Research Article
BibTex RIS Cite

Examination of Mechanical Tests of CFRP Composite Material with Different Orientation Angles Used in the Automotive Industry

Year 2024, , 132 - 141, 31.03.2024
https://doi.org/10.30939/ijastech..1399886

Abstract

Carbon fiber reinforced polymer (CFRP) composites, which have good mechanical properties, are widely used in many sectors today. Carbon fabrics/epoxy composites are materials used in the production of various components in many professional in-dustries such as aerospace, construction, textile and automotive. The use of CFRP composite lightweight materials has begun to increase in the automotive industry to reduce emissions, increase crash resistance and save fuel. In order to evaluate mate-rials in these industrial areas, it becomes important to know their mechanical proper-ties such as tensile strength and three-point bending. In this study, carbon fiber rein-forced polymer (CFRP) [0°/0°], [0°/90°], [±45°] and [0°/90°/+45°/-45°/-45°/+45°/90°/0°] four different types of orientation CFR materials were used.Tensile and three-point bending tests were performed on the samples produced with 4 differ-ent orientation angles. Three-point bending tests were carried out in accordance with ASTM D7264 standards and tensile tests were carried out in accordance with ASTM D 3039 standards. Stress-strain and force-strain curves were drawn. It has been ob-served that the material type that withstands the maximum force the most is the C48 structured CFRP material with an 8-layer [0°/90°/+45°/-45°]s arrangement. However, it was concluded that the carrying capacity of the C48 sample was higher than the samples with different fabric orientation.

