Research Article
BibTex RIS Cite

Effects of Ramie Fiber/Boron Nitride Exposure on the Mechanical Characteristics of Injection-Moulded Polypropylene Composites for Automated Structural Applications

Year 2024, , 451 - 456, 31.12.2024
https://doi.org/10.30939/ijastech..1528281

Abstract

Hybrid fiber/ceramic to polymer matrix combination provides better tensile strength, improved flexural strength, good fracture toughness, durability, improved corrosion resistance, better chemical stability and good thermal behaviour reason; the composites are applied for high strength-to-weight ratio automotive structural applications. The present hybrid polypro-pylene composite is made with constant weight percentages of ramie fiber (chemically treated) and boron nitride (BN) particles (50nm) via an injection moulding machine configured with a hot press. Influences of ramie fiber (biodegradable) and BN on yield-tensile, elongation, and microhardness behaviour of hybrid polypropylene composite was experimentally studied with a statistical significance of 5 % followed by three trials. The composite of polypropylene is fabricated with 12 wt% of ramie (biodegradable) fiber along with BN of 6 wt% of BN and is exposed to superior yield & tensile strength, elongation percentage, and microhardness performance; it is superior to the value of unreinforced polypropylene. The yield & tensile strength & microhardness of polypropylene/12 wt% ramie fiber/ 6 wt% BN are 59.4±0.5MPa, 72.4±0.6MPa, 41.5%, and 53±0.2HV respectively. This polypropylene hybrid nanocomposite with 12 wt% and 6 wt% ramie (chemically treated) fiber and BN is recommended for automated structural application due to its enhanced tensile strength, microhardness, and improved elongation behaviour.

