Research Article
BibTex RIS Cite

Experimental and Numerical Approach on Bird Strike: A Review

Year 2023, , 95 - 103, 30.06.2023
https://doi.org/10.30939/ijastech..1293572

Abstract

Bird strikes are one of the biggest threats to flight safety in aviation. Bird strikes occur in every 2000 flights. 90% of foreign body damage in aviation is caused by bird strikes. In the event of a bird strike, the most critical parts of the aircraft are the nose, windshield, engine, inlet, wing front edges. Bird strikes usu-ally occur during the landing and take-off moments of the aircraft. In addition, factors such as the increase in the number of flights in the globalizing world and the migration status of birds play a role in the increase of these cases. In 15% of bird strikes, the aircraft is seriously damaged. Aircraft components must have a certain durability to minimize damage for flight safety. Criteria for critical parts are set in aviation regulations. To meet these criteria, aircraft components must successfully complete bird strike certification tests prior to flight. Due to the cost of physical tests, analyzes based on numerical simulations are carried out in par-allel with certification tests. The purpose of this analysis is to predict the damage to the aircraft by the verified bird model, to make changes to the aircraft compo-nent design and material when necessary, and to reduce the cost. In this review, the theoretical background of the bird strike problem, finite element analysis (model bird materials, bird modeling methods, bird geometry) and tests in the relevant literature will be discussed.

Supporting Institution

Turkish Aerospace Industries, Inc. (TAI )

Thanks

Turkish Aerospace Industries, Inc. (TAI ) provided technical support for Erkan Boyacı and Murat Altın to perform this research.

