Review
BibTex RIS Cite

A Systematic Review of Brake Pad

Year 2024, , 404 - 418, 31.12.2024
https://doi.org/10.30939/ijastech..1528450

Abstract

The brake system is a mechanism that allows the vehicle to slow down and remain stationary. Most automobiles uses either one or both disk brake and drum brake system. These brake system components include the brake pedal, brake lines, brake master cylinder, brake booster, brake calipers, brake rotors/drum, and brake pads. The greatest load in the braking of a vehicle falls both on the discs and pads. The friction caused by braking on these parts results in a large amount of heat transfer and particulate emission. Therefore, studies on the brake system have focused on human health, the environment and the economy, in addition to investigating the operation, performance and wear mechanisms of the system. In this study, researchers, citations, keywords, and trending topics of 1,118 studies on brake pad between 1982 and 2023 were investigated by systematic analysis method using R and VosViewer analysis programs. A brief summary of the most cited papers and their topics is given to help researchers who will conduct studies on brakes. These studies focused on wear and emission issues. Non-exhaust emissions have adverse effects on air, aqueous media, roadways and human health. Therefore, it has become mandatory to limit these small particles, which is why they are included in the Euro 7 emission standard. Due to the limitations on braking, future researchers have been informed about the status of non-exhaust emissions.

Ethical Statement

Çalışmanın tüm süreçlerinin araştırma ve yayın etiğine uygun olduğunu, etik kurallara ve bilimsel atıf gösterme ilkelerine uyduğumu beyan ederim.

