The low-temperature proton exchange membrane fuel cell (LT-PEMFC) is the leading contender and has been developed intensively over the past decades. On top of that, the challenges associated with the development of PEM fuel cell systems have also increased many times due to the complexity of various technological interactions such as mechanical (hydration systems, compressors, heat exchangers), electrical/electronic (pumps, motors, sensors, power electronics), catalysts, etc. Consequently, this hinders their commercialization and competence with present automotive engines. Nevertheless, to accomplish higher power from the fuel cell system study on optimized performance behavior between balance of plant (BoP) and fuel cell system is significant. For this reason, the AVL CRUISE M Simulation software is deployed as a critical tool to simulate the performance of LT-PEM fuel cell systems. Based on the above discussion, the overall aim of this paper is to study the LT-PEM fuel cell system performance characteristics by modifying the fuel cell stack surface area for optimized hydrogen, air and cooling system management to achieve system power of 70–80 kW to use in commercial vehicle applications.
[1] Singla MK, Nijhawan P, Oberoi AS. Hydrogen fuel and fuel cell technology for cleaner future: a review. Environ Sci Pollut Res. 2021;28(15):15607-15626. doi: 10.1007/s11356-020-12231-8.
[2] Selmi T, Khadhraoui A, Cherif A. Fuel cell–based electric vehicles technologies and challenges. Environ Sci Pollut Res. 2022;29(75):78121-78131. doi: 10.1007/s11356-022-23171-w.
[3] Saikia K, Kakati BK, Boro B, Verma A. Current Advances and Applications of Fuel Cell Technologies. In: Sarangi P, Nanda S, Mohanty P, editors. Recent Advancements in Biofuels and Bioenergy Utilization. Singapore: Springer; 2018. p. 183-197. doi: 10.1007/978-981-13-1307-3_13.
[4] Karthikeyan S, Sankar GM. Study on selection of fuel cell power configuration for heavy duty truck applications using GT-Simulation. Int J IC Engines Gas Turbines. 2023;9(2):10-29.
[5] Hermann A, Chaudhuri T, Spagnol P. Bipolar plates for PEM fuel cells: A review. Int J Hydrogen Energy. 2005;30(12):1297-1302. doi: 10.1016/j.ijhydene.2005.04.016.
[6] Subramanian K, Sankar G. A review on hydrogen fuel and storage system product design for PEM fuel cell vehicle applications. SAE Technical Paper 2023-28-1335. 2023. doi: 10.4271/2023-28-1335.
[7] Boyacıoğlu NM, Kocakulak T, Batar M, Uyumaz A, Solmaz H. Modeling and Control of a PEM Fuel Cell Hybrid Energy System Used in a Vehicle with Fuzzy Logic Method. International Journal of Automotive Science and Technology. 2023;7(4):295-308. doi: 10.30939/ijastech..1340339
[8] Abo Alkibash TA, Kuşdoğan Ş. Overview of Fuel Cell-Hybrid Power Sources Vehicle Technology: A Review. International Journal of Automotive Science and Technology. 2024;8(3):260-72. doi:10.30939/ijastech..1432215
[9] Haıdar F, Arora D, Soloy A, Bartoli T. Study of Proton-Exchange Membrane Fuel Cell Degradation and its Counter Strategies: Flooding/drying, Cold Start and Carbon Monoxide Poisoning. International Journal of Automotive Science And Technology. 2024;8(1):96-109. doi: 10.30939/ijastech..1389241
[10] Dakurah JE, Solmaz H, Kocakulak T. Modeling of a PEM Fuel Cell Electric Bus with MATLAB/Simulink. Automotive Experiences. 2024 Sep 18;7(2):252-69. doi: 10.31603/ae.11471
[11] Xie J, Wood DL, Wayne DM, Zawodzinski TA, Atanassov P, Borup RL. Durability of PEFCs at high humidity conditions. J Electrochem Soc. 2005;152(10): A1870-A1877. doi: 10.1149/1.1830355.