Project Number

Afyon Kocatepe University 17. FEN. BİL. 65 BAPK

References

  • [1] Balasubramanian M. Composite materials and processing. Compo-site Materials and Processing 2013:1–599. https://doi.org/10.1201/B15551/Composite-Materials-Processing-Balasubramanian.
  • [2] Kaw AK. Introduction to Composite Materials. Mechanics of Composite Materials 2021:25–84. https://doi.org/10.1201/9781420058291-9/Introduction-Composite-Materials-Autar-Kaw.
  • [3] Huang S, Fu Q, Yan L, Kasal B. Characterization of interfacial properties between fibre and polymer matrix in composite ma-terials e A critical review 2021, 13: 1441-1484. https://doi.org/10.1016/j.jmrt.2021.05.076.
  • [4] Zhang X, Fan X, Yan C, Li H, Zhu Y, Li X, et al. Interfacial mi-crostructure and properties of carbon fiber composites modi-fied with graphene oxide. ACS Appl Mater Interfaces 2012;4:1543–52. https://doi.org/10.1021/AM201757V.
  • [5] Teklal F, Djebbar A, Allaoui S, Hivet G, Joliff Y, Kacimi B. A review of analytical models to describe pull-out behavior – Fi-ber/matrix adhesion. Compos Struct 2018;201:791–815. https://doi.org/10.1016/J.Compstruct.2018.06.091.
  • [6] Katmer MC, Akkurt A, Kocakulak T. Investigation of Natural Fre-quency Values of Composite Cover Design with Different Laying Angles. Engineering Perspective 2022; 2;4: 46-51. http://dx.doi.org/10.29228/eng.pers.66826.
  • [7] Pastuszak PD, Muc A. Application of Composite Materials in Modern Constructions. Key Eng Mater 2013;542:119–29. https://doi.org/10.4028/www.Scientific.net/Kem.542.119.
  • [8] Singh DK, Vaidya A, Thomas V, Theodore M, Kore S, Vaidya U. Finite Element Modeling of the Fiber Matrix Interface in Polymer Composites. Journal of Composites Science 2020;4;58. https://doi.org/10.3390/JCS4020058.
  • [9] Sanjay MR, Madhu P, Jawaid M, Senthamaraikannan P, Senthil S, Pradeep S. Characterization and properties of natural fiber polymer composites: A comprehensive review. J Clean Prod 2018;172:566–81. https://doi.org/10.1016/J.JCLEPRO.2017.10.101.
  • [10] Rani M, Choudhary P, Krishnan V, Zafar S. A review on recy-cling and reuse methods for carbon fiber/glass fiber composites waste from wind turbine blades. Compos B Eng 2021;215:108768.https://doi.org/10.1016/J.Compositesb.2021.108768.
  • [11] Supian ABM, Sapuan SM, Zuhri MYM, Zainudin ES, Ya HH. Hybrid reinforced thermoset polymer composite in energy absorp-tion tube application: A review 2018, 14.4: 291-305. https://doi.org/10.1016/j.dt.2018.04.004.
  • [12] Altin Karatas M, Abant okkaya. A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials 2018, 14.4: 318-326. https://doi.org/10.1016/j.dt.2018.02.001.
  • [13] Kiersnowska A, Fabianowski W, Koda E. The Influence of the Accelerated Aging Conditions on the Properties of Polyolefin Ge-ogrids Used for Landfill Slope Reinforcement. Polymers, 2020, 12.9: 1874. https://doi.org/10.3390/polym12091874.
  • [14] Bayrakçeken H, Şimşir E, Serhat Başpınar M, Atlı İS. Experi-mental Investigation on the Pulse Behavior of Polymeric Matrix Composites Used in Vehicles. International Journal of Science and Research 2019; 8-6: 1400-1406. 10.21275/ART20198800.
  • [15] Angelone R, Caggiano A, Nele L, Teti R. Optimal cutting parame-ters and tool geometry in drilling of CFRP/CFRP stack laminates for aeronautical applications. Procedia CIRP 2021;99:398–403. https://doi.org/10.1016/J.PROCIR.2021.03.056.
  • [16] Qin G, Zheng L, Mi P, Zhu Y, Li M, Na J, et al. Influence of single or multi factor coupling of temperature, humidity and load on the aging failure of adhesively bonded CFRP / aluminum alloy composite joints for automobile applications. Int J Adhes Adhes 2023;123:103345. https://doi.org/10.1016/j.ijadhadh.2023.103345.