References

  • [1] Karaçam Z. Systematic Review Methodology: A Guide for Preparation of Systematic Review. E-Journal of Dokuz Eylul University Nursing Faculty. 2013;6(1):26-33.
  • [2] Yılmaz K. Systematic Review, Meta Evaluation, and Biblio-metric Analysis in Social Sciences and Educational Sciences. MANAS Journal of Social Studies. 2021;10(2):1457-90. https://doi.org/https://doi.org/10.33206/mjss.791537 .
  • [3] Naseri MS, Malekzadeh R. Systematic Review: Is It Differ-ent From The Traditional Review. 2006, p. 196-9.
  • [4] Arshed N, Danson M. The literature review. Research meth-ods for business and management: a guide to writing your dissertation. 2015:31-49.
  • [5] Köroğlu SA. Notes on literature review and a review tech-nique. Naval Architecture and Ocean Sciences Journal (GİDB Dergi). 2015(01):61-9.
  • [6] Palmatier RW, Houston MB, Hulland J. Review articles: purpose, process, and structure. Springer; 2018, p. 1-5. https://doi.org/10.1007/s11747-017-0563-4 .
  • [7] Carrera-Rivera A, Ochoa-Agurto W, Larrinaga F, Lasa G. How-to conduct a systematic literature review: A quick guide for computer science research. MethodsX. 2022:101895. https://doi.org/10.1016/j.mex.2022.101895 .
  • [8] Petticrew M, Roberts H. Systematic reviews in the social sciences: A practical guide. John Wiley & Sons; 2008.
  • [9] MacKenzie H, Dewey A, Drahota A, Kilburn S, Kalra P, Fogg C, Zachariah D. Systematic reviews: what they are, why they are important, and how to get involved. Journal of Clinical and Preventive Cardiology. 2012;1(4):193-202.
  • [10] Thorpe A, Harrison RM. Sources and properties of non-exhaust particulate matter from road traffic: a review. Sci-ence of the total environment. 2008;400(1-3):270-82. https://doi.org/10.1016/j.scitotenv.2008.06.007 .
  • [11] Sijo M, Jayadevan K. Analysis of stir cast aluminium silicon carbide metal matrix composite: A comprehensive review. Procedia technology. 2016;24:379-85. https://doi.org/10.1016/j.protcy.2016.05.052 .
  • [12] Chan D, Stachowiak G. Review of automotive brake friction materials. Proceedings of the Institution of Mechanical Engi-neers, Part D: Journal of Automobile Engineering. 2004;218(9):953-66. https://doi.org/10.1243/0954407041856 .
  • [13] Akbulut F, Mutlu İ. Experimental Comparison of Manufac-turing Parameters in Automotive Friction Materials. Interna-tional Journal of Automotive Science And Technology. 2024;8(2):167-78. https://doi.org/10.30939/ijastech..1425382 .
  • [14] Akbulut F, Kılıç H, Mutlu İ, Öztürk FS, Çaşın E, Seyrek M, Karaköse A. Investigation of tribological properties of brake friction materials developed from industrial waste products. International Journal of Automotive Science and Technolo-gy. 2023;7(4):309-15. https://doi.org/10.30939/ijastech..1373026
  • [15] Akçay Ö. Structural optimization of the brake pedal using artificial intelligence. International Journal of Automotive Science and Technology. 2023;7(3):187-95. https://doi.org/10.30939/ijastech..1330096 .
  • [16] Cetin E, Seyitoglu SS. A bibliometric overview of research on auxetic structures: Trends and patterns. International Journal of Automotive Science and Technology. 2024;8(1):65-77. https://doi.org/10.30939/ijastech..1374313 .
