Research Article
BibTex RIS Cite
Year 2024, Volume: 05 Issue: 02, 90 - 100

Abstract

Project Number

---

References

  • Abdelhafez, A.A. ve Forsyth, A.J., 2009. A review of more-electric aircraft. 13th international conference on aerospace sciences & aviation technology.
  • Contreras, A.S., Özay, Y.K. ve Veziro T.N.,1997. Hydrogen as aviation fuel: a comparison with hydrocarbon fuels. Int J Hydrogen Energy. 22, 1053-1060.
  • Ding, Y., Zheng, P., Yang, L., Wang, Q., & Han, Q. (2024). The present and future of sustainable aviation fuels in China. Annual Report on China’s Petroleum, Gas and New Energy Industry (2022–2023), 333-356.
  • Dray L, Andreas W. Schäfer, Kinan A., 2018. The Global Potential for CO2 Emissions Reduction from Jet Engine Passenger Aircraft, Transportation Research Record: Journal of the Transportation Research Board, https://doi.org/10.1177/0361198118787361
  • EASA, 2019. European Aviation Environmental Report. European Union Aviation Safety Agency, Brussels, Belgium.
  • European Commission Aviation, 2021. Havacılıktan kaynaklanan emisyonların azaltılması, https://ec.europa.eu/clima/policies/transport/aviation_en. ,Accessed 29.01. 2021.
  • European Commission, 2017. White Paper on the Future of Europe, Reflections and scenarios for the EU27 by 2025.
  • Gerste, R. D., 2017. Hava Nasıl Tarih Yazar- Antikçağdan Günümüze İklim Değişiklikleri ve Felaketler, (Çev. M. Karaismailoğlu), Kolektif Kitap.
  • Gill, M., 2021. Preparing for CORSIA take-Off. IETA insights. https://www.ieta.org/resources/Resources/GHG_Report/2017/Preparing%20 for% %20CORSIA%20Take-off-%20Gill.pdf. ,Accessed 09.01.2021.
  • Godula-Jopek, A. ve Westenberger, A., 2016. Hydrogen-fuelled aeroplanes. Compend Hydrogen Energy. 67-85. Graver B, Zhang K, Rutherford D., 2018. CO2 Emissions From Commercial Aviation, International Council on Clean Transportation,1-13
  • Gudmundsson, S. V., Cattaneo, M., & Redondi, R. (2021). Forecasting temporal world recovery in air transport markets in the presence of large economic shocks: The case of COVID-19. Journal of Air Transport Management, 91, 102007.
  • Gündoğan, A., Baş, D., Sayman, R., Arıkan, Y. ve Özsoy, G., 2015. A’dan Z’ye İklim Değişikliği Başucu Rehberi, Bölgesel Çevre Merkezi REC, Türkiye.
  • Hassan, M., Pfaender, H. ve Mavris, D.N., 2017. Feasibility Analysis of Aviation CO2 Emission Goals Under Uncertainty. In: 17th AIAA Aviation Technology, Integration, and Operations Conference.
  • Hollingsworth, P., Pfaender, H. ve Jimenez, H., 2008. A Method for Assessing the Environmental Benefit of Future Aviation Technologies. In: ICAS Secretariat - 26th Congress of International Council of the Aeronautical Sciences. ICAS, 1, 3708–3719.
  • IATA, 2017. World air traffic statistics. Report of IATA. Canada.
  • IATA, 2002. CORSIA Bilgi Sayfası” 2019https://www.iata.org/en/iata-repository/pressroom/fact-sheets/fact-sheet---corsia /, Accessed 14.10.2022.
  • ICAO, 2019a. CORSIA Default Life Cycle Emissions Values for CORSIA Eligible Fuels. https://www.icao.int/environmentalprotection/CORSIA/Documents/ICAO%20document%2006%20-%20Default%20Life%20Cycle%20Emissions.pdf., Accessed 13.01.2020.
  • ICAO, 2019b. CORSIA Supporting Document: CORSIA Eligible Fuels–Life Cycle AssessmentMethodology. .https://www.icao.int/environmentalprotection/CORSIA/Documents/CORSIA%20Supporting%20Document_CORSIA%20Eligible%20Fuels_LCA%20Methodology.pdf., Accessed 13.01.2020.
  • ICAO, 2020. Operational Impact on Air Transport, https://data. icao.int/coVID-19/operational.htm. , Accessed 12.01.2020.
  • ICAO, 2023. CORSIA Default Life Cycle Emissions Values for CORSIA Eligible Fuels., Accessed 12.01.2020. Investing.com, 2023. ABD Mısır Endeks Verileri. https://www.investing.com/commodities/us-corn-historical-data, Accessed 26.02.2023.
  • Investing.com, 2023. ABD Soya Fasülyesi Endeks Verileri. https://www.investing.com/commodities/us-soybeans, Accessed 26.02.2023.
  • IPCC, 2013. IPCC Fifth Assessment Report.
  • Jimenez, H., Pfaender, H. ve Mavris, D., 2012. Fuel Burn and CO2 System-Wide Assessment of Environmentally Responsible Aviation Technologies. Journal of Aircraft, 49, 1913–1930. https://doi.org/10.2514/1.C031755.
  • Karaman, A. S., Kilic, M., & Uyar, A. (2018). Sustainability reporting in the aviation industry: Worldwide evidence. Sustainability Accounting, Management and Policy Journal, 9(4), 362-391.
  • Khandelwal, B., Karakurt, A., Sekaran, P.R., Sethi, V. ve Singh, R., 2013. Hydrogen powered aircraft: The future of air transport. Progress in Aerospace Sciences, 60, 45-59.
  • Lim, S., Pettit, S., Abouarghoub, W., & Beresford, A. (2019). Port sustainability and performance: A systematic literature review. Transportation Research Part D: Transport and Environment, 72, 47-64.
  • Liu, X., Zhou, D., Zhou, P. ve Wang, Q., 2017. Dynamic carbon emission performance of Chinese airlines: a global Malmquist index analysis. Journal of Air Transport Management, 65, 99–109.