References

  • [1] Khalid MY, Imran R, Arif ZU, Akram N, Arshad H, Rashid AA, Márquez FPG. Developments in chemical treatments, manufacturing techniques and potential applications of natu-ral-fibers-based biodegradable composites. Coatings. 2021;11(3):293. https://doi.org/10.3390/coatings11030293
  • [2] Ahmed H, Noyon MAR, Uddin ME, Jamal M, Palaniappan SK. Biodegradable and flexible fiber-reinforced composite sheet from tannery solid wastes: An approach of waste minimiza-tion. Polym. Compos. 2023;44(11):7545–7556. https://doi.org/10.1002/pc.27644
  • [3] Maurya AK, de Souza FM, Dawsey T, Gupta RK. Biode-gradable polymers and composites: Recent development and challenges. Polym. Compos. 2023;45(4):2896-2918. https://doi.org/10.1002/pc.28023
  • [4] Krishnaraj M, Thirugnana Sambandha T, Arun R, Vaitheeswa-ran T. Fabrication and wear characteristics basalt fiber rein-forced polypropylene matrix composites. SAE Tech. pap. 2019;28: 2570. https://doi.org/10.4271/2019-28-2570
  • [5] Hangargi S, Swamy A, Raj RG, Aruna M, Venkatesh R, Madhu S, Kalam MA. Enhancement of Kevlar fiber-polypropylene composite by the inclusions of cotton stalk and granite particle: characteristics study. Biomass Convers. Biore-fin. 2024;14:30305-30314. https://doi.org/10.1007/s13399-023-04817-2
  • [6] Santhi KA, Srinivas C, Kumar RA. Experimental investigation of mechanical properties of Jute-Ramie fibres reinforced with epoxy hybrid composites. Mater. 2020;39:1309–1315. https://doi.org/10.1016/j.matpr.2020.04.368
  • [7] Suriyaprakash M, Nallusamy M, Shri Ram Shanjai K, Akash N, Rohith V. Experimental investigation on mechanical prop-erties of Ramie, Hemp fiber and coconut shell particle hybrid composites with reinforced epoxy resin. Mater. 2022;72:2952–2956. https://doi.org/10.1016/j.matpr.2022.08.091
  • [8] Aruchamy K, Mylsamy B, Palaniappan SK, Subramani SP, Velayutham T, Rangappa SM, Siengchin S. Influence of weave arrangements on mechanical characteristics of cotton and bamboo woven fabric reinforced composite laminates. J. Reinf. Plast. Compos. 2023;42(15–16):776–789. https://doi.org/10.1177/07316844221140350
  • [9] Ray K, Patra H, Swain AK, Parida B, Mahapatra S, Sahu A, Rana S. Glass/jute/sisal fiber reinforced hybrid polypropylene polymer composites: Fabrication and analysis of mechanical and water absorption properties. Mater. 2020;33:5273–5278. https://doi.org/10.1016/j.matpr.2020.02.964
  • [10] Shirvanimoghaddam K, Balaji KV, Yadav R, Zabihi O, Ah-madi M, Adetunji P, Naebe M. Balancing the toughness and strength in polypropylene composites. Compos. B. Eng. 2021;223:109121. https://doi.org/10.1016/j.compositesb.2021.109121
  • [11] Jing X, Li Y, Zhu J, Chang L, Maganti S, Naik N, Guo Z. Im-proving thermal conductivity of polyethylene/polypropylene by styrene-ethylene-propylene-styrene wrapping hexagonal boron nitride at the phase interface. Adv Compos Hybrid Ma-ter. 2021;5(2): 1090–1099. https://doi.org/10.1007/s42114-022-00438-x
  • [12] Mylsamy B, Aruchamy K, Subramani SP, Palaniappan SK, Rangappa SM, Siengchin S. State of the art of advanced fiber materials: Future directions, opportunities, and challeng-es. Fiber Materials: De Gruyter. 2023;357–372. https://doi.org/10.1515/9783110992892-014
  • [13] Tesfay, D., Balakrishnan, S., Ashine, F., & Sivaprakasam, P. Sisal fibre/polypropylene composites properties by plunger in-jection moulding. Materials Today: Proceedings, 62, 448–453. https://doi.org/10.1016/j.matpr.2022.03.565
  • [14] Venkatesh R, Kantharaj I, Sasikumar R, Kannan CR, Yadav A, Karthigairajan M, Murugan A. Thermal Adsorption and Me-chanical Behaviour of Polypropylene Hybrid Composite Syn-thesized by Glass/Hemp Fibre via an Injection Moulding Pro-cess. Adsorp. Sci Technol. 2023. https://doi.org/10.1155/2023/7450085
  • [15] Venkatesh R, Roopashree R, Sur S, Kumar G, Raja P, De Poures MV. Investigation and Performance Study of Hibiscus sabdariffa Bast Fiber-Reinforced HDPE Composite Enhanced by Silica Nanoparticles Derived from Agricultural Resi-dues. Fibers Polym. 2023;24:2155-2164. https://doi.org/10.1007/s12221-023-00221-9