  • [17] Kim W, Kim YM, Song S, Kim E, Kim D-G, Jung YC, et al. Manufacture of antibacterial carbon fiber-reinforced plastics (CFRP) using imine based epoxy vitrimer for medical application 2023. https://doi.org/10.1016/j.heliyon.2023.e16945.
  • [18] Hoang VT, Cho HT, Kim MJ, Hong so M, Park SH, Kweon JH, et al. Shear strength and failure modes of double-lap bi material CFRP/Ni-Cr alloy joint under severe environmental conditions. Advanced Composite Materials 2022;31:311–34. https://doi.org/10.1080/09243046.2021.2004652.
  • [19] Hyeon-Seok C, Byeong-Su K, Seong-Min P, Viet-Hoai T, Young-Woo N, Jin-Hwe K. Tensile strength of composite bonded scarf joint in various thermal environmental conditions. Advanced Composite Materials 2020;29:285–300. https://doi.org/10.1080/09243046.2019.1710679.
  • [20] Fang F, Chen N, Cai P, Zhou T, Thompson B. Perceptual learn-ing modifies the functional specializations of visual cortical areas. J Vis 2016;16:1091–1091. https://doi.org/10.1167/16.12.1091.
  • [21] Şimşir E, Yavuz İ, Çağdaş ERİK M,. Taşit Tamponlarinda Kulla-nilan Polimer Malzemelerin Farkli Hizlarda Absorbe Edilen Ener-jilerinin Karşilaştirilmasi. Konya Journal of Engineering Sciences 2021;9:932–42. https://doi.org/10.36306/KONJES.932489.
  • [22] Sun G, Yu H, Wang Z, Xiao Z, Li Q. Energy absorption mechan-ics and design optimization of CFRP/aluminium hybrid structures for transverse loading. Int J Mech Sci 2019;150:767–83. https://doi.org/10.1016/j.ijmecsci.2018.10.043.
  • [23] Sun G, Wei Y, Huo X, Luo Q, Li Q. On quasi-static large deflec-tion of single lap joints under transverse loading. Thin-Walled Structures 2022;170:108572. https://doi.org/10.1016/j.tws.2021.108572.
  • [24] Park CH, Saouab A, Breard J, Suck Han W, Vautrin A. Integrat-ed Optimization For Weight, Performance And Cost Of Composite Stuructures 2006;39.3: 807-812. https://doi.org/10.3182/20060517-3-FR-2903.00391.
  • [25] Sun G, Chen D, Zhu G, Li Q. Lightweight hybrid materials and structures for energy absorption: A state-of-the-art review and out-look. Thin-Walled Structures 2022;172:108760. https://doi.org/10.1016/j.tws.2021.108760.
  • [26] Tarlochan F, Samer F, Hamouda AMS, Ramesh S, Khalid K. Design of thin wall structures for energy absorption applications: Enhancement of crashworthiness due to axial and oblique impact forces. Thin-Walled Structures 2013;71:7–17. https://doi.org/10.1016/J.TWS.2013.04.003.
  • [27] Yilmaz Y, Çallioğlu H, Balbay A, Bölümü M.M, Fakültesi M, Üniversitesi,Investigation of quasi-static crushing and energy ab-sorption behaviors of carbon nanotube reinforced glass fiber/epoxy and carbon fiber/epoxy composite tubular structures 2022;28:81–90. https://doi.org/10.5505/pajes.2021.68047.
  • [28] Molina-Moya MÁ, García-Martínez E, Miguel V, Coello J, Mar-tínez-Martínez A. Experimental Analysis and Application of a Mul-tivariable Regression Technique to Define the Optimal Drilling Conditions for Carbon Fiber Reinforced Polymer (CFRP) Compo-sites. Polymers 2023;15;3710. https://doi.org/10.3390/Polym15183710.
  • [29] Djamaluddin F, Abdullah S, Ariffin AK, Nopiah ZM. Optimiza-tion of foam-filled double circular tubes under axial and oblique impact loading conditions 2014;87;1-11. https://doi.org/10.1016/j.tws.2014.10.015.
  • [30] Fang J, Gao Y, Sun G, Qiu N, Li Q. On design of multi-cell tubes under axial and oblique impact loads. Thin-Walled Structures 2015;95:115–26. https://doi.org/10.1016/J.TWS.2015.07.002.
  • [31] Yao R, Pang T, Zhang B, Fang J, Li Q, Sun G. On the crashwor-thiness of thin-walled multi-cell structures and materials: State of the art and prospects. Thin-Walled Structures 2023;189: 110734. https://doi.org/10.1016/J.TWS.2023.110734.