References

  • [1] Internet: Https://wildlife.faa.gov/home.
  • [2] DeVault TL, Blackwell BF, Seamans TW, Begier MJ, Kougher JD, Washburn JE, et al. Estimating interspecific economic risk of bird strikes with aircraft. Wildl Soc Bull. 2018;42(1):94–101.
  • [3] Manville AM. Bird strikes and electrocutions at power lines, communication towers, and wind turbines: state of the art and state of the science–next steps toward mitigation. USDA For Serv Gen Tech Reports. 2005;PSW-GTR-19:1051–64.
  • [4] Khan AI, Kapania RK, Johnson ER. A review of soft body impact on composite structure. Collect Tech Pap - AIAA/ASME/ASCE/AHS/ASC Struct Struct Dyn Mater Conf. 2010;(June 2016).
  • [5] Bird Strike Committee USA. http://www.birdstrike.org/news-info/press-kit/.
  • [6] Dolbeer RA, Begier MJ, Miller PR, Weller JR, Anderson AL. Wildlife Strikes to Civil Aircraft in the United States, 1990–2021, July 2022. 2022;
  • [7] MacKinnon B. Wildlife Control Procedures Manual. 2002;
  • [8] MacKinnon B. Sharing the Skies. An Aviation Industry Guide to the Management of Wildlife Hazards. Sharing the Skies. An Aviation Industry Guide to the Management of Wildlife Hazards. 2004. 322 p.
  • [9] Anderson A, Carpenter DS, Begier MJ, Blackwell BF, DeVault TL, Shwiff SA. Modeling the cost of bird strikes to US civil aircraft. Transp Res Part D Transp Environ [Internet]. 2015;38:49–58. Available from: http://dx.doi.org/10.1016/j.trd.2015.04.027
  • [10] Dolbeer R, Wright S. Wildlife strikes to civil aircraft in the United States 1990–2014. Fed Aviat Adm Natl Wildl Strike Database Ser Rep Number 21 [Internet]. 2015;21(June):1–57. Available from: http://digitalcommons.unl.edu/birdstrikeother/24/
  • [11] Federal Aviation Administration. Aviation Rulemaking Advisory Committee.
  • [12] Nizampatnam LS. Models and Methods for Bird Strike Load Predictions. Wichita State Univ. 2007;PhD.
  • [13] Lavoie M-A, Gakwaya A, Nejad Ensan M, Zimcik DG. Validation of Available Approaches for Numerical Bird Strike Modeling Tools. Int Rev Mech Eng. 2007;1(4):380–9.
  • [14] Martin NF. Nonlinear finite-element analysis to predict fan-blade damage due to soft-body impact. J Propuls. 1990;6(4):445.
  • [15] Anghileri M, Sala G. Theoretical Assessment, Numerical Simulation and Comparison with Tests of Birdstrike on Deformable Structures. 20th Congress of the International Council of the Aeronautical Sciences. 1996.
  • [16] Iannucci L. Bird-strike impact modelling. Foreign Object Impact Energy Absorbing Struct. 1998;1998:11–29. [17] Barber J. Charachterisation of bird impacts on a rigid plate: part 1. 1975;(January).
  • [18] Barber, John P. ; Taylor, Henry R. ; Wilbeck JS. Bird impact forces and pressures on rigid and compliant targets, Tech. Rep. AFFDL-TR-77-60. Univ Dayt Ohio Res Inst. 1978;No. UDRI-T(December 1976):1–87. [19] Wilbeck JS, Rand JL. The development of a substitute bird model. J Eng Gas Turbines Power. 1981;103(4):725–30.
  • [20] Guida M, Marulo F, Meo M, Riccio M. Analysis of bird impact on a composite tailplane leading edge. Appl Compos Mater. 2008;15(4–6):241–57.
  • [21] Edge CH, Degrieck J. Derivation of a Dummy Bird for Analysis and Test of Airframe Structures. Bird Strike Comm (First Jt Annu Meet. 1999;(May).
  • [22] Fehmi M, Altindag L, Yildirim B, Submitted S. Investigation of Effects of Bird Strike on a Rotary-Wing Aircraft. 2021.
  • [23] Budgey R. The development of a substitute artificial bird by the International Birdstrike Research Group for use in aircraft component testing, IBSC25/WP-IE3, 17-21 April 2000. Int Bird Strike Comm. 2000;(April):17–21.
  • [24] Stoll F, Brockman R. Finite element simulation of high-speed soft-body impacts. 38th AIAA/ASME/ASCE/ AHS/ ASC Struct Struct Dyn Mater Conf. 1997;334–344.
  • [25] Johnson AF, Holzapfel M. Modelling soft body impact on composite structures. Compos Struct. 2003;61(1–2):103–13.
  • [26] Smojver I, Ivančević D. Numerical simulation of bird strike damage prediction in airplane flap structure. Compos Struct. 2010;92(9):2016–26.
  • [27] Riccio A, Cristiano R, Saputo S, Sellitto A. Numerical methodologies for simulating bird-strike on composite wings. Compos Struct [Internet]. 2018;202(February):590–602. Available from: https://doi.org/10.1016/j.compstruct.2018.03.018
  • [28] Abdul Kalam S, Vijaya Kumar R, Ranga Janardhana G. SPH High Velocity Impact Analysis-Influence of Bird Shape on Rigid Flat Plate. Mater Today Proc [Internet]. 2017;4(2):2564–72. Available from: http://dx.doi.org/10.1016/j.matpr.2017.02.110
  • [29] Hedayati R, Ziaei-Rad S. A new bird model and the effect of bird geometry in impacts from various orientations. Aero Sci Tech [Internet]. 2013;28(1):9–20. Available from: http://dx.doi.org/10.1016/j.ast.2012.09.002
  • [30] Hedayati R, Sadighi M. Bird Strike: An Experimental, Theoretical and Numerical Investigation. Bird Strike: An Experimental, Theoretical and Numerical Investigation. 2015. 1–251 p.