  • Lufthansa Airlines, 2021 Yılı Sürdürülebilirlik Raporu. https://www.lufthansagroup.com/en/responsibility 2021, Accessed 01.03.2023.
  • Nazeer, S., Saleem, H. M. N., & Iqbal, J., 2024. Triple-A Paradigm: Examining its Role in Shaping Sustainable Performance. Foundation University Journal of Business & Economics, 9(1).
  • Nazeer, S., Saleem, H. M. N., & Shafiq, M. (2024). Examining the Influence of Adoptability, Alignment, and Agility Approaches on the Sustainable Performance of Aviation Industry: An Empirical Investigation of Supply Chain Perspective. International Journal of Aviation, Aeronautics, and Aerospace, 11(1), 8.
  • OurWorld, 2021. Annual total CO2 emissions, by world region. https://ourworldindata.org/grapher/annual-co-emissions-by-region?country =Asia~Africa~North+America~South+America~Oceania~Europe., Accessed 29.01.2021.
  • OurWorld, 2021a Cars, planes, trains: where do CO2 emissions from. https://ourworldindata.org/co2-emissions- sport. , Accessed 29.01.2021.
  • Owen, B., Lee, D.S. ve Lim, L., 2010. Flying İnto the Future: Aviation Emissions Scenarios to 2050. Enviromental Science and Technology, 44, 2255–2260. https://doi.org/10.1021/es902530z.
  • Schaefer, M., 2012. Development of a Forecast Model for Global Air Traffic Emissions, Yüksek Lisans Tezi. Seo, Y., Park, B., & Kim, J.-h. (2018). A Study on Establishing Performance Measurement and Evaluation System of ATM. Journal of the Korean Society for Aviation and Aeronautics,26(1), 37-43.
  • Singh, J., Rana, S., Abdul Hamid, A. B., & Gupta, P. (2023). Who should hold the baton of aviation sustainability? Social Responsibility Journal, 19(7), 1161-1177.
  • Soykan, G. ve Baharozu, E. 2015. Power flow application on an air vehicle electrical power systems. 1th international symposium on sustainable aviation.
  • Terekhov, I., Schilling, T., Niklaß, M. ve Ghosh, R., 2018. Assessing the Impact of New Technologies in Aviation Using a Global Aircraft Fleet Forecasting Model, AEGATS 1-12.
  • Tetzloff, I.J. ve Crossley, W.A., 2014. Measuring Systemwide Impacts of New Aircraft on the Environment. Journal of.Aircraft, 51, 1483–1489. https://doi.org/10.2514/1.C032359.
  • Tradingeconomics.com, 2023. ABD Canola Endeks Verileri, https://tradingeconomics.com/commodity/canola, Accessed 26.02.2023.
  • Türk Hava Yolları, 2021. 2021 Yılı Sürdürülebilirlik Raporu. https://investor.turkishairlines.com/documents/sustainability/turkish-airlines-sustainability-report-2021.pdf., Accessed 29.12.2022.
  • Türkeş, M., Sümer, U.M. ve Çetiner, G., 2020. Küresel iklim değişikliği ve olası etkileri. Çevre Bakanlığı, Birleşmiş Milletler İklim Değişikliği Çerçeve Sözleşmesi Seminer Notları (İstanbul Sanayi Odası).
  • Türkeş, M., 2008. Küresel iklim değişikliği nedir? Temel kavramlar, nedenleri, gözlenen ve öngörülen değişiklikler, İklim Değişikliği ve Çevre, 1, 27.
  • Undavalli, V., Olatunde, O. B. G., Boylu, R., Wei, C., Haeker, J., Hamilton, J., & Khandelwal, B. (2023). Recent advancements in sustainable aviation fuels. Progress in Aerospace Sciences, 136, 100876.
  • United States Environmental Protection Agency (US EPA), 2020. Global greenhouse gas emissions, https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data., Accessed 04.08.2021.
  • UNFCC, 2021. Kyoto Protocol -Targets for the first commitment period. https://unfccc.int/process-andmeetings/the-kyoto-protocol/what-is-the-kyoto-protocol/kyoto-protocol-targets-for-the-firstcommitment-period., Accessed 04.08.2021.
  • US Energy Information Administration, 2023. ABD Körfez Kıyısı Kerosen Tipi Jet Yakıtı Spot Fiyat Verileri, https://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=pet&s=eer_epjk_pf4_rgc_dpg&f=m., Accessed 26.02.2023.
  • Wang, M., Dewil, R., Maniatis, K., Wheeldon, J., Tan, T., Baeyens, J. ve Fang, Y., 2019. Biomass-Derived Aviation Fuels: Challenges and Perspective, Progress in Energy and Combustion Science, 74, 31–49.
  • Wang, M., Amgad, E., Lee, U., Bafana, A., Banerjee, S., Thathiana, P., Bobba, P., 2021. Burnham, A., Cai, H. ve Gracida-Alvarez, U.R. Summary of Expansions and [1] Updates in GREET®, Argonne National Lab.(ANL), Argonne, IL (United States).
  • Wang, Z., Xu, X., Zhu, Y. ve Gan, T., 2020. Evaluation of carbon emission efficiency in China’s airlines, Journal of Cleaner Product, 243, 118500.
  • Wheeler P., 2016. Technology for the more and all electric aircraft of the future. IEEE international conference on automatica (ICA-ACCA).
  • Wils, A., Van Baelen, S., Holvoet, T., & De Vlaminck, K. (2006). Agility in the avionics software world. Paper presented at the Extreme Programming and Agile Processes in Software Engineering: 7th International Conference, XP 2006, Oulu, Finland, June 17-22, 2006. Proceedings 7.
  • Winther M, Rypdal K., 2019. EMEP/EEA Air Pollutant Emission Inventory Guidebook.
  • Yılmaz, R. (2023). Examining The Effects of Employees' visıonary Leadership Perceptions on Organızational Agility With Structural Equation Model: A Research In Avıatıon Sector. Yönetim Bilimleri Dergisi, 21(50), 1077-1098.