  • [32] Ataabadi PB, Karagiozova D, Alves M. Crushing and energy absorption mechanisms of carbon fiber-epoxy tubes under axial impact. Int J Impact Eng 2019;131:174–89. https://doi.org/10.1016/J.IJIMPENG.2019.03.006.
  • [33] Chatys R, Panich A, Jurecki RS, Kleinhofs M. Composite materi-als having a layer structure of “sandwich” construction as above used in car safety bumpers. 11th International Science and Tech-nical Conference Automotive Safety, 2018:1–8. https://doi.org/10.1109/AUTOSAFE.2018.8373320.
  • [34] Peng Y, Hu Z, Liu Z, Che Q, Deng G. Assessment of Pedestrians’ Head and Lower Limb Injuries in Tram–Pedestrian Collisions. Bi-omimetics 2024;9:17. https://doi.org/10.3390/BIOMIMETICS9010017.
  • [35] Davoodi MM, Sapuan SM, Aidy A, Abu Osman NA, Oshkour AA, Wan Abas WAB. Development process of new bumper beam for passenger car: A review. Mater Des 2012;40:304–13. https://doi.org/10.1016/J.Matdes.2012.03.060.
  • [36] Ganilova OA, Low JJ. Application of smart honeycomb struc-tures for automotive passive safety. 2017;232:797–811. https://doi.org/10.1177/0954407017708916.
  • [37] Marques AT, Durão LM, Magalhães AG, Silva JF, Tavares JMRS. Delamination analysis of carbon fibre reinforced laminates: Evaluation of a special step drill. Compos Sci Technol 2009;69;2376–82. https://doi.org/10.1016/J.Compscitech.2009.01.025.
  • [38] Baba MN. Another Compression after Low-Velocity Impact Test Setup: A Case Study of Reversing the Symmetric Lay-Up for an Angle-ply CFRP Laminated Composite 2024. https://doi.org/10.20944/PreprintS202401.0168.V1.
  • [39] Mohamed YS, Abdelbary A. Theoretical and experimental study on the influence of fiber orientation on the tensile properties of unidirec-tional carbon fiber/epoxy composite. Alexandria Engineering Jour-nal 2023;67;693–705. https://doi.org/10.1016/J.AEJ.2022.12.058.
  • [40] Patel H V, Dave HK. Effect of fiber orientation on tensile strength of thin composites 2021;Vol 46;8634-8638. https://doi.org/10.1016/j.matpr.2021.03.598.
  • [41] Banakar P, Shivananda HK. Preparation and Characterization of The Carbon Fiber Reinforced Epoxy Resin Composites. IOSR Journal of Mechanical and Civil Engineering (IOSRJMCE) 2012;1;15–18.
  • [42] Keshavamurthy, Nanjundaradhya Dr, Sharma DR, Kulkarni DrRS. Investigation of Tensile Properties of Fiber Reinforced An-gle Ply laminated composites 2012. https://api.semanticscholar.org/CorpusID:18468614
  • [43] Okon Samuel B, Saleh Yawas D, Okon Samuel B, Saleh Yawas D. A Study of the Effect of Fiber Content and Fiber Orientation on the Tensile Strength of Glass Fiber Reinforced Epoxy Composite for Pipe Production: A Taguchi and Statistical Approach 2022. https://doi.org/10.21203/RS.3.RS-1284793/V1.
  • [44] Raheem Z. Designation: D 7264/D 7264M-07 Standard Test Method for Flexural Properties of Polymer Matrix Composite Ma-terials 2006;1-11.
  • [45] Designation: D 3039/D 3039M-00 e1 Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials 2002;1-13.
  • [46] Raheem Z. Designation: D 7264/D 7264M-07 Standard Test Method for Flexural Properties of Polymer Matrix Composite Ma-terials 2020;1.-15.
  • [47] Yee JCH, Pellegrino S. Folding of woven composite structures. Compos Part A Appl Sci Manuf 2005;36:273–8. https://doi.org/10.1016/J.Compositesa.2004.06.017.
  • [48] Tawfek AM, Ge Z, Yuan H, Zhang N, Zhang H, Ling Y, et al. Influence of fiber orientation on the mechanical responses of engi-neering cementitious composite (ECC) under various loading con-ditions. Journal of Building Engineering 2023;63:105518. https://doi.org/10.1016/j.jobe.2022.105518.
Year 2024, , 132 - 141, 31.03.2024
https://doi.org/10.30939/ijastech..1399886