[12] Enback S, Lindbergh G. Experimentally validated model for CO oxidation on PtRu/C in a porous PEFC electrode. J Electrochem Soc. 2005;152(11): A2197-A2205. doi: 10.1149/1.1825378.
[13] Ju H, Wang CY. Experimental validation of a PEM fuel cell model by current distribution data. J Electrochem Soc. 2004;151(3): A384-A392. doi: 10.1149/1.1805523.
[14] Baschuk JJ, Li X. Modelling CO poisoning and O2 bleeding in a PEM fuel cell anode. Int J Energy Res. 2003;27(12):1095-1116. doi: 10.1002/er.934.
[15] Costamagna P, Arato E, Achenbach E, Reus U. Fluid dynamic study of fuel cell devices: simulation and experimental validation. J Power Sources. 1994;52(2):251-260. doi: 10.1016/0378-7753(94)02014-0.
[16] Noponen M, Birgersson E, Ihonen J, Vynnycky M, Lundblad A, Lindbergh G. A two-phase non-isothermal PEFC model: theory and validation. Fuel Cells. 2004;4(4):365-377. doi: 10.1002/fuce.200400048.
[17] Siegel NP, Ellis MW, Nelson DJ, von Spakovsky MR. A two-dimensional computational model of a PEMFC with liquid water transport. J Power Sources. 2004;128(2):173-184. doi: 10.1016/j.jpowsour.2003.09.072.
[18] Mench MM, Wang CY, Ishikawa M. In situ current distribution measurements in polymer electrolyte fuel cells. J Electrochem Soc. 2003;150(9): A1052-A1059. doi: 10.1149/1.1584440.
[19] St-Pierre J, Roberts J, Colbow K, Campbell S, Nelson A. PEMFC operational and design strategies for subzero environments. J New Mater Electrochem Syst. 2005;8(4):163-176.
[20] Hasewend W. AVL Cruise — Driving performance and fuel consumption simulation. ATZ Worldw. 2001;103(10):10-13. doi: 10.1007/BF03226780.
[21] Iorga A. Road vehicle simulation using AVL Cruise. University of Pitesti Scientific Bulletin Automotive series, 2016; p.25.
[22] Mihai N,Danila I, Ioan D, Adrian I, Ioan. Simulation of a passenger car performance and emissions using the AVL Cruise software. Termotehnica, 2011; p. 95-98.
[23] Nemes D, Palfi T, Hajdu S. Vehicle Dynamic Simulation Possibilities Using AVL Cruise M. Int J Engineering and Management Vol.5. (2020). No.2.
[24] Evangelou SA, Shabbir W. Dynamic modeling platform for series hybrid electric vehicles. IFAC-Papers Online. 2016;49(11):533-540. doi: 10.1016/j.ifacol.2016.08.078.
[25] Mohamed WANW, Atan R. Analysis of excessive heating on the thermal and electrical resistance of a polymer electrolyte membrane fuel cell. Int J Automot Mech Eng. 2022;5:648-659.
[1] Singla MK, Nijhawan P, Oberoi AS. Hydrogen fuel and fuel cell technology for cleaner future: a review. Environ Sci Pollut Res. 2021;28(15):15607-15626. doi: 10.1007/s11356-020-12231-8.
[2] Selmi T, Khadhraoui A, Cherif A. Fuel cell–based electric vehicles technologies and challenges. Environ Sci Pollut Res. 2022;29(75):78121-78131. doi: 10.1007/s11356-022-23171-w.
[3] Saikia K, Kakati BK, Boro B, Verma A. Current Advances and Applications of Fuel Cell Technologies. In: Sarangi P, Nanda S, Mohanty P, editors. Recent Advancements in Biofuels and Bioenergy Utilization. Singapore: Springer; 2018. p. 183-197. doi: 10.1007/978-981-13-1307-3_13.