  • [17] Abdullaev I, Lin N, Rashidov J. Electric Vehicles: Manu-script of a Bibliometric Analysis Unveiling Trends, Innova-tions and Future Pathways. International Journal of Automo-tive Science And Technology. 2024;8(2):212-24. https://doi.org/10.30939/ijastech..1424879 .
  • [18] Tahamtan I, Afshar AS, Ahamdzadeh K. Factors affecting number of citations: a comprehensive review of the litera-ture. Scientometrics. 2016;107:1195-225. https://doi.org/10.1007/s11192-016-1889-2 .
  • [19] Van Noorden R. The science that’s never been cited. Nature. 2017;552:162-4. https://doi.org/10.1038/d41586-017-08404-0 .
  • [20] Li SC. Mastering the craft: Creating an insightful and widely-cited literature review. World Journal of Stem Cells. 2023;15(8):781. https://doi.org/10.4252/wjsc.v15.i8.781 .
  • [21] Petersen AM, Wang F, Stanley HE. Methods for measuring the citations and productivity of scientists across time and discipline. Physical Review E. 2010;81(3):036114. https://doi.org/10.1103/PhysRevE.81.036114 .
  • [22] Lawani SM. Citation analysis and the quality of scientific productivity. BioScience. 1977;27(1):26-31. https://doi.org/10.2307/1297790 .
  • [23] Apeagyei E, Bank MS, Spengler JD. Distribution of heavy metals in road dust along an urban-rural gradient in Massa-chusetts. Atmospheric Environment. 2011;45(13):2310-23. https://doi.org/10.1016/j.atmosenv.2010.11.015 .
  • [24] Adamiec E, Jarosz-Krzemińska E, Wieszała R. Heavy metals from non-exhaust vehicle emissions in urban and motorway road dusts. Environmental monitoring and assessment. 2016;188:1-11. https://doi.org/10.1007/s10661-016-5377-1 .
  • [25] Schmidt M. The Sankey diagram in energy and material flow management: part II: methodology and current applications. Journal of industrial ecology. 2008;12(2):173-85. https://doi.org/10.1111/j.1530-9290.2008.00015.x .
  • [26] Bijwe J. Composites as friction materials: Recent develop-ments in non‐asbestos fiber reinforced friction materials—a review. Polymer composites. 1997;18(3):378-96. https://doi.org/10.1002/pc.10289
  • [27] Krenkel W, Heidenreich B, Renz R. C/C‐SiC composites for advanced friction systems. Advanced engineering materials. 2002;4(7):427-36. https://doi.org/10.1002/1527-2648(20020717)4:7<427::AID-ADEM427>3.0.CO;2-C .
  • [28] Eriksson M, Bergman F, Jacobson S. Surface characterisa-tion of brake pads after running under silent and squealing conditions. Wear. 1999;232(2):163-7. https://doi.org/10.1016/S0043-1648(99)00141-6 .
  • [29] Eriksson M, Jacobson S. Tribological surfaces of organic brake pads. Tribology International. 2000;33(12):817-27. https://doi.org/10.1016/S0301-679X(00)00127-4 .
  • [30] Österle W, Griepentrog M, Gross T, Urban I. Chemical and microstructural changes induced by friction and wear of brakes. Wear. 2001;251(1-12):1469-76. https://doi.org/10.1016/S0043-1648(01)00785-2 .
  • [31] Eriksson M, Bergman F, Jacobson S. On the nature of tribo-logical contact in automotive brakes. Wear. 2002;252(1–2):26-36. https://doi.org/10.1016/S0043-1648(01)00849-3 .
  • [32] Verma PC, Menapace L, Bonfanti A, Ciudin R, Gialanella S, Straffelini G. Braking pad-disc system: Wear mechanisms and formation of wear fragments. Wear. 2015;322–323:251-8. https://doi.org/10.1016/j.wear.2014.11.019 .