Abstract

Project Number

Afyon Kocatepe University 17. FEN. BİL. 65 BAPK

References

  • [1] Balasubramanian M. Composite materials and processing. Compo-site Materials and Processing 2013:1–599. https://doi.org/10.1201/B15551/Composite-Materials-Processing-Balasubramanian.
  • [2] Kaw AK. Introduction to Composite Materials. Mechanics of Composite Materials 2021:25–84. https://doi.org/10.1201/9781420058291-9/Introduction-Composite-Materials-Autar-Kaw.
  • [3] Huang S, Fu Q, Yan L, Kasal B. Characterization of interfacial properties between fibre and polymer matrix in composite ma-terials e A critical review 2021, 13: 1441-1484. https://doi.org/10.1016/j.jmrt.2021.05.076.
  • [4] Zhang X, Fan X, Yan C, Li H, Zhu Y, Li X, et al. Interfacial mi-crostructure and properties of carbon fiber composites modi-fied with graphene oxide. ACS Appl Mater Interfaces 2012;4:1543–52. https://doi.org/10.1021/AM201757V.
  • [5] Teklal F, Djebbar A, Allaoui S, Hivet G, Joliff Y, Kacimi B. A review of analytical models to describe pull-out behavior – Fi-ber/matrix adhesion. Compos Struct 2018;201:791–815. https://doi.org/10.1016/J.Compstruct.2018.06.091.
  • [6] Katmer MC, Akkurt A, Kocakulak T. Investigation of Natural Fre-quency Values of Composite Cover Design with Different Laying Angles. Engineering Perspective 2022; 2;4: 46-51. http://dx.doi.org/10.29228/eng.pers.66826.
  • [7] Pastuszak PD, Muc A. Application of Composite Materials in Modern Constructions. Key Eng Mater 2013;542:119–29. https://doi.org/10.4028/www.Scientific.net/Kem.542.119.
  • [8] Singh DK, Vaidya A, Thomas V, Theodore M, Kore S, Vaidya U. Finite Element Modeling of the Fiber Matrix Interface in Polymer Composites. Journal of Composites Science 2020;4;58. https://doi.org/10.3390/JCS4020058.
  • [9] Sanjay MR, Madhu P, Jawaid M, Senthamaraikannan P, Senthil S, Pradeep S. Characterization and properties of natural fiber polymer composites: A comprehensive review. J Clean Prod 2018;172:566–81. https://doi.org/10.1016/J.JCLEPRO.2017.10.101.
  • [10] Rani M, Choudhary P, Krishnan V, Zafar S. A review on recy-cling and reuse methods for carbon fiber/glass fiber composites waste from wind turbine blades. Compos B Eng 2021;215:108768.https://doi.org/10.1016/J.Compositesb.2021.108768.
  • [11] Supian ABM, Sapuan SM, Zuhri MYM, Zainudin ES, Ya HH. Hybrid reinforced thermoset polymer composite in energy absorp-tion tube application: A review 2018, 14.4: 291-305. https://doi.org/10.1016/j.dt.2018.04.004.
  • [12] Altin Karatas M, Abant okkaya. A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials 2018, 14.4: 318-326. https://doi.org/10.1016/j.dt.2018.02.001.
  • [13] Kiersnowska A, Fabianowski W, Koda E. The Influence of the Accelerated Aging Conditions on the Properties of Polyolefin Ge-ogrids Used for Landfill Slope Reinforcement. Polymers, 2020, 12.9: 1874. https://doi.org/10.3390/polym12091874.
  • [14] Bayrakçeken H, Şimşir E, Serhat Başpınar M, Atlı İS. Experi-mental Investigation on the Pulse Behavior of Polymeric Matrix Composites Used in Vehicles. International Journal of Science and Research 2019; 8-6: 1400-1406. 10.21275/ART20198800.
  • [15] Angelone R, Caggiano A, Nele L, Teti R. Optimal cutting parame-ters and tool geometry in drilling of CFRP/CFRP stack laminates for aeronautical applications. Procedia CIRP 2021;99:398–403. https://doi.org/10.1016/J.PROCIR.2021.03.056.
  • [16] Qin G, Zheng L, Mi P, Zhu Y, Li M, Na J, et al. Influence of single or multi factor coupling of temperature, humidity and load on the aging failure of adhesively bonded CFRP / aluminum alloy composite joints for automobile applications. Int J Adhes Adhes 2023;123:103345. https://doi.org/10.1016/j.ijadhadh.2023.103345.