An Empirical Analysis on The Use of Sustainable Fuels in The Aviation Industry

Year 2024, Volume: 05 Issue: 02, 90 - 100

Abstract

This study aims to analyze and evaluate different types of alternative fuels for aviation from a life cycle and cost perspective. It aims to analyze different alternative fuels and their use in aircraft for this purpose in the aviation sector in relation to their potential to be a suitable transition solution towards sustainable transformation. Using the GREET (Greenhouse gases, Regulated Emissions, and Energy use in Technologies) aviation module developed by the US National Research Laboratory (Argonne), the life cycles of petroleum and six different sustainable aviation fuel production methods were calculated, and the environmental impact of kerosene and sustainable aviation fuels in terms of cost and carbon dioxide emissions on long, medium and short-haul flights were analyzed. As a result of the study, it was determined that the cost of the sustainable aviation fuels examined was higher than fossil fuel. The key to greater acceptance and deployment of sustainable aviation fuel is cost reduction. In the long term, this will require investment in advanced technologies to process feedstocks more efficiently on a larger scale and in the development of sustainable and scalable feedstock options. However, in the short term, temporary support from governments and other stakeholders through policy incentives is needed. In this sense, this study is of interest to managers of domestic and global airline companies, industry professionals and interested stakeholders.

Ethical Statement

The authors of the paper submitted declare/declares that nothing which is necessary for achieving the paper requires ethical committee and/or legal-special permissions.