  • [33] Garg BD, Cadle SH, Mulawa PA, Groblicki PJ, Laroo C, Parr GA. Brake wear particulate matter emissions. Environmental Science & Technology. 2000;34(21):4463-9. https://doi.org/10.1021/es001108h .
  • [34] Xiao Y, Zhang Z, Yao P, Fan K, Zhou H, Gong T, Zhau L, Deng M. Mechanical and tribological behaviors of copper metal matrix composites for brake pads used in high-speed trains. Tribology International. 2018;119:585-92. https://doi.org/10.1016/j.triboint.2017.11.038 .
  • [35] Kukutschová J, Moravec P, Tomášek V, Matějka V, Smolík J, Schwarz J, Seidlerová J, Šafářová K, Filip P. On airborne nano/micro-sized wear particles released from low-metallic automotive brakes. Environmental Pollution. 2011;159(4):998-1006. https://doi.org/10.1016/j.envpol.2010.11.036 .
  • [36] Iijima A, Sato K, Yano K, Tago H, Kato M, Kimura H, Fu-ruta N. Particle size and composition distribution analysis of automotive brake abrasion dusts for the evaluation of anti-mony sources of airborne particulate matter. Atmospheric Environment. 2007;41(23):4908-19. https://doi.org/10.1016/j.atmosenv.2007.02.005 .
  • [37] Dong S, Gonzalez RO, Harrison RM, Green D, North R, Fowler G, Weiss D. Isotopic signatures suggest important contributions from recycled gasoline, road dust and non-exhaust traffic sources for copper, zinc and lead in PM10 in London, United Kingdom. Atmospheric Environment. 2017;165:88-98. https://doi.org/10.1016/j.atmosenv.2017.06.020 .
  • [38] Verma PC, Ciudin R, Bonfanti A, Aswath P, Straffelini G, Gialanella S. Role of the friction layer in the high-temperature pin-on-disc study of a brake material. Wear. 2016;346:56-65. https://doi.org/10.1016/j.wear.2015.11.004 .
  • [39] Kim SJ, Jang H. Friction Characteristics of Non-Asbestos Organic (NAO) and Low-Steel Friction Materials: The Com-parative Study. KSTLE International Journal. 2000;1(1):7.
  • [40] von Uexküll O, Skerfving S, Doyle R, Braungart M. Anti-mony in brake pads-a carcinogenic component? Journal of Cleaner Production. 2005;13(1):19-31. https://doi.org/doi.org/10.1016/j.jclepro.2003.10.008 .
  • [41] Uyyuru R, Surappa M, Brusethaug S. Tribological behavior of Al–Si–SiCp composites/automobile brake pad system un-der dry sliding conditions. Tribology international. 2007;40(2):365-73. https://doi.org/10.1016/j.triboint.2005.10.012 .
  • [42] Österle W, Urban I. Friction layers and friction films on PMC brake pads. Wear. 2004;257(1-2):215-26. https://doi.org/10.1016/j.wear.2003.12.017 .
  • [43] Xin X, Xu CG, Qing LF. Friction properties of sisal fibre reinforced resin brake composites. Wear. 2007;262(5–6):736-41. https://doi.org/10.1016/j.wear.2006.08.010 .
  • [44] Sandahl JF, Baldwin DH, Jenkins JJ, Scholz NL. A sensory system at the interface between urban stormwater runoff and salmon survival. Environmental science & technology. 2007;41(8):2998-3004. https://doi.org/10.1021/es062287r
  • [45] Visnic B. Europe’s dust buster. SAE International News; 2023,
  • [46] Amato F, Dimitropoulos A, Farrow K, Oueslati W. Non-exhaust Particulate Emissions from Road Transport. In: Agrawala S, editor. An Ignored Environmental Policy Chal-lenge, 2020.
Year 2024, , 404 - 418, 31.12.2024
https://doi.org/10.30939/ijastech..1528450