  • [17] Kim W, Kim YM, Song S, Kim E, Kim D-G, Jung YC, et al. Manufacture of antibacterial carbon fiber-reinforced plastics (CFRP) using imine based epoxy vitrimer for medical application 2023. https://doi.org/10.1016/j.heliyon.2023.e16945.
  • [18] Hoang VT, Cho HT, Kim MJ, Hong so M, Park SH, Kweon JH, et al. Shear strength and failure modes of double-lap bi material CFRP/Ni-Cr alloy joint under severe environmental conditions. Advanced Composite Materials 2022;31:311–34. https://doi.org/10.1080/09243046.2021.2004652.
  • [19] Hyeon-Seok C, Byeong-Su K, Seong-Min P, Viet-Hoai T, Young-Woo N, Jin-Hwe K. Tensile strength of composite bonded scarf joint in various thermal environmental conditions. Advanced Composite Materials 2020;29:285–300. https://doi.org/10.1080/09243046.2019.1710679.
  • [20] Fang F, Chen N, Cai P, Zhou T, Thompson B. Perceptual learn-ing modifies the functional specializations of visual cortical areas. J Vis 2016;16:1091–1091. https://doi.org/10.1167/16.12.1091.
  • [21] Şimşir E, Yavuz İ, Çağdaş ERİK M,. Taşit Tamponlarinda Kulla-nilan Polimer Malzemelerin Farkli Hizlarda Absorbe Edilen Ener-jilerinin Karşilaştirilmasi. Konya Journal of Engineering Sciences 2021;9:932–42. https://doi.org/10.36306/KONJES.932489.
  • [22] Sun G, Yu H, Wang Z, Xiao Z, Li Q. Energy absorption mechan-ics and design optimization of CFRP/aluminium hybrid structures for transverse loading. Int J Mech Sci 2019;150:767–83. https://doi.org/10.1016/j.ijmecsci.2018.10.043.
  • [23] Sun G, Wei Y, Huo X, Luo Q, Li Q. On quasi-static large deflec-tion of single lap joints under transverse loading. Thin-Walled Structures 2022;170:108572. https://doi.org/10.1016/j.tws.2021.108572.
  • [24] Park CH, Saouab A, Breard J, Suck Han W, Vautrin A. Integrat-ed Optimization For Weight, Performance And Cost Of Composite Stuructures 2006;39.3: 807-812. https://doi.org/10.3182/20060517-3-FR-2903.00391.
  • [25] Sun G, Chen D, Zhu G, Li Q. Lightweight hybrid materials and structures for energy absorption: A state-of-the-art review and out-look. Thin-Walled Structures 2022;172:108760. https://doi.org/10.1016/j.tws.2021.108760.
  • [26] Tarlochan F, Samer F, Hamouda AMS, Ramesh S, Khalid K. Design of thin wall structures for energy absorption applications: Enhancement of crashworthiness due to axial and oblique impact forces. Thin-Walled Structures 2013;71:7–17. https://doi.org/10.1016/J.TWS.2013.04.003.
  • [27] Yilmaz Y, Çallioğlu H, Balbay A, Bölümü M.M, Fakültesi M, Üniversitesi,Investigation of quasi-static crushing and energy ab-sorption behaviors of carbon nanotube reinforced glass fiber/epoxy and carbon fiber/epoxy composite tubular structures 2022;28:81–90. https://doi.org/10.5505/pajes.2021.68047.
  • [28] Molina-Moya MÁ, García-Martínez E, Miguel V, Coello J, Mar-tínez-Martínez A. Experimental Analysis and Application of a Mul-tivariable Regression Technique to Define the Optimal Drilling Conditions for Carbon Fiber Reinforced Polymer (CFRP) Compo-sites. Polymers 2023;15;3710. https://doi.org/10.3390/Polym15183710.
  • [29] Djamaluddin F, Abdullah S, Ariffin AK, Nopiah ZM. Optimiza-tion of foam-filled double circular tubes under axial and oblique impact loading conditions 2014;87;1-11. https://doi.org/10.1016/j.tws.2014.10.015.
  • [30] Fang J, Gao Y, Sun G, Qiu N, Li Q. On design of multi-cell tubes under axial and oblique impact loads. Thin-Walled Structures 2015;95:115–26. https://doi.org/10.1016/J.TWS.2015.07.002.
  • [31] Yao R, Pang T, Zhang B, Fang J, Li Q, Sun G. On the crashwor-thiness of thin-walled multi-cell structures and materials: State of the art and prospects. Thin-Walled Structures 2023;189: 110734. https://doi.org/10.1016/J.TWS.2023.110734.
