Internal combustion engines cause the engine to vibrate with a certain acceleration due to the oscillation of many components and combustion events during operation. The resulting vibrations can give information about the regular operation of the engine or a possible me-chanical failure. For this reason, it is very important to measure and interpret these vibrations in a healthy way.
In this study, a microcontroller-based measurement system was designed and implemented to examine the vibrations of a 4-stroke, 3-cylinder and water-cooled diesel engine at different speeds, under loaded and unloaded conditions. Vibration results for three different measure-ment points at different engine speeds (900,1200,1600,2000,2400,2800 and 3200rpm) were recorded in the data recording system for 60s. The recorded data were filtered by the EMA method and the results were analyzed by the FFT method.
According to the results obtained, it has been determined that there is a close linear rela-tionship between engine speed and vibrations. Results of measurement point 1 (Cylinder head) Higher vibration harmonics were measured compared to measurement points 2 (engine block) and 3 (Flywheel housing). The highest vibrations occurred at 3200rpm under loaded and unloaded operating conditions. As a result; It has been seen that the measurement sys-tem developed using MEMs-based accelerometers can be successfully applied to measure engine vibrations.
Ondokuz Mayis University
PYO.YMY.1901.17.001
This study is supported by the Coordinatorship of Ondokuz Mayis University’s Scientific Research Projects
PYO.YMY.1901.17.001
Primary Language | English |
---|---|
Subjects | Electrical Engineering |
Journal Section | Articles |
Authors | |
Project Number | PYO.YMY.1901.17.001 |
Publication Date | December 31, 2022 |
Submission Date | August 29, 2022 |
Acceptance Date | October 21, 2022 |
Published in Issue | Year 2022 |
International Journal of Automotive Science and Technology (IJASTECH) is published by Society of Automotive Engineers Turkey