Abstract

References

  • [1] Karaçam Z. Systematic Review Methodology: A Guide for Preparation of Systematic Review. E-Journal of Dokuz Eylul University Nursing Faculty. 2013;6(1):26-33.
  • [2] Yılmaz K. Systematic Review, Meta Evaluation, and Biblio-metric Analysis in Social Sciences and Educational Sciences. MANAS Journal of Social Studies. 2021;10(2):1457-90. https://doi.org/https://doi.org/10.33206/mjss.791537 .
  • [3] Naseri MS, Malekzadeh R. Systematic Review: Is It Differ-ent From The Traditional Review. 2006, p. 196-9.
  • [4] Arshed N, Danson M. The literature review. Research meth-ods for business and management: a guide to writing your dissertation. 2015:31-49.
  • [5] Köroğlu SA. Notes on literature review and a review tech-nique. Naval Architecture and Ocean Sciences Journal (GİDB Dergi). 2015(01):61-9.
  • [6] Palmatier RW, Houston MB, Hulland J. Review articles: purpose, process, and structure. Springer; 2018, p. 1-5. https://doi.org/10.1007/s11747-017-0563-4 .
  • [7] Carrera-Rivera A, Ochoa-Agurto W, Larrinaga F, Lasa G. How-to conduct a systematic literature review: A quick guide for computer science research. MethodsX. 2022:101895. https://doi.org/10.1016/j.mex.2022.101895 .
  • [8] Petticrew M, Roberts H. Systematic reviews in the social sciences: A practical guide. John Wiley & Sons; 2008.
  • [9] MacKenzie H, Dewey A, Drahota A, Kilburn S, Kalra P, Fogg C, Zachariah D. Systematic reviews: what they are, why they are important, and how to get involved. Journal of Clinical and Preventive Cardiology. 2012;1(4):193-202.
  • [10] Thorpe A, Harrison RM. Sources and properties of non-exhaust particulate matter from road traffic: a review. Sci-ence of the total environment. 2008;400(1-3):270-82. https://doi.org/10.1016/j.scitotenv.2008.06.007 .
  • [11] Sijo M, Jayadevan K. Analysis of stir cast aluminium silicon carbide metal matrix composite: A comprehensive review. Procedia technology. 2016;24:379-85. https://doi.org/10.1016/j.protcy.2016.05.052 .
  • [12] Chan D, Stachowiak G. Review of automotive brake friction materials. Proceedings of the Institution of Mechanical Engi-neers, Part D: Journal of Automobile Engineering. 2004;218(9):953-66. https://doi.org/10.1243/0954407041856 .
  • [13] Akbulut F, Mutlu İ. Experimental Comparison of Manufac-turing Parameters in Automotive Friction Materials. Interna-tional Journal of Automotive Science And Technology. 2024;8(2):167-78. https://doi.org/10.30939/ijastech..1425382 .
  • [14] Akbulut F, Kılıç H, Mutlu İ, Öztürk FS, Çaşın E, Seyrek M, Karaköse A. Investigation of tribological properties of brake friction materials developed from industrial waste products. International Journal of Automotive Science and Technolo-gy. 2023;7(4):309-15. https://doi.org/10.30939/ijastech..1373026
  • [15] Akçay Ö. Structural optimization of the brake pedal using artificial intelligence. International Journal of Automotive Science and Technology. 2023;7(3):187-95. https://doi.org/10.30939/ijastech..1330096 .
  • [16] Cetin E, Seyitoglu SS. A bibliometric overview of research on auxetic structures: Trends and patterns. International Journal of Automotive Science and Technology. 2024;8(1):65-77. https://doi.org/10.30939/ijastech..1374313 .
  • [17] Abdullaev I, Lin N, Rashidov J. Electric Vehicles: Manu-script of a Bibliometric Analysis Unveiling Trends, Innova-tions and Future Pathways. International Journal of Automo-tive Science And Technology. 2024;8(2):212-24. https://doi.org/10.30939/ijastech..1424879 .
  • [18] Tahamtan I, Afshar AS, Ahamdzadeh K. Factors affecting number of citations: a comprehensive review of the litera-ture. Scientometrics. 2016;107:1195-225. https://doi.org/10.1007/s11192-016-1889-2 .
  • [19] Van Noorden R. The science that’s never been cited. Nature. 2017;552:162-4. https://doi.org/10.1038/d41586-017-08404-0 .
  • [20] Li SC. Mastering the craft: Creating an insightful and widely-cited literature review. World Journal of Stem Cells. 2023;15(8):781. https://doi.org/10.4252/wjsc.v15.i8.781 .
  • [21] Petersen AM, Wang F, Stanley HE. Methods for measuring the citations and productivity of scientists across time and discipline. Physical Review E. 2010;81(3):036114. https://doi.org/10.1103/PhysRevE.81.036114 .
  • [22] Lawani SM. Citation analysis and the quality of scientific productivity. BioScience. 1977;27(1):26-31. https://doi.org/10.2307/1297790 .
  • [23] Apeagyei E, Bank MS, Spengler JD. Distribution of heavy metals in road dust along an urban-rural gradient in Massa-chusetts. Atmospheric Environment. 2011;45(13):2310-23. https://doi.org/10.1016/j.atmosenv.2010.11.015 .