  • [31] Smojver I, Ivančević D. Advanced modelling of bird strike on high lift devices using hybrid Eulerian-Lagrangian formulation. Aerosp Sci Technol. 2012;23(1):224–32.
  • [32] Giannaros E, Kotzakolios A, Kostopoulos V, Sotiriadis G, Vignjevic R, Djordjevic N, et al. Low- and high-fidelity modeling of sandwich-structured composite response to bird strike, as tools for a digital-twin-assisted damage diagnosis. Int J Impact Eng [Internet]. 2022;160(October 2021):104058. Available from: https://doi.org/10.1016/j.ijimpeng.2021.104058
  • [33] Hanssen AG, Girard Y, Olovsson L, Berstad T, Langseth M. A numerical model for bird strike of aluminium foam-based sandwich panels. Int J Impact Eng. 2006;32(7):1127–44.
  • [34] Lavoie MA, Gakwaya A, Ensan MN, Zimcik DG, Nandlall D. Bird’s substitute tests results and evaluation of available numerical methods. Int J Impact Eng [Internet]. 2009;36(10–11):1276–87. Available from: http://dx.doi.org/10.1016/j.ijimpeng.2009.03.009
  • [35] Ćwiklak J, Kobiałka E, Goś A. Experimental and Numerical Investigations of Bird Models for Bird Strike Analysis. Energies. 2022;15(10).
  • [36] Guida M. Study, design and testing of structural configurations for the bird-strike compliance of aeronautical components. 2008;(December).
  • [37] Petrinic N, Duffin R. Discrete element modelling of soft body impact against rigid targets. 2016;(February).
  • [38] Wilbeck JS, Barber JP. Bird Impact Loading. Shock Vib Bull. 1978;48(48).
  • [39] Kobusch M. Characterization of force transducers for dynamic measurements. PTB - Mitteilungen Forschen und Prufen. 2015;125(2):43–51.
  • [40] Hedayati R, Sadighi M, Mohammadi-Aghdam M. On the difference of pressure readings from the numerical, experimental and theoretical results in different bird strike studies. Aerosp Sci Technol [Internet]. 2014;32(1):260–6. Available from: http://dx.doi.org/10.1016/j.ast.2013.10.008
  • [41] Moffat TJ, Cleghorn WL. Prediction of bird impact pressures and damage using MSC/DYTRAN. Proc ASME Turbo Expo. 2001;4:1–9.
  • [42] Hu D, Song B, Wang D, Chen Z. Experiment and numerical simulation of a full-scale helicopter composite cockpit structure subject to a bird strike. Compos Struct. 2016;149:385–97.
  • [43] Di Caprio F, Cristillo D, Saputo S, Guida M, Riccio A. Crashworthiness of wing leading edges under bird impact event. Compos Struct [Internet]. 2019;216(November 2018):39–52. Available from: https://doi.org/10.1016/j.compstruct.2019.02.069
  • [44] Liu J, Li Y, Gao X. Bird strike on a flat plate: Experiments and numerical simulations. Int J Impact Eng [Internet]. 2014;70:21–37. Available from: http://dx.doi.org/10.1016/j.ijimpeng.2014.03.006
  • [45] Pernas-Sánchez J, Artero-Guerrero J, Varas D, López-Puente J. Artificial bird strike on Hopkinson tube device: Experimental and numerical analysis. Int J Impact Eng. 2020;138(December 2019).
  • [46] Nandlall D, Gakwaya A. On the determination of the shock and steady state parameters of gelatine from cylinder impact experiments. Int J Impact Eng [Internet]. 2018;116(February):22–33. Available from: https://doi.org/10.1016/j.ijimpeng.2018.02.001
  • [47] Airoldi A, Cacchione B. Modelling of impact forces and pressures in Lagrangian bird strike analyses. Int J Impact Eng. 2006;32(10):1651–77.
  • [48] Peterson RL, Barber JP, INST. DUOR. Bird Impact Forces in Aircraft Windshield Design. 1976.
  • [49] Teichman HC, Tadros RN. Analytical and experimental simulation of fan blade behaviorand damage under bird impact. J Eng Gas Turbines Power. 1991;113(4):582–94.
  • [50] Anghileri M, Castelletti LML, Invernizzi F, Mascheroni M. A survey of numerical models for hail impact analysis using explicit finite element codes. Int J Impact Eng. 2005;31(8):929–44.
  • [51] Niering E. Simulation of Bird Strikes on Turbine Engines. J Eng Gas Turbines Power Gas Turbines Power. 1990.
  • [52] Zhu S, Tong M, Wang Y. Experiment and numerical simulation of a full-scale aircraft windshield subjected to bird impact. Collect Tech Pap - AIAA/ASME/ASCE/AHS/ASC Struct Struct Dyn Mater Conf. 2009;(May):1–9.
  • [53] Shimamura K, Shibue T, Grosch DJ. Numerical simulation of bird strike damage on jet engine fan blade. Am Soc Mech Eng Press Vessel Pip Div PVP. 2004;485(PART 1):161–6.
  • [54] Doubrava R, Strnad V. Bird strike analyses on the parts of aircraft structure. 27th Congr Int Counc Aeronaut Sci 2010, ICAS 2010. 2010;3:2453–6.
  • [55] Gülcan O. A Review on Bird Strike and its Effect on Aircrafts. Eng Mach. 2019;60(696):192–220.
  • [56] Heimbs S, Guimard J. Towards the Industrial Assessment of Bird Strike Simulations on Composite Laminate Structures. Compos 3. 2011;627–34.
  • [57] Heimbs S. Bird strike simulations on composite aircraft structures. 2011 SIMULIA Cust Conf Barcelona, Spain [Internet]. 2011;1–14. http://www.3ds.com/fileadmin/PRODUCTS/SIMULIA/PDF/scc-papers/Aero-Bird-Strike-Simulations-Composite-Aircraft-Structur.pdf
  • [58] Jenq ST, Hsiao FB, Lin IC, Zimcik DG, Ensan MN. Simulation of a rigid plate hit by a cylindrical hemi-spherical tip-ended soft impactor. Comput Mater Sci. 2007;39(3):518–26.