  • [16] David R, Priya CB, Aruna M, Kaliyaperumal G, Mukilarasan N, Malladi A, Karthikeyan M. Synthesis and Experimental Thermal Adsorption Characteristics of Epoxy Hybrid Compo-site for Energy Storage Applications. Adsorp Sci Technol. 2023; 4817731. https://doi.org/10.1155/2023/4817731
  • [17] Manivannan S, Sakthivel P, Vijayan V, Jidesh S. The investi-gation on newly developed of hydrophobic coating on cast AZ91D magnesium alloy under 3.5 wt% NaCl solutions. J In-org Organomet Polym Mater. 2022; 32(4):1246-1258. https://doi.org/10.1007/s10904-021-02174-z
  • [18] Sasikumar R, Prabagaran S, Kumaravel S. Effect of tamarind fruit fiber contribution in epoxy resin composites as biode-gradable nature: characterization and property evalua-tion. Biomass Convers. Biorefin. 2024;14:22647-22655. https://doi.org/10.1007/s13399-023-04465-6
  • [19] Raghuvaran S, Vivekanandan M, Kannan CR, Thirug-nanasambandham T, Murugan A, Barik D. Evaluation of Thermal Adsorption and Mechanical Behaviour of In-tralaminar Jute/Sisal/E-Glass Fibre-Bonded Epoxy Hybrid Composite as an Insulator. Adsorp Sci Technol. 2023. https://doi.org/10.1155/2023/9222562
  • [20] Sakthivel P, Selvakumar G, Krishnan AM, Purushothaman P, Priya CB. Mechanical and thermal properties of a waste fly ash-bonded Al-10 Mg alloy composite improved by bioceram-ic silicon nanoparticles. Biomass Convers. Biorefin. 2024;14:24473-24484. https://doi.org/10.1007/s13399-023-04588-w
  • [21] Ballal S, Krishnan AM, Prabagaran S, Mohankumar S, Rama-raj E. Effect of fiber layer formation on mechanical and wear properties of natural fiber filled epoxy hybrid compo-sites. Heliyon. 2023;9(5):e15934. https://doi.org/10.1016/j.heliyon.2023.e15934
  • [22] Junaedi H, Albahkali E, Baig M, Dawood A, Almajid A. Duc-tile to Brittle Transition of Short Carbon Fiber-Reinforced Polypropylene Composites. Adv. Polym. Technol. 2020;2020(1):6714097. https://doi.org/10.1155/2020/6714097
  • [23] Song N, Cao D, Luo X, Wang Q, Ding P, Shi L. Highly ther-mally conductive polypropylene/graphene composites for thermal management. Compos. Part A Appl. Sci. Manuf. 2020;135:105912. https://doi.org/10.1016/j.compositesa.2020.105912
  • [24] Hsissou R, Seghiri R, Benzekri Z, Hilali M, Rafik M, Elharfi A. Polymer composite materials: A comprehensive re-view. Compos. Struct. 2021;262:113640. https://doi.org/10.1016/j.compstruct.2021.113640
  • [25] Maheshkumar KV, Krishnamurthy K, Sathishkumar P, Sahoo S, Uddin E, Pal SK, Rajasekar R. Research updates on gra-phene oxide-based polymeric nanocomposites. Polym. Com-pos. 2014;35(12):2297–2310. https://doi.org/10.1002/pc.22899
  • [26] Liu B, Li Y, Fei T, Han S, Xia C, Shan Z, Jiang J. Highly thermally conductive polystyrene/polypropylene/boron nitride composites with 3D segregated structure prepared by solution-mixing and hot-pressing method. Chem. Eng. J. 2020;385:123829. https://doi.org/10.1016/j.cej.2019.123829
  • [27] Hariprasad K, Ravichandran K, Jayaseelan V, Muthuramalin-gam T. Acoustic and mechanical characterization of polypro-pylene composites reinforced by natural fibres for automotive applications. J. Mater. Res. Technol. 2020;9(6):14029–14035. https://doi.org/10.1016/j.jmrt.2020.09.112
  • [28] Sathish T, Jagadeesh P, Rangappa SM, Siengchin S. Mechani-cal and thermal analysis of coir fiber reinforced jute/bamboo hybrid epoxy composites. Polym. Compos. 2020;43(7):4700–4710. https://doi.org/10.1002/pc.26722
  • [29] Vellaiyan S, Kandasamy M, Chandran D, Raviadaran R, Ra-malingam K, Devarajan Y. Characterization and optimization of waste-derived biodiesel utilizing CNT/MgO nanocomposite and water emulsion for enhanced performance and emission metrics. Case Stud. Therm. Eng. 2024;55;104173. https://doi.org/10.1016/j.csite.2024.104173
  • [30] Devanathan R, Ravikumar J, Boopathi S, Christopher Selvam D, Anicia SA. Influence in Mechanical Properties of Stir Cast Aluminium (AA6061) Hybrid Metal matrix Composite (HMMC) with Silicon Carbide, Fly Ash and Coconut coir Ash Reinforcement. Mater. 2020;22:3136–3144. https://doi.org/10.1016/j.matpr.2020.03.450
Year 2024, , 451 - 456, 31.12.2024
https://doi.org/10.30939/ijastech..1528281