Supporting Institution

---

Project Number

---

Thanks

---

References

  • Abdelhafez, A.A. ve Forsyth, A.J., 2009. A review of more-electric aircraft. 13th international conference on aerospace sciences & aviation technology.
  • Contreras, A.S., Özay, Y.K. ve Veziro T.N.,1997. Hydrogen as aviation fuel: a comparison with hydrocarbon fuels. Int J Hydrogen Energy. 22, 1053-1060.
  • Ding, Y., Zheng, P., Yang, L., Wang, Q., & Han, Q. (2024). The present and future of sustainable aviation fuels in China. Annual Report on China’s Petroleum, Gas and New Energy Industry (2022–2023), 333-356.
  • Dray L, Andreas W. Schäfer, Kinan A., 2018. The Global Potential for CO2 Emissions Reduction from Jet Engine Passenger Aircraft, Transportation Research Record: Journal of the Transportation Research Board, https://doi.org/10.1177/0361198118787361
  • EASA, 2019. European Aviation Environmental Report. European Union Aviation Safety Agency, Brussels, Belgium.
  • European Commission Aviation, 2021. Havacılıktan kaynaklanan emisyonların azaltılması, https://ec.europa.eu/clima/policies/transport/aviation_en. ,Accessed 29.01. 2021.
  • European Commission, 2017. White Paper on the Future of Europe, Reflections and scenarios for the EU27 by 2025.
  • Gerste, R. D., 2017. Hava Nasıl Tarih Yazar- Antikçağdan Günümüze İklim Değişiklikleri ve Felaketler, (Çev. M. Karaismailoğlu), Kolektif Kitap.
  • Gill, M., 2021. Preparing for CORSIA take-Off. IETA insights. https://www.ieta.org/resources/Resources/GHG_Report/2017/Preparing%20 for% %20CORSIA%20Take-off-%20Gill.pdf. ,Accessed 09.01.2021.
  • Godula-Jopek, A. ve Westenberger, A., 2016. Hydrogen-fuelled aeroplanes. Compend Hydrogen Energy. 67-85. Graver B, Zhang K, Rutherford D., 2018. CO2 Emissions From Commercial Aviation, International Council on Clean Transportation,1-13
  • Gudmundsson, S. V., Cattaneo, M., & Redondi, R. (2021). Forecasting temporal world recovery in air transport markets in the presence of large economic shocks: The case of COVID-19. Journal of Air Transport Management, 91, 102007.
  • Gündoğan, A., Baş, D., Sayman, R., Arıkan, Y. ve Özsoy, G., 2015. A’dan Z’ye İklim Değişikliği Başucu Rehberi, Bölgesel Çevre Merkezi REC, Türkiye.
  • Hassan, M., Pfaender, H. ve Mavris, D.N., 2017. Feasibility Analysis of Aviation CO2 Emission Goals Under Uncertainty. In: 17th AIAA Aviation Technology, Integration, and Operations Conference.
  • Hollingsworth, P., Pfaender, H. ve Jimenez, H., 2008. A Method for Assessing the Environmental Benefit of Future Aviation Technologies. In: ICAS Secretariat - 26th Congress of International Council of the Aeronautical Sciences. ICAS, 1, 3708–3719.
  • IATA, 2017. World air traffic statistics. Report of IATA. Canada.
  • IATA, 2002. CORSIA Bilgi Sayfası” 2019https://www.iata.org/en/iata-repository/pressroom/fact-sheets/fact-sheet---corsia /, Accessed 14.10.2022.
  • ICAO, 2019a. CORSIA Default Life Cycle Emissions Values for CORSIA Eligible Fuels. https://www.icao.int/environmentalprotection/CORSIA/Documents/ICAO%20document%2006%20-%20Default%20Life%20Cycle%20Emissions.pdf., Accessed 13.01.2020.
  • ICAO, 2019b. CORSIA Supporting Document: CORSIA Eligible Fuels–Life Cycle AssessmentMethodology. .https://www.icao.int/environmentalprotection/CORSIA/Documents/CORSIA%20Supporting%20Document_CORSIA%20Eligible%20Fuels_LCA%20Methodology.pdf., Accessed 13.01.2020.
  • ICAO, 2020. Operational Impact on Air Transport, https://data. icao.int/coVID-19/operational.htm. , Accessed 12.01.2020.