  • [59] Tho C-H, Smith MR. Accurate bird strike simulation methodology for BA609 tiltrotor. In: American helicopter society 64th annual forum , Montreal, Canada, April 29–May 1, 2008.
  • [60] Hedayati R, Mojtaba S. Finite element bird-strike modeling 6.1. 2023.
  • [61] Grimaldi A, Sollo A, Guida M, Marulo F. Parametric study of a SPH high velocity impact analysis - A birdstrike windshield application. Compos Struct [Internet]. 2013;96:616–30. Available from: http://dx.doi.org/10.1016/j.compstruct.2012.09.037
  • [62] Güngör E. Numerical Analysis of Bird Strike Impact on Composite Sandwich Structures. Yildiz Technical University; 2022.
  • [63] Zakir SM, Li Y. Dynamic response of the leading edge wing under soft body impact. Int J Crashworthiness. 2012;17(4):357–76.
  • [64] Liu J, Li Y, Gao X, Yu X. A numerical model for bird strike on sidewall structure of an aircraft nose. Chinese J Aeronaut [Internet]. 2014;27(3):542–9. Available from: http://dx.doi.org/10.1016/j.cja.2014.04.019
  • [65] Ubels LC, Johnson AF, Gallard JP, Sunaric M. Design and testing of a composite bird strike resistant leading edge. National Aerospace Laboratory NLR, Amsterdam, The Netherlands The SAMPE Europe Conference & Exhibition. Paris, France; 2003.
  • [66] McCarthy MA, Xiao JR, McCarthy CT, Kamoulakos A, Ramos J, Gallard JP, et al. Modelling bird impacts on an aircraft wing – Part 2: Modelling the impact with an SPH bird model. Int J Crashworthiness [Internet]. 2005 Jan;10(1):51–9. Available from: http://www.tandfonline.com/doi/abs/10.1533/ijcr.2005.0325
  • [67] Kermanidis T, Labeas G, Sunaric M, Johnson AF, Holzapfel M. Bird strike simulation on a novel composite leading edge design. Int J Crashworthiness. 2006;11(3):189–202.
  • [68] Georgiadis S, Gunnion AJ, Thomson RS, Cartwright BK. Bird-strike simulation for certification of the Boeing 787 composite moveable trailing edge. Compos Struct. 2008;86(1–3):258–68.
  • [69] Yan J, Zhang C, Huo S, Chai X, Liu Z, Yan K. Experimental and numerical simulation of bird-strike performance of lattice-material-infilled curved plate. Chinese J Aeronaut [Internet]. 2021;34(8):245–57. Available from: https://doi.org/10.1016/j.cja.2020.09.026
  • [70] Heimbs S. Computational methods for bird strike simulations: A review. Comput Struct. 2011;89(23–24):2093–112.
  • [71] Liu J, Li Y, Gao X. Bird strike on a flat plate: Experiments and numerical simulations. Int J Impact Eng [Internet]. 2014;70:21–37. Available from: http://dx.doi.org/10.1016/j.ijimpeng.2014.03.006
  • [72] Allaeys F, Luyckx G, Van Paepegem W, Degrieck J. Numerical and experimental investigation of the shock and steady state pressures in the bird material during bird strike. Int J Impact Eng [Internet]. 2017;107:12–22. Available from: http://dx.doi.org/10.1016/j.ijimpeng.2017.05.006
  • [73] Hu D, Song B, Wang D, Chen Z. Experiment and numerical simulation of a full-scale helicopter composite cockpit structure subject to a bird strike. Compos Struct. 2016;149:385–97.
  • [74] Yan J, Zhang C, Huo S, Chai X, Liu Z, Yan K. Experimental and numerical simulation of bird-strike performance of lattice-material-infilled curved plate. Chinese J Aeronaut [Internet]. 2021;34(8):245–57. Available from: https://doi.org/10.1016/j.cja.2020.09.026
  • [75] Wu L, Huang D, Bobaru F. A reformulated rate-dependent visco-elastic model for dynamic deformation and fracture of PMMA with peridynamics. Int J Impact Eng [Internet]. 2021;149(September 2020):103791. Available from: https://doi.org/10.1016/j.ijimpeng.2020.103791
  • [76] Liu L, Yang Z, Ji J, Chen G, Luo G, Chen W. Development and experimental verification of a modified constitutive model for 3D orthogonal woven composite under bird impact. Compos Struct [Internet]. 2023;303(29):116305. Available from: https://doi.org/10.1016/j.compstruct.2022.116305
  • [77] Giannaros E, Kotzakolios A, Kostopoulos V, Sotiriadis G, Vignjevic R, Djordjevic N, et al. Low- and high-fidelity modeling of sandwich-structured composite response to bird strike, as tools for a digital-twin-assisted damage diagnosis. Int J Impact Eng [Internet]. 2022;160(October 2021):104058. Available from: https://doi.org/10.1016/j.ijimpeng.2021.104058
  • [78] Belkhelfa FZ, Boukraa S. Damage prediction and test validation of bird impacts on aircraft leading edge’s structures. Int J Crashworthiness [Internet]. 2022;27(3):717–34. Available from: https://doi.org/10.1080/13588265.2020.1838158
  • [79] Qiu J, Wang D, Liu C, Chen L, Huang H, Sun Q. Dynamic response of bird strike on honeycomb-based sandwich panels of composite leading edge. Int J Crashworthiness [Internet]. 2021;26(4):424–37. Available from: https://doi.org/10.1080/13588265.2020.1718466
  • [80] Fehmi M, Altindag L, Yildirim B, Submitted S. Investigation of Effects of Bird Strike on a Rotary-Wing Aircraft. 2021.
Year 2023, , 95 - 103, 30.06.2023
https://doi.org/10.30939/ijastech..1293572