Abstract

References

  • [1] Khalid MY, Imran R, Arif ZU, Akram N, Arshad H, Rashid AA, Márquez FPG. Developments in chemical treatments, manufacturing techniques and potential applications of natu-ral-fibers-based biodegradable composites. Coatings. 2021;11(3):293. https://doi.org/10.3390/coatings11030293
  • [2] Ahmed H, Noyon MAR, Uddin ME, Jamal M, Palaniappan SK. Biodegradable and flexible fiber-reinforced composite sheet from tannery solid wastes: An approach of waste minimiza-tion. Polym. Compos. 2023;44(11):7545–7556. https://doi.org/10.1002/pc.27644
  • [3] Maurya AK, de Souza FM, Dawsey T, Gupta RK. Biode-gradable polymers and composites: Recent development and challenges. Polym. Compos. 2023;45(4):2896-2918. https://doi.org/10.1002/pc.28023
  • [4] Krishnaraj M, Thirugnana Sambandha T, Arun R, Vaitheeswa-ran T. Fabrication and wear characteristics basalt fiber rein-forced polypropylene matrix composites. SAE Tech. pap. 2019;28: 2570. https://doi.org/10.4271/2019-28-2570
  • [5] Hangargi S, Swamy A, Raj RG, Aruna M, Venkatesh R, Madhu S, Kalam MA. Enhancement of Kevlar fiber-polypropylene composite by the inclusions of cotton stalk and granite particle: characteristics study. Biomass Convers. Biore-fin. 2024;14:30305-30314. https://doi.org/10.1007/s13399-023-04817-2
  • [6] Santhi KA, Srinivas C, Kumar RA. Experimental investigation of mechanical properties of Jute-Ramie fibres reinforced with epoxy hybrid composites. Mater. 2020;39:1309–1315. https://doi.org/10.1016/j.matpr.2020.04.368
  • [7] Suriyaprakash M, Nallusamy M, Shri Ram Shanjai K, Akash N, Rohith V. Experimental investigation on mechanical prop-erties of Ramie, Hemp fiber and coconut shell particle hybrid composites with reinforced epoxy resin. Mater. 2022;72:2952–2956. https://doi.org/10.1016/j.matpr.2022.08.091
  • [8] Aruchamy K, Mylsamy B, Palaniappan SK, Subramani SP, Velayutham T, Rangappa SM, Siengchin S. Influence of weave arrangements on mechanical characteristics of cotton and bamboo woven fabric reinforced composite laminates. J. Reinf. Plast. Compos. 2023;42(15–16):776–789. https://doi.org/10.1177/07316844221140350
  • [9] Ray K, Patra H, Swain AK, Parida B, Mahapatra S, Sahu A, Rana S. Glass/jute/sisal fiber reinforced hybrid polypropylene polymer composites: Fabrication and analysis of mechanical and water absorption properties. Mater. 2020;33:5273–5278. https://doi.org/10.1016/j.matpr.2020.02.964
  • [10] Shirvanimoghaddam K, Balaji KV, Yadav R, Zabihi O, Ah-madi M, Adetunji P, Naebe M. Balancing the toughness and strength in polypropylene composites. Compos. B. Eng. 2021;223:109121. https://doi.org/10.1016/j.compositesb.2021.109121
  • [11] Jing X, Li Y, Zhu J, Chang L, Maganti S, Naik N, Guo Z. Im-proving thermal conductivity of polyethylene/polypropylene by styrene-ethylene-propylene-styrene wrapping hexagonal boron nitride at the phase interface. Adv Compos Hybrid Ma-ter. 2021;5(2): 1090–1099. https://doi.org/10.1007/s42114-022-00438-x
  • [12] Mylsamy B, Aruchamy K, Subramani SP, Palaniappan SK, Rangappa SM, Siengchin S. State of the art of advanced fiber materials: Future directions, opportunities, and challeng-es. Fiber Materials: De Gruyter. 2023;357–372. https://doi.org/10.1515/9783110992892-014
  • [13] Tesfay, D., Balakrishnan, S., Ashine, F., & Sivaprakasam, P. Sisal fibre/polypropylene composites properties by plunger in-jection moulding. Materials Today: Proceedings, 62, 448–453. https://doi.org/10.1016/j.matpr.2022.03.565
  • [14] Venkatesh R, Kantharaj I, Sasikumar R, Kannan CR, Yadav A, Karthigairajan M, Murugan A. Thermal Adsorption and Me-chanical Behaviour of Polypropylene Hybrid Composite Syn-thesized by Glass/Hemp Fibre via an Injection Moulding Pro-cess. Adsorp. Sci Technol. 2023. https://doi.org/10.1155/2023/7450085
  • [15] Venkatesh R, Roopashree R, Sur S, Kumar G, Raja P, De Poures MV. Investigation and Performance Study of Hibiscus sabdariffa Bast Fiber-Reinforced HDPE Composite Enhanced by Silica Nanoparticles Derived from Agricultural Resi-dues. Fibers Polym. 2023;24:2155-2164. https://doi.org/10.1007/s12221-023-00221-9