  • [32] Ataabadi PB, Karagiozova D, Alves M. Crushing and energy absorption mechanisms of carbon fiber-epoxy tubes under axial impact. Int J Impact Eng 2019;131:174–89. https://doi.org/10.1016/J.IJIMPENG.2019.03.006.
  • [33] Chatys R, Panich A, Jurecki RS, Kleinhofs M. Composite materi-als having a layer structure of “sandwich” construction as above used in car safety bumpers. 11th International Science and Tech-nical Conference Automotive Safety, 2018:1–8. https://doi.org/10.1109/AUTOSAFE.2018.8373320.
  • [34] Peng Y, Hu Z, Liu Z, Che Q, Deng G. Assessment of Pedestrians’ Head and Lower Limb Injuries in Tram–Pedestrian Collisions. Bi-omimetics 2024;9:17. https://doi.org/10.3390/BIOMIMETICS9010017.
  • [35] Davoodi MM, Sapuan SM, Aidy A, Abu Osman NA, Oshkour AA, Wan Abas WAB. Development process of new bumper beam for passenger car: A review. Mater Des 2012;40:304–13. https://doi.org/10.1016/J.Matdes.2012.03.060.
  • [36] Ganilova OA, Low JJ. Application of smart honeycomb struc-tures for automotive passive safety. 2017;232:797–811. https://doi.org/10.1177/0954407017708916.
  • [37] Marques AT, Durão LM, Magalhães AG, Silva JF, Tavares JMRS. Delamination analysis of carbon fibre reinforced laminates: Evaluation of a special step drill. Compos Sci Technol 2009;69;2376–82. https://doi.org/10.1016/J.Compscitech.2009.01.025.
  • [38] Baba MN. Another Compression after Low-Velocity Impact Test Setup: A Case Study of Reversing the Symmetric Lay-Up for an Angle-ply CFRP Laminated Composite 2024. https://doi.org/10.20944/PreprintS202401.0168.V1.
  • [39] Mohamed YS, Abdelbary A. Theoretical and experimental study on the influence of fiber orientation on the tensile properties of unidirec-tional carbon fiber/epoxy composite. Alexandria Engineering Jour-nal 2023;67;693–705. https://doi.org/10.1016/J.AEJ.2022.12.058.
  • [40] Patel H V, Dave HK. Effect of fiber orientation on tensile strength of thin composites 2021;Vol 46;8634-8638. https://doi.org/10.1016/j.matpr.2021.03.598.
  • [41] Banakar P, Shivananda HK. Preparation and Characterization of The Carbon Fiber Reinforced Epoxy Resin Composites. IOSR Journal of Mechanical and Civil Engineering (IOSRJMCE) 2012;1;15–18.
  • [42] Keshavamurthy, Nanjundaradhya Dr, Sharma DR, Kulkarni DrRS. Investigation of Tensile Properties of Fiber Reinforced An-gle Ply laminated composites 2012. https://api.semanticscholar.org/CorpusID:18468614
  • [43] Okon Samuel B, Saleh Yawas D, Okon Samuel B, Saleh Yawas D. A Study of the Effect of Fiber Content and Fiber Orientation on the Tensile Strength of Glass Fiber Reinforced Epoxy Composite for Pipe Production: A Taguchi and Statistical Approach 2022. https://doi.org/10.21203/RS.3.RS-1284793/V1.
  • [44] Raheem Z. Designation: D 7264/D 7264M-07 Standard Test Method for Flexural Properties of Polymer Matrix Composite Ma-terials 2006;1-11.
  • [45] Designation: D 3039/D 3039M-00 e1 Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials 2002;1-13.
  • [46] Raheem Z. Designation: D 7264/D 7264M-07 Standard Test Method for Flexural Properties of Polymer Matrix Composite Ma-terials 2020;1.-15.
  • [47] Yee JCH, Pellegrino S. Folding of woven composite structures. Compos Part A Appl Sci Manuf 2005;36:273–8. https://doi.org/10.1016/J.Compositesa.2004.06.017.
  • [48] Tawfek AM, Ge Z, Yuan H, Zhang N, Zhang H, Ling Y, et al. Influence of fiber orientation on the mechanical responses of engi-neering cementitious composite (ECC) under various loading con-ditions. Journal of Building Engineering 2023;63:105518. https://doi.org/10.1016/j.jobe.2022.105518.
There are 48 citations in total.