Abstract

References

  • [1] Internet: Https://wildlife.faa.gov/home.
  • [2] DeVault TL, Blackwell BF, Seamans TW, Begier MJ, Kougher JD, Washburn JE, et al. Estimating interspecific economic risk of bird strikes with aircraft. Wildl Soc Bull. 2018;42(1):94–101.
  • [3] Manville AM. Bird strikes and electrocutions at power lines, communication towers, and wind turbines: state of the art and state of the science–next steps toward mitigation. USDA For Serv Gen Tech Reports. 2005;PSW-GTR-19:1051–64.
  • [4] Khan AI, Kapania RK, Johnson ER. A review of soft body impact on composite structure. Collect Tech Pap - AIAA/ASME/ASCE/AHS/ASC Struct Struct Dyn Mater Conf. 2010;(June 2016).
  • [5] Bird Strike Committee USA. http://www.birdstrike.org/news-info/press-kit/.
  • [6] Dolbeer RA, Begier MJ, Miller PR, Weller JR, Anderson AL. Wildlife Strikes to Civil Aircraft in the United States, 1990–2021, July 2022. 2022;
  • [7] MacKinnon B. Wildlife Control Procedures Manual. 2002;
  • [8] MacKinnon B. Sharing the Skies. An Aviation Industry Guide to the Management of Wildlife Hazards. Sharing the Skies. An Aviation Industry Guide to the Management of Wildlife Hazards. 2004. 322 p.
  • [9] Anderson A, Carpenter DS, Begier MJ, Blackwell BF, DeVault TL, Shwiff SA. Modeling the cost of bird strikes to US civil aircraft. Transp Res Part D Transp Environ [Internet]. 2015;38:49–58. Available from: http://dx.doi.org/10.1016/j.trd.2015.04.027
  • [10] Dolbeer R, Wright S. Wildlife strikes to civil aircraft in the United States 1990–2014. Fed Aviat Adm Natl Wildl Strike Database Ser Rep Number 21 [Internet]. 2015;21(June):1–57. Available from: http://digitalcommons.unl.edu/birdstrikeother/24/
  • [11] Federal Aviation Administration. Aviation Rulemaking Advisory Committee.
  • [12] Nizampatnam LS. Models and Methods for Bird Strike Load Predictions. Wichita State Univ. 2007;PhD.
  • [13] Lavoie M-A, Gakwaya A, Nejad Ensan M, Zimcik DG. Validation of Available Approaches for Numerical Bird Strike Modeling Tools. Int Rev Mech Eng. 2007;1(4):380–9.
  • [14] Martin NF. Nonlinear finite-element analysis to predict fan-blade damage due to soft-body impact. J Propuls. 1990;6(4):445.
  • [15] Anghileri M, Sala G. Theoretical Assessment, Numerical Simulation and Comparison with Tests of Birdstrike on Deformable Structures. 20th Congress of the International Council of the Aeronautical Sciences. 1996.
  • [16] Iannucci L. Bird-strike impact modelling. Foreign Object Impact Energy Absorbing Struct. 1998;1998:11–29. [17] Barber J. Charachterisation of bird impacts on a rigid plate: part 1. 1975;(January).
  • [18] Barber, John P. ; Taylor, Henry R. ; Wilbeck JS. Bird impact forces and pressures on rigid and compliant targets, Tech. Rep. AFFDL-TR-77-60. Univ Dayt Ohio Res Inst. 1978;No. UDRI-T(December 1976):1–87. [19] Wilbeck JS, Rand JL. The development of a substitute bird model. J Eng Gas Turbines Power. 1981;103(4):725–30.
  • [20] Guida M, Marulo F, Meo M, Riccio M. Analysis of bird impact on a composite tailplane leading edge. Appl Compos Mater. 2008;15(4–6):241–57.
  • [21] Edge CH, Degrieck J. Derivation of a Dummy Bird for Analysis and Test of Airframe Structures. Bird Strike Comm (First Jt Annu Meet. 1999;(May).
  • [22] Fehmi M, Altindag L, Yildirim B, Submitted S. Investigation of Effects of Bird Strike on a Rotary-Wing Aircraft. 2021.
  • [23] Budgey R. The development of a substitute artificial bird by the International Birdstrike Research Group for use in aircraft component testing, IBSC25/WP-IE3, 17-21 April 2000. Int Bird Strike Comm. 2000;(April):17–21.
  • [24] Stoll F, Brockman R. Finite element simulation of high-speed soft-body impacts. 38th AIAA/ASME/ASCE/ AHS/ ASC Struct Struct Dyn Mater Conf. 1997;334–344.
  • [25] Johnson AF, Holzapfel M. Modelling soft body impact on composite structures. Compos Struct. 2003;61(1–2):103–13.
  • [26] Smojver I, Ivančević D. Numerical simulation of bird strike damage prediction in airplane flap structure. Compos Struct. 2010;92(9):2016–26.
  • [27] Riccio A, Cristiano R, Saputo S, Sellitto A. Numerical methodologies for simulating bird-strike on composite wings. Compos Struct [Internet]. 2018;202(February):590–602. Available from: https://doi.org/10.1016/j.compstruct.2018.03.018
  • [28] Abdul Kalam S, Vijaya Kumar R, Ranga Janardhana G. SPH High Velocity Impact Analysis-Influence of Bird Shape on Rigid Flat Plate. Mater Today Proc [Internet]. 2017;4(2):2564–72. Available from: http://dx.doi.org/10.1016/j.matpr.2017.02.110
  • [29] Hedayati R, Ziaei-Rad S. A new bird model and the effect of bird geometry in impacts from various orientations. Aero Sci Tech [Internet]. 2013;28(1):9–20. Available from: http://dx.doi.org/10.1016/j.ast.2012.09.002
  • [30] Hedayati R, Sadighi M. Bird Strike: An Experimental, Theoretical and Numerical Investigation. Bird Strike: An Experimental, Theoretical and Numerical Investigation. 2015. 1–251 p.