  • [16] David R, Priya CB, Aruna M, Kaliyaperumal G, Mukilarasan N, Malladi A, Karthikeyan M. Synthesis and Experimental Thermal Adsorption Characteristics of Epoxy Hybrid Compo-site for Energy Storage Applications. Adsorp Sci Technol. 2023; 4817731. https://doi.org/10.1155/2023/4817731
  • [17] Manivannan S, Sakthivel P, Vijayan V, Jidesh S. The investi-gation on newly developed of hydrophobic coating on cast AZ91D magnesium alloy under 3.5 wt% NaCl solutions. J In-org Organomet Polym Mater. 2022; 32(4):1246-1258. https://doi.org/10.1007/s10904-021-02174-z
  • [18] Sasikumar R, Prabagaran S, Kumaravel S. Effect of tamarind fruit fiber contribution in epoxy resin composites as biode-gradable nature: characterization and property evalua-tion. Biomass Convers. Biorefin. 2024;14:22647-22655. https://doi.org/10.1007/s13399-023-04465-6
  • [19] Raghuvaran S, Vivekanandan M, Kannan CR, Thirug-nanasambandham T, Murugan A, Barik D. Evaluation of Thermal Adsorption and Mechanical Behaviour of In-tralaminar Jute/Sisal/E-Glass Fibre-Bonded Epoxy Hybrid Composite as an Insulator. Adsorp Sci Technol. 2023. https://doi.org/10.1155/2023/9222562
  • [20] Sakthivel P, Selvakumar G, Krishnan AM, Purushothaman P, Priya CB. Mechanical and thermal properties of a waste fly ash-bonded Al-10 Mg alloy composite improved by bioceram-ic silicon nanoparticles. Biomass Convers. Biorefin. 2024;14:24473-24484. https://doi.org/10.1007/s13399-023-04588-w
  • [21] Ballal S, Krishnan AM, Prabagaran S, Mohankumar S, Rama-raj E. Effect of fiber layer formation on mechanical and wear properties of natural fiber filled epoxy hybrid compo-sites. Heliyon. 2023;9(5):e15934. https://doi.org/10.1016/j.heliyon.2023.e15934
  • [22] Junaedi H, Albahkali E, Baig M, Dawood A, Almajid A. Duc-tile to Brittle Transition of Short Carbon Fiber-Reinforced Polypropylene Composites. Adv. Polym. Technol. 2020;2020(1):6714097. https://doi.org/10.1155/2020/6714097
  • [23] Song N, Cao D, Luo X, Wang Q, Ding P, Shi L. Highly ther-mally conductive polypropylene/graphene composites for thermal management. Compos. Part A Appl. Sci. Manuf. 2020;135:105912. https://doi.org/10.1016/j.compositesa.2020.105912
  • [24] Hsissou R, Seghiri R, Benzekri Z, Hilali M, Rafik M, Elharfi A. Polymer composite materials: A comprehensive re-view. Compos. Struct. 2021;262:113640. https://doi.org/10.1016/j.compstruct.2021.113640
  • [25] Maheshkumar KV, Krishnamurthy K, Sathishkumar P, Sahoo S, Uddin E, Pal SK, Rajasekar R. Research updates on gra-phene oxide-based polymeric nanocomposites. Polym. Com-pos. 2014;35(12):2297–2310. https://doi.org/10.1002/pc.22899
  • [26] Liu B, Li Y, Fei T, Han S, Xia C, Shan Z, Jiang J. Highly thermally conductive polystyrene/polypropylene/boron nitride composites with 3D segregated structure prepared by solution-mixing and hot-pressing method. Chem. Eng. J. 2020;385:123829. https://doi.org/10.1016/j.cej.2019.123829
  • [27] Hariprasad K, Ravichandran K, Jayaseelan V, Muthuramalin-gam T. Acoustic and mechanical characterization of polypro-pylene composites reinforced by natural fibres for automotive applications. J. Mater. Res. Technol. 2020;9(6):14029–14035. https://doi.org/10.1016/j.jmrt.2020.09.112
  • [28] Sathish T, Jagadeesh P, Rangappa SM, Siengchin S. Mechani-cal and thermal analysis of coir fiber reinforced jute/bamboo hybrid epoxy composites. Polym. Compos. 2020;43(7):4700–4710. https://doi.org/10.1002/pc.26722
  • [29] Vellaiyan S, Kandasamy M, Chandran D, Raviadaran R, Ra-malingam K, Devarajan Y. Characterization and optimization of waste-derived biodiesel utilizing CNT/MgO nanocomposite and water emulsion for enhanced performance and emission metrics. Case Stud. Therm. Eng. 2024;55;104173. https://doi.org/10.1016/j.csite.2024.104173
  • [30] Devanathan R, Ravikumar J, Boopathi S, Christopher Selvam D, Anicia SA. Influence in Mechanical Properties of Stir Cast Aluminium (AA6061) Hybrid Metal matrix Composite (HMMC) with Silicon Carbide, Fly Ash and Coconut coir Ash Reinforcement. Mater. 2020;22:3136–3144. https://doi.org/10.1016/j.matpr.2020.03.450
There are 30 citations in total.