  • [24] Adamiec E, Jarosz-Krzemińska E, Wieszała R. Heavy metals from non-exhaust vehicle emissions in urban and motorway road dusts. Environmental monitoring and assessment. 2016;188:1-11. https://doi.org/10.1007/s10661-016-5377-1 .
  • [25] Schmidt M. The Sankey diagram in energy and material flow management: part II: methodology and current applications. Journal of industrial ecology. 2008;12(2):173-85. https://doi.org/10.1111/j.1530-9290.2008.00015.x .
  • [26] Bijwe J. Composites as friction materials: Recent develop-ments in non‐asbestos fiber reinforced friction materials—a review. Polymer composites. 1997;18(3):378-96. https://doi.org/10.1002/pc.10289
  • [27] Krenkel W, Heidenreich B, Renz R. C/C‐SiC composites for advanced friction systems. Advanced engineering materials. 2002;4(7):427-36. https://doi.org/10.1002/1527-2648(20020717)4:7<427::AID-ADEM427>3.0.CO;2-C .
  • [28] Eriksson M, Bergman F, Jacobson S. Surface characterisa-tion of brake pads after running under silent and squealing conditions. Wear. 1999;232(2):163-7. https://doi.org/10.1016/S0043-1648(99)00141-6 .
  • [29] Eriksson M, Jacobson S. Tribological surfaces of organic brake pads. Tribology International. 2000;33(12):817-27. https://doi.org/10.1016/S0301-679X(00)00127-4 .
  • [30] Österle W, Griepentrog M, Gross T, Urban I. Chemical and microstructural changes induced by friction and wear of brakes. Wear. 2001;251(1-12):1469-76. https://doi.org/10.1016/S0043-1648(01)00785-2 .
  • [31] Eriksson M, Bergman F, Jacobson S. On the nature of tribo-logical contact in automotive brakes. Wear. 2002;252(1–2):26-36. https://doi.org/10.1016/S0043-1648(01)00849-3 .
  • [32] Verma PC, Menapace L, Bonfanti A, Ciudin R, Gialanella S, Straffelini G. Braking pad-disc system: Wear mechanisms and formation of wear fragments. Wear. 2015;322–323:251-8. https://doi.org/10.1016/j.wear.2014.11.019 .
  • [33] Garg BD, Cadle SH, Mulawa PA, Groblicki PJ, Laroo C, Parr GA. Brake wear particulate matter emissions. Environmental Science & Technology. 2000;34(21):4463-9. https://doi.org/10.1021/es001108h .
  • [34] Xiao Y, Zhang Z, Yao P, Fan K, Zhou H, Gong T, Zhau L, Deng M. Mechanical and tribological behaviors of copper metal matrix composites for brake pads used in high-speed trains. Tribology International. 2018;119:585-92. https://doi.org/10.1016/j.triboint.2017.11.038 .
  • [35] Kukutschová J, Moravec P, Tomášek V, Matějka V, Smolík J, Schwarz J, Seidlerová J, Šafářová K, Filip P. On airborne nano/micro-sized wear particles released from low-metallic automotive brakes. Environmental Pollution. 2011;159(4):998-1006. https://doi.org/10.1016/j.envpol.2010.11.036 .
  • [36] Iijima A, Sato K, Yano K, Tago H, Kato M, Kimura H, Fu-ruta N. Particle size and composition distribution analysis of automotive brake abrasion dusts for the evaluation of anti-mony sources of airborne particulate matter. Atmospheric Environment. 2007;41(23):4908-19. https://doi.org/10.1016/j.atmosenv.2007.02.005 .
  • [37] Dong S, Gonzalez RO, Harrison RM, Green D, North R, Fowler G, Weiss D. Isotopic signatures suggest important contributions from recycled gasoline, road dust and non-exhaust traffic sources for copper, zinc and lead in PM10 in London, United Kingdom. Atmospheric Environment. 2017;165:88-98. https://doi.org/10.1016/j.atmosenv.2017.06.020 .
  • [38] Verma PC, Ciudin R, Bonfanti A, Aswath P, Straffelini G, Gialanella S. Role of the friction layer in the high-temperature pin-on-disc study of a brake material. Wear. 2016;346:56-65. https://doi.org/10.1016/j.wear.2015.11.004 .
  • [39] Kim SJ, Jang H. Friction Characteristics of Non-Asbestos Organic (NAO) and Low-Steel Friction Materials: The Com-parative Study. KSTLE International Journal. 2000;1(1):7.
  • [40] von Uexküll O, Skerfving S, Doyle R, Braungart M. Anti-mony in brake pads-a carcinogenic component? Journal of Cleaner Production. 2005;13(1):19-31. https://doi.org/doi.org/10.1016/j.jclepro.2003.10.008 .
  • [41] Uyyuru R, Surappa M, Brusethaug S. Tribological behavior of Al–Si–SiCp composites/automobile brake pad system un-der dry sliding conditions. Tribology international. 2007;40(2):365-73. https://doi.org/10.1016/j.triboint.2005.10.012 .
  • [42] Österle W, Urban I. Friction layers and friction films on PMC brake pads. Wear. 2004;257(1-2):215-26. https://doi.org/10.1016/j.wear.2003.12.017 .
  • [43] Xin X, Xu CG, Qing LF. Friction properties of sisal fibre reinforced resin brake composites. Wear. 