  • [31] Smojver I, Ivančević D. Advanced modelling of bird strike on high lift devices using hybrid Eulerian-Lagrangian formulation. Aerosp Sci Technol. 2012;23(1):224–32.
  • [32] Giannaros E, Kotzakolios A, Kostopoulos V, Sotiriadis G, Vignjevic R, Djordjevic N, et al. Low- and high-fidelity modeling of sandwich-structured composite response to bird strike, as tools for a digital-twin-assisted damage diagnosis. Int J Impact Eng [Internet]. 2022;160(October 2021):104058. Available from: https://doi.org/10.1016/j.ijimpeng.2021.104058
  • [33] Hanssen AG, Girard Y, Olovsson L, Berstad T, Langseth M. A numerical model for bird strike of aluminium foam-based sandwich panels. Int J Impact Eng. 2006;32(7):1127–44.
  • [34] Lavoie MA, Gakwaya A, Ensan MN, Zimcik DG, Nandlall D. Bird’s substitute tests results and evaluation of available numerical methods. Int J Impact Eng [Internet]. 2009;36(10–11):1276–87. Available from: http://dx.doi.org/10.1016/j.ijimpeng.2009.03.009
  • [35] Ćwiklak J, Kobiałka E, Goś A. Experimental and Numerical Investigations of Bird Models for Bird Strike Analysis. Energies. 2022;15(10).
  • [36] Guida M. Study, design and testing of structural configurations for the bird-strike compliance of aeronautical components. 2008;(December).
  • [37] Petrinic N, Duffin R. Discrete element modelling of soft body impact against rigid targets. 2016;(February).
  • [38] Wilbeck JS, Barber JP. Bird Impact Loading. Shock Vib Bull. 1978;48(48).
  • [39] Kobusch M. Characterization of force transducers for dynamic measurements. PTB - Mitteilungen Forschen und Prufen. 2015;125(2):43–51.
  • [40] Hedayati R, Sadighi M, Mohammadi-Aghdam M. On the difference of pressure readings from the numerical, experimental and theoretical results in different bird strike studies. Aerosp Sci Technol [Internet]. 2014;32(1):260–6. Available from: http://dx.doi.org/10.1016/j.ast.2013.10.008
  • [41] Moffat TJ, Cleghorn WL. Prediction of bird impact pressures and damage using MSC/DYTRAN. Proc ASME Turbo Expo. 2001;4:1–9.
  • [42] Hu D, Song B, Wang D, Chen Z. Experiment and numerical simulation of a full-scale helicopter composite cockpit structure subject to a bird strike. Compos Struct. 2016;149:385–97.
  • [43] Di Caprio F, Cristillo D, Saputo S, Guida M, Riccio A. Crashworthiness of wing leading edges under bird impact event. Compos Struct [Internet]. 2019;216(November 2018):39–52. Available from: https://doi.org/10.1016/j.compstruct.2019.02.069
  • [44] Liu J, Li Y, Gao X. Bird strike on a flat plate: Experiments and numerical simulations. Int J Impact Eng [Internet]. 2014;70:21–37. Available from: http://dx.doi.org/10.1016/j.ijimpeng.2014.03.006
  • [45] Pernas-Sánchez J, Artero-Guerrero J, Varas D, López-Puente J. Artificial bird strike on Hopkinson tube device: Experimental and numerical analysis. Int J Impact Eng. 2020;138(December 2019).
  • [46] Nandlall D, Gakwaya A. On the determination of the shock and steady state parameters of gelatine from cylinder impact experiments. Int J Impact Eng [Internet]. 2018;116(February):22–33. Available from: https://doi.org/10.1016/j.ijimpeng.2018.02.001
  • [47] Airoldi A, Cacchione B. Modelling of impact forces and pressures in Lagrangian bird strike analyses. Int J Impact Eng. 2006;32(10):1651–77.
  • [48] Peterson RL, Barber JP, INST. DUOR. Bird Impact Forces in Aircraft Windshield Design. 1976.
  • [49] Teichman HC, Tadros RN. Analytical and experimental simulation of fan blade behaviorand damage under bird impact. J Eng Gas Turbines Power. 1991;113(4):582–94.
  • [50] Anghileri M, Castelletti LML, Invernizzi F, Mascheroni M. A survey of numerical models for hail impact analysis using explicit finite element codes. Int J Impact Eng. 2005;31(8):929–44.
  • [51] Niering E. Simulation of Bird Strikes on Turbine Engines. J Eng Gas Turbines Power Gas Turbines Power. 1990.
  • [52] Zhu S, Tong M, Wang Y. Experiment and numerical simulation of a full-scale aircraft windshield subjected to bird impact. Collect Tech Pap - AIAA/ASME/ASCE/AHS/ASC Struct Struct Dyn Mater Conf. 2009;(May):1–9.
  • [53] Shimamura K, Shibue T, Grosch DJ. Numerical simulation of bird strike damage on jet engine fan blade. Am Soc Mech Eng Press Vessel Pip Div PVP. 2004;485(PART 1):161–6.
  • [54] Doubrava R, Strnad V. Bird strike analyses on the parts of aircraft structure. 27th Congr Int Counc Aeronaut Sci 2010, ICAS 2010. 2010;3:2453–6.
  • [55] Gülcan O. A Review on Bird Strike and its Effect on Aircrafts. Eng Mach. 2019;60(696):192–220.
  • [56] Heimbs S, Guimard J. Towards the Industrial Assessment of Bird Strike Simulations on Composite Laminate Structures. Compos 3. 2011;627–34.
  • [57] Heimbs S. Bird strike simulations on composite aircraft structures. 2011 SIMULIA Cust Conf Barcelona, Spain [Internet]. 2011;1–14. http://www.3ds.com/fileadmin/PRODUCTS/SIMULIA/PDF/scc-papers/Aero-Bird-Strike-Simulations-Composite-Aircraft-Structur.pdf
  • [58] Jenq ST, Hsiao FB, Lin IC, Zimcik DG, Ensan MN. Simulation of a rigid plate hit by a cylindrical hemi-spherical tip-ended soft impactor. Comput Mater Sci. 2007;39(3):518–26.