Details

Primary Language English
Subjects Automotive Engineering Materials
Journal Section Articles
Authors

Venkatesh R 0000-0002-9057-8185

Publication Date December 31, 2024
Submission Date August 5, 2024
Acceptance Date November 13, 2024
Published in Issue Year 2024

Cite

APA R, V. (2024). Effects of Ramie Fiber/Boron Nitride Exposure on the Mechanical Characteristics of Injection-Moulded Polypropylene Composites for Automated Structural Applications. International Journal of Automotive Science And Technology, 8(4), 451-456. https://doi.org/10.30939/ijastech..1528281
AMA R V. Effects of Ramie Fiber/Boron Nitride Exposure on the Mechanical Characteristics of Injection-Moulded Polypropylene Composites for Automated Structural Applications. IJASTECH. December 2024;8(4):451-456. doi:10.30939/ijastech.1528281
Chicago R, Venkatesh. “Effects of Ramie Fiber/Boron Nitride Exposure on the Mechanical Characteristics of Injection-Moulded Polypropylene Composites for Automated Structural Applications”. International Journal of Automotive Science And Technology 8, no. 4 (December 2024): 451-56. https://doi.org/10.30939/ijastech. 1528281.
EndNote R V (December 1, 2024) Effects of Ramie Fiber/Boron Nitride Exposure on the Mechanical Characteristics of Injection-Moulded Polypropylene Composites for Automated Structural Applications. International Journal of Automotive Science And Technology 8 4 451–456.
IEEE V. R, “Effects of Ramie Fiber/Boron Nitride Exposure on the Mechanical Characteristics of Injection-Moulded Polypropylene Composites for Automated Structural Applications”, IJASTECH, vol. 8, no. 4, pp. 451–456, 2024, doi: 10.30939/ijastech..1528281.
ISNAD R, Venkatesh. “Effects of Ramie Fiber/Boron Nitride Exposure on the Mechanical Characteristics of Injection-Moulded Polypropylene Composites for Automated Structural Applications”. International Journal of Automotive Science And Technology 8/4 (December 2024), 451-456. https://doi.org/10.30939/ijastech. 1528281.
JAMA R V. Effects of Ramie Fiber/Boron Nitride Exposure on the Mechanical Characteristics of Injection-Moulded Polypropylene Composites for Automated Structural Applications. IJASTECH. 2024;8:451–456.
MLA R, Venkatesh. “Effects of Ramie Fiber/Boron Nitride Exposure on the Mechanical Characteristics of Injection-Moulded Polypropylene Composites for Automated Structural Applications”. International Journal of Automotive Science And Technology, vol. 8, no. 4, 2024, pp. 451-6, doi:10.30939/ijastech. 1528281.
Vancouver R V. Effects of Ramie Fiber/Boron Nitride Exposure on the Mechanical Characteristics of Injection-Moulded Polypropylene Composites for Automated Structural Applications. IJASTECH. 2024;8(4):451-6.


International Journal of Automotive Science and Technology (IJASTECH) is published by Society of Automotive Engineers Turkey

by.png