[4] Karthikeyan S, Sankar GM. Study on selection of fuel cell power configuration for heavy duty truck applications using GT-Simulation. Int J IC Engines Gas Turbines. 2023;9(2):10-29.
[5] Hermann A, Chaudhuri T, Spagnol P. Bipolar plates for PEM fuel cells: A review. Int J Hydrogen Energy. 2005;30(12):1297-1302. doi: 10.1016/j.ijhydene.2005.04.016.
[6] Subramanian K, Sankar G. A review on hydrogen fuel and storage system product design for PEM fuel cell vehicle applications. SAE Technical Paper 2023-28-1335. 2023. doi: 10.4271/2023-28-1335.
[7] Boyacıoğlu NM, Kocakulak T, Batar M, Uyumaz A, Solmaz H. Modeling and Control of a PEM Fuel Cell Hybrid Energy System Used in a Vehicle with Fuzzy Logic Method. International Journal of Automotive Science and Technology. 2023;7(4):295-308. doi: 10.30939/ijastech..1340339
[8] Abo Alkibash TA, Kuşdoğan Ş. Overview of Fuel Cell-Hybrid Power Sources Vehicle Technology: A Review. International Journal of Automotive Science and Technology. 2024;8(3):260-72. doi:10.30939/ijastech..1432215
[9] Haıdar F, Arora D, Soloy A, Bartoli T. Study of Proton-Exchange Membrane Fuel Cell Degradation and its Counter Strategies: Flooding/drying, Cold Start and Carbon Monoxide Poisoning. International Journal of Automotive Science And Technology. 2024;8(1):96-109. doi: 10.30939/ijastech..1389241
[10] Dakurah JE, Solmaz H, Kocakulak T. Modeling of a PEM Fuel Cell Electric Bus with MATLAB/Simulink. Automotive Experiences. 2024 Sep 18;7(2):252-69. doi: 10.31603/ae.11471
[11] Xie J, Wood DL, Wayne DM, Zawodzinski TA, Atanassov P, Borup RL. Durability of PEFCs at high humidity conditions. J Electrochem Soc. 2005;152(10): A1870-A1877. doi: 10.1149/1.1830355.
[12] Enback S, Lindbergh G. Experimentally validated model for CO oxidation on PtRu/C in a porous PEFC electrode. J Electrochem Soc. 2005;152(11): A2197-A2205. doi: 10.1149/1.1825378.
[13] Ju H, Wang CY. Experimental validation of a PEM fuel cell model by current distribution data. J Electrochem Soc. 2004;151(3): A384-A392. doi: 10.1149/1.1805523.
[14] Baschuk JJ, Li X. Modelling CO poisoning and O2 bleeding in a PEM fuel cell anode. Int J Energy Res. 2003;27(12):1095-1116. doi: 10.1002/er.934.
[15] Costamagna P, Arato E, Achenbach E, Reus U. Fluid dynamic study of fuel cell devices: simulation and experimental validation. J Power Sources. 1994;52(2):251-260. doi: 10.1016/0378-7753(94)02014-0.
[16] Noponen M, Birgersson E, Ihonen J, Vynnycky M, Lundblad A, Lindbergh G. A two-phase non-isothermal PEFC model: theory and validation. Fuel Cells. 2004;4(4):365-377. doi: 10.1002/fuce.200400048.
[17] Siegel NP, Ellis MW, Nelson DJ, von Spakovsky MR. A two-dimensional computational model of a PEMFC with liquid water transport. J Power Sources. 2004;128(2):173-184. doi: 10.1016/j.jpowsour.2003.09.072.
[18] Mench MM, Wang CY, Ishikawa M. In situ current distribution measurements in polymer electrolyte fuel cells. J Electrochem Soc. 2003;150(9): A1052-A1059. doi: 10.1149/1.1584440.
[19] St-Pierre J, Roberts J, Colbow K, Campbell S, Nelson A. PEMFC operational and design strategies for subzero environments. J New Mater Electrochem Syst. 2005;8(4):163-176.