  • [59] Tho C-H, Smith MR. Accurate bird strike simulation methodology for BA609 tiltrotor. In: American helicopter society 64th annual forum , Montreal, Canada, April 29–May 1, 2008.
  • [60] Hedayati R, Mojtaba S. Finite element bird-strike modeling 6.1. 2023.
  • [61] Grimaldi A, Sollo A, Guida M, Marulo F. Parametric study of a SPH high velocity impact analysis - A birdstrike windshield application. Compos Struct [Internet]. 2013;96:616–30. Available from: http://dx.doi.org/10.1016/j.compstruct.2012.09.037
  • [62] Güngör E. Numerical Analysis of Bird Strike Impact on Composite Sandwich Structures. Yildiz Technical University; 2022.
  • [63] Zakir SM, Li Y. Dynamic response of the leading edge wing under soft body impact. Int J Crashworthiness. 2012;17(4):357–76.
  • [64] Liu J, Li Y, Gao X, Yu X. A numerical model for bird strike on sidewall structure of an aircraft nose. Chinese J Aeronaut [Internet]. 2014;27(3):542–9. Available from: http://dx.doi.org/10.1016/j.cja.2014.04.019
  • [65] Ubels LC, Johnson AF, Gallard JP, Sunaric M. Design and testing of a composite bird strike resistant leading edge. National Aerospace Laboratory NLR, Amsterdam, The Netherlands The SAMPE Europe Conference & Exhibition. Paris, France; 2003.
  • [66] McCarthy MA, Xiao JR, McCarthy CT, Kamoulakos A, Ramos J, Gallard JP, et al. Modelling bird impacts on an aircraft wing – Part 2: Modelling the impact with an SPH bird model. Int J Crashworthiness [Internet]. 2005 Jan;10(1):51–9. Available from: http://www.tandfonline.com/doi/abs/10.1533/ijcr.2005.0325
  • [67] Kermanidis T, Labeas G, Sunaric M, Johnson AF, Holzapfel M. Bird strike simulation on a novel composite leading edge design. Int J Crashworthiness. 2006;11(3):189–202.
  • [68] Georgiadis S, Gunnion AJ, Thomson RS, Cartwright BK. Bird-strike simulation for certification of the Boeing 787 composite moveable trailing edge. Compos Struct. 2008;86(1–3):258–68.
  • [69] Yan J, Zhang C, Huo S, Chai X, Liu Z, Yan K. Experimental and numerical simulation of bird-strike performance of lattice-material-infilled curved plate. Chinese J Aeronaut [Internet]. 2021;34(8):245–57. Available from: https://doi.org/10.1016/j.cja.2020.09.026
  • [70] Heimbs S. Computational methods for bird strike simulations: A review. Comput Struct. 2011;89(23–24):2093–112.
  • [71] Liu J, Li Y, Gao X. Bird strike on a flat plate: Experiments and numerical simulations. Int J Impact Eng [Internet]. 2014;70:21–37. Available from: http://dx.doi.org/10.1016/j.ijimpeng.2014.03.006
  • [72] Allaeys F, Luyckx G, Van Paepegem W, Degrieck J. Numerical and experimental investigation of the shock and steady state pressures in the bird material during bird strike. Int J Impact Eng [Internet]. 2017;107:12–22. Available from: http://dx.doi.org/10.1016/j.ijimpeng.2017.05.006
  • [73] Hu D, Song B, Wang D, Chen Z. Experiment and numerical simulation of a full-scale helicopter composite cockpit structure subject to a bird strike. Compos Struct. 2016;149:385–97.
  • [74] Yan J, Zhang C, Huo S, Chai X, Liu Z, Yan K. Experimental and numerical simulation of bird-strike performance of lattice-material-infilled curved plate. Chinese J Aeronaut [Internet]. 2021;34(8):245–57. Available from: https://doi.org/10.1016/j.cja.2020.09.026
  • [75] Wu L, Huang D, Bobaru F. A reformulated rate-dependent visco-elastic model for dynamic deformation and fracture of PMMA with peridynamics. Int J Impact Eng [Internet]. 2021;149(September 2020):103791. Available from: https://doi.org/10.1016/j.ijimpeng.2020.103791
  • [76] Liu L, Yang Z, Ji J, Chen G, Luo G, Chen W. Development and experimental verification of a modified constitutive model for 3D orthogonal woven composite under bird impact. Compos Struct [Internet]. 2023;303(29):116305. Available from: https://doi.org/10.1016/j.compstruct.2022.116305
  • [77] Giannaros E, Kotzakolios A, Kostopoulos V, Sotiriadis G, Vignjevic R, Djordjevic N, et al. Low- and high-fidelity modeling of sandwich-structured composite response to bird strike, as tools for a digital-twin-assisted damage diagnosis. Int J Impact Eng [Internet]. 2022;160(October 2021):104058. Available from: https://doi.org/10.1016/j.ijimpeng.2021.104058
  • [78] Belkhelfa FZ, Boukraa S. Damage prediction and test validation of bird impacts on aircraft leading edge’s structures. Int J Crashworthiness [Internet]. 2022;27(3):717–34. Available from: https://doi.org/10.1080/13588265.2020.1838158
  • [79] Qiu J, Wang D, Liu C, Chen L, Huang H, Sun Q. Dynamic response of bird strike on honeycomb-based sandwich panels of composite leading edge. Int J Crashworthiness [Internet]. 2021;26(4):424–37. Available from: https://doi.org/10.1080/13588265.2020.1718466
  • [80] Fehmi M, Altindag L, Yildirim B, Submitted S. Investigation of Effects of Bird Strike on a Rotary-Wing Aircraft. 2021.
There are 78 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering, Automotive Safety Engineering
Journal Section Review Articles
Authors