  • ICAO, 2023. CORSIA Default Life Cycle Emissions Values for CORSIA Eligible Fuels., Accessed 12.01.2020. Investing.com, 2023. ABD Mısır Endeks Verileri. https://www.investing.com/commodities/us-corn-historical-data, Accessed 26.02.2023.
  • Investing.com, 2023. ABD Soya Fasülyesi Endeks Verileri. https://www.investing.com/commodities/us-soybeans, Accessed 26.02.2023.
  • IPCC, 2013. IPCC Fifth Assessment Report.
  • Jimenez, H., Pfaender, H. ve Mavris, D., 2012. Fuel Burn and CO2 System-Wide Assessment of Environmentally Responsible Aviation Technologies. Journal of Aircraft, 49, 1913–1930. https://doi.org/10.2514/1.C031755.
  • Karaman, A. S., Kilic, M., & Uyar, A. (2018). Sustainability reporting in the aviation industry: Worldwide evidence. Sustainability Accounting, Management and Policy Journal, 9(4), 362-391.
  • Khandelwal, B., Karakurt, A., Sekaran, P.R., Sethi, V. ve Singh, R., 2013. Hydrogen powered aircraft: The future of air transport. Progress in Aerospace Sciences, 60, 45-59.
  • Lim, S., Pettit, S., Abouarghoub, W., & Beresford, A. (2019). Port sustainability and performance: A systematic literature review. Transportation Research Part D: Transport and Environment, 72, 47-64.
  • Liu, X., Zhou, D., Zhou, P. ve Wang, Q., 2017. Dynamic carbon emission performance of Chinese airlines: a global Malmquist index analysis. Journal of Air Transport Management, 65, 99–109.
  • Lufthansa Airlines, 2021 Yılı Sürdürülebilirlik Raporu. https://www.lufthansagroup.com/en/responsibility 2021, Accessed 01.03.2023.
  • Nazeer, S., Saleem, H. M. N., & Iqbal, J., 2024. Triple-A Paradigm: Examining its Role in Shaping Sustainable Performance. Foundation University Journal of Business & Economics, 9(1).
  • Nazeer, S., Saleem, H. M. N., & Shafiq, M. (2024). Examining the Influence of Adoptability, Alignment, and Agility Approaches on the Sustainable Performance of Aviation Industry: An Empirical Investigation of Supply Chain Perspective. International Journal of Aviation, Aeronautics, and Aerospace, 11(1), 8.
  • OurWorld, 2021. Annual total CO2 emissions, by world region. https://ourworldindata.org/grapher/annual-co-emissions-by-region?country =Asia~Africa~North+America~South+America~Oceania~Europe., Accessed 29.01.2021.
  • OurWorld, 2021a Cars, planes, trains: where do CO2 emissions from. https://ourworldindata.org/co2-emissions- sport. , Accessed 29.01.2021.
  • Owen, B., Lee, D.S. ve Lim, L., 2010. Flying İnto the Future: Aviation Emissions Scenarios to 2050. Enviromental Science and Technology, 44, 2255–2260. https://doi.org/10.1021/es902530z.
  • Schaefer, M., 2012. Development of a Forecast Model for Global Air Traffic Emissions, Yüksek Lisans Tezi. Seo, Y., Park, B., & Kim, J.-h. (2018). A Study on Establishing Performance Measurement and Evaluation System of ATM. Journal of the Korean Society for Aviation and Aeronautics,26(1), 37-43.
  • Singh, J., Rana, S., Abdul Hamid, A. B., & Gupta, P. (2023). Who should hold the baton of aviation sustainability? Social Responsibility Journal, 19(7), 1161-1177.
  • Soykan, G. ve Baharozu, E. 2015. Power flow application on an air vehicle electrical power systems. 1th international symposium on sustainable aviation.
  • Terekhov, I., Schilling, T., Niklaß, M. ve Ghosh, R., 2018. Assessing the Impact of New Technologies in Aviation Using a Global Aircraft Fleet Forecasting Model, AEGATS 1-12.
  • Tetzloff, I.J. ve Crossley, W.A., 2014. Measuring Systemwide Impacts of New Aircraft on the Environment. Journal of.Aircraft, 51, 1483–1489. https://doi.org/10.2514/1.C032359.
