and applications, VKI LS 2011-04, Recent developments in unmanned aircraft systems (UAS, including UAV and MAV), ISBN-13 978-2-87516-017-1, April 2011, pp. 1-30.
- Nakata, T., Liu, H., Bomphrey, R. J. (2015) “A CFD-informed quasi-steady model of flapping-wing aerodynamics”. Journal of Fluid Mechanics, 783, 323–343. doi:10.1017/jfm.2015.537, September 2015.
- Senol G., Arıkan K.B., Kurtulus D.F. (2017) Experimental and Numerical Results of a Flapping Wing Four Bar Mechanism, 55th AIAA Aerospace Sciences Meeting, AIAA Scitech Forum, AIAA 2017-0498, 9-13 January 2017.