Erkan Boyacı 0000-0002-7675-6061

Murat Altın 0000-0002-2404-2614

Publication Date June 30, 2023
Submission Date May 6, 2023
Acceptance Date May 31, 2023
Published in Issue Year 2023

Cite

APA Boyacı, E., & Altın, M. (2023). Experimental and Numerical Approach on Bird Strike: A Review. International Journal of Automotive Science And Technology, 7(2), 95-103. https://doi.org/10.30939/ijastech..1293572
AMA Boyacı E, Altın M. Experimental and Numerical Approach on Bird Strike: A Review. IJASTECH. June 2023;7(2):95-103. doi:10.30939/ijastech.1293572
Chicago Boyacı, Erkan, and Murat Altın. “Experimental and Numerical Approach on Bird Strike: A Review”. International Journal of Automotive Science And Technology 7, no. 2 (June 2023): 95-103. https://doi.org/10.30939/ijastech. 1293572.
EndNote Boyacı E, Altın M (June 1, 2023) Experimental and Numerical Approach on Bird Strike: A Review. International Journal of Automotive Science And Technology 7 2 95–103.
IEEE E. Boyacı and M. Altın, “Experimental and Numerical Approach on Bird Strike: A Review”, IJASTECH, vol. 7, no. 2, pp. 95–103, 2023, doi: 10.30939/ijastech..1293572.
ISNAD Boyacı, Erkan - Altın, Murat. “Experimental and Numerical Approach on Bird Strike: A Review”. International Journal of Automotive Science And Technology 7/2 (June 2023), 95-103. https://doi.org/10.30939/ijastech. 1293572.
JAMA Boyacı E, Altın M. Experimental and Numerical Approach on Bird Strike: A Review. IJASTECH. 2023;7:95–103.
MLA Boyacı, Erkan and Murat Altın. “Experimental and Numerical Approach on Bird Strike: A Review”. International Journal of Automotive Science And Technology, vol. 7, no. 2, 2023, pp. 95-103, doi:10.30939/ijastech. 1293572.
Vancouver Boyacı E, Altın M. Experimental and Numerical Approach on Bird Strike: A Review. IJASTECH. 2023;7(2):95-103.


International Journal of Automotive Science and Technology (IJASTECH) is published by Society of Automotive Engineers Turkey

by.png