  • Tradingeconomics.com, 2023. ABD Canola Endeks Verileri, https://tradingeconomics.com/commodity/canola, Accessed 26.02.2023.
  • Türk Hava Yolları, 2021. 2021 Yılı Sürdürülebilirlik Raporu. https://investor.turkishairlines.com/documents/sustainability/turkish-airlines-sustainability-report-2021.pdf., Accessed 29.12.2022.
  • Türkeş, M., Sümer, U.M. ve Çetiner, G., 2020. Küresel iklim değişikliği ve olası etkileri. Çevre Bakanlığı, Birleşmiş Milletler İklim Değişikliği Çerçeve Sözleşmesi Seminer Notları (İstanbul Sanayi Odası).
  • Türkeş, M., 2008. Küresel iklim değişikliği nedir? Temel kavramlar, nedenleri, gözlenen ve öngörülen değişiklikler, İklim Değişikliği ve Çevre, 1, 27.
  • Undavalli, V., Olatunde, O. B. G., Boylu, R., Wei, C., Haeker, J., Hamilton, J., & Khandelwal, B. (2023). Recent advancements in sustainable aviation fuels. Progress in Aerospace Sciences, 136, 100876.
  • United States Environmental Protection Agency (US EPA), 2020. Global greenhouse gas emissions, https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data., Accessed 04.08.2021.
  • UNFCC, 2021. Kyoto Protocol -Targets for the first commitment period. https://unfccc.int/process-andmeetings/the-kyoto-protocol/what-is-the-kyoto-protocol/kyoto-protocol-targets-for-the-firstcommitment-period., Accessed 04.08.2021.
  • US Energy Information Administration, 2023. ABD Körfez Kıyısı Kerosen Tipi Jet Yakıtı Spot Fiyat Verileri, https://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=pet&s=eer_epjk_pf4_rgc_dpg&f=m., Accessed 26.02.2023.
  • Wang, M., Dewil, R., Maniatis, K., Wheeldon, J., Tan, T., Baeyens, J. ve Fang, Y., 2019. Biomass-Derived Aviation Fuels: Challenges and Perspective, Progress in Energy and Combustion Science, 74, 31–49.
  • Wang, M., Amgad, E., Lee, U., Bafana, A., Banerjee, S., Thathiana, P., Bobba, P., 2021. Burnham, A., Cai, H. ve Gracida-Alvarez, U.R. Summary of Expansions and [1] Updates in GREET®, Argonne National Lab.(ANL), Argonne, IL (United States).
  • Wang, Z., Xu, X., Zhu, Y. ve Gan, T., 2020. Evaluation of carbon emission efficiency in China’s airlines, Journal of Cleaner Product, 243, 118500.
  • Wheeler P., 2016. Technology for the more and all electric aircraft of the future. IEEE international conference on automatica (ICA-ACCA).
  • Wils, A., Van Baelen, S., Holvoet, T., & De Vlaminck, K. (2006). Agility in the avionics software world. Paper presented at the Extreme Programming and Agile Processes in Software Engineering: 7th International Conference, XP 2006, Oulu, Finland, June 17-22, 2006. Proceedings 7.
  • Winther M, Rypdal K., 2019. EMEP/EEA Air Pollutant Emission Inventory Guidebook.
  • Yılmaz, R. (2023). Examining The Effects of Employees' visıonary Leadership Perceptions on Organızational Agility With Structural Equation Model: A Research In Avıatıon Sector. Yönetim Bilimleri Dergisi, 21(50), 1077-1098.
There are 53 citations in total.

Details

Primary Language English
Subjects Transport Economics
Journal Section Research Articles
Authors

Yaşar Köse 0000-0003-0073-2095

Emre Oğuzhan Polat 0009-0008-9352-1839

Project Number ---
Early Pub Date November 27, 2024
Publication Date
Submission Date March 25, 2024
Acceptance Date September 6, 2024
Published in Issue Year 2024 Volume: 05 Issue: 02

Cite

APA Köse, Y., & Polat, E. O. (2024). An Empirical Analysis on The Use of Sustainable Fuels in The Aviation Industry. International Journal of Aviation Science and Technology, 05(02), 90-100.

Please find the article preperation and structure guides in author guidelines section.
Please do not hasitate to contact with us in here.