Details

Primary Language English
Subjects Automotive Engineering Materials
Journal Section Articles
Authors

Ercan Şimşir 0000-0001-6655-2324

Hüseyin Bayrakçeken 0000-0002-1572-4859

Project Number Afyon Kocatepe University 17. FEN. BİL. 65 BAPK
Publication Date March 31, 2024
Submission Date December 4, 2023
Acceptance Date January 25, 2024
Published in Issue Year 2024

Cite

APA Şimşir, E., & Bayrakçeken, H. (2024). Examination of Mechanical Tests of CFRP Composite Material with Different Orientation Angles Used in the Automotive Industry. International Journal of Automotive Science And Technology, 8(1), 132-141. https://doi.org/10.30939/ijastech..1399886
AMA Şimşir E, Bayrakçeken H. Examination of Mechanical Tests of CFRP Composite Material with Different Orientation Angles Used in the Automotive Industry. IJASTECH. March 2024;8(1):132-141. doi:10.30939/ijastech.1399886
Chicago Şimşir, Ercan, and Hüseyin Bayrakçeken. “Examination of Mechanical Tests of CFRP Composite Material With Different Orientation Angles Used in the Automotive Industry”. International Journal of Automotive Science And Technology 8, no. 1 (March 2024): 132-41. https://doi.org/10.30939/ijastech. 1399886.
EndNote Şimşir E, Bayrakçeken H (March 1, 2024) Examination of Mechanical Tests of CFRP Composite Material with Different Orientation Angles Used in the Automotive Industry. International Journal of Automotive Science And Technology 8 1 132–141.
IEEE E. Şimşir and H. Bayrakçeken, “Examination of Mechanical Tests of CFRP Composite Material with Different Orientation Angles Used in the Automotive Industry”, IJASTECH, vol. 8, no. 1, pp. 132–141, 2024, doi: 10.30939/ijastech..1399886.
ISNAD Şimşir, Ercan - Bayrakçeken, Hüseyin. “Examination of Mechanical Tests of CFRP Composite Material With Different Orientation Angles Used in the Automotive Industry”. International Journal of Automotive Science And Technology 8/1 (March 2024), 132-141. https://doi.org/10.30939/ijastech. 1399886.
JAMA Şimşir E, Bayrakçeken H. Examination of Mechanical Tests of CFRP Composite Material with Different Orientation Angles Used in the Automotive Industry. IJASTECH. 2024;8:132–141.
MLA Şimşir, Ercan and Hüseyin Bayrakçeken. “Examination of Mechanical Tests of CFRP Composite Material With Different Orientation Angles Used in the Automotive Industry”. International Journal of Automotive Science And Technology, vol. 8, no. 1, 2024, pp. 132-41, doi:10.30939/ijastech. 1399886.
Vancouver Şimşir E, Bayrakçeken H. Examination of Mechanical Tests of CFRP Composite Material with Different Orientation Angles Used in the Automotive Industry. IJASTECH. 2024;8(1):132-41.


International Journal of Automotive Science and Technology (IJASTECH) is published by Society of Automotive Engineers Turkey

by.png