[20] Hasewend W. AVL Cruise — Driving performance and fuel consumption simulation. ATZ Worldw. 2001;103(10):10-13. doi: 10.1007/BF03226780.
[21] Iorga A. Road vehicle simulation using AVL Cruise. University of Pitesti Scientific Bulletin Automotive series, 2016; p.25.
[22] Mihai N,Danila I, Ioan D, Adrian I, Ioan. Simulation of a passenger car performance and emissions using the AVL Cruise software. Termotehnica, 2011; p. 95-98.
[23] Nemes D, Palfi T, Hajdu S. Vehicle Dynamic Simulation Possibilities Using AVL Cruise M. Int J Engineering and Management Vol.5. (2020). No.2.
[24] Evangelou SA, Shabbir W. Dynamic modeling platform for series hybrid electric vehicles. IFAC-Papers Online. 2016;49(11):533-540. doi: 10.1016/j.ifacol.2016.08.078.
[25] Mohamed WANW, Atan R. Analysis of excessive heating on the thermal and electrical resistance of a polymer electrolyte membrane fuel cell. Int J Automot Mech Eng. 2022;5:648-659.
Subramanian, K., M, G. S., & Ranagsamy, R. (2024). Study on Performance Improvement of Low Temperature Proton Exchange Membrane Fuel Cell System by Stack Modification Using Simulation Tool. International Journal of Automotive Science And Technology, 8(4), 537-543. https://doi.org/10.30939/ijastech..1491519
AMA
Subramanian K, M GS, Ranagsamy R. Study on Performance Improvement of Low Temperature Proton Exchange Membrane Fuel Cell System by Stack Modification Using Simulation Tool. IJASTECH. December 2024;8(4):537-543. doi:10.30939/ijastech.1491519
Chicago
Subramanian, Karthikeyan, Gopi Sankar M, and Rajavel Ranagsamy. “Study on Performance Improvement of Low Temperature Proton Exchange Membrane Fuel Cell System by Stack Modification Using Simulation Tool”. International Journal of Automotive Science And Technology 8, no. 4 (December 2024): 537-43. https://doi.org/10.30939/ijastech. 1491519.
EndNote
Subramanian K, M GS, Ranagsamy R (December 1, 2024) Study on Performance Improvement of Low Temperature Proton Exchange Membrane Fuel Cell System by Stack Modification Using Simulation Tool. International Journal of Automotive Science And Technology 8 4 537–543.
IEEE
K. Subramanian, G. S. M, and R. Ranagsamy, “Study on Performance Improvement of Low Temperature Proton Exchange Membrane Fuel Cell System by Stack Modification Using Simulation Tool”, IJASTECH, vol. 8, no. 4, pp. 537–543, 2024, doi: 10.30939/ijastech..1491519.
ISNAD
Subramanian, Karthikeyan et al. “Study on Performance Improvement of Low Temperature Proton Exchange Membrane Fuel Cell System by Stack Modification Using Simulation Tool”. International Journal of Automotive Science And Technology 8/4 (December 2024), 537-543. https://doi.org/10.30939/ijastech. 1491519.
JAMA
Subramanian K, M GS, Ranagsamy R. Study on Performance Improvement of Low Temperature Proton Exchange Membrane Fuel Cell System by Stack Modification Using Simulation Tool. IJASTECH. 2024;8:537–543.
MLA
Subramanian, Karthikeyan et al. “Study on Performance Improvement of Low Temperature Proton Exchange Membrane Fuel Cell System by Stack Modification Using Simulation Tool”. International Journal of Automotive Science And Technology, vol. 8, no. 4, 2024, pp. 537-43, doi:10.30939/ijastech. 1491519.
Vancouver
Subramanian K, M GS, Ranagsamy R. Study on Performance Improvement of Low Temperature Proton Exchange Membrane Fuel Cell System by Stack Modification Using Simulation Tool. IJASTECH. 2024;8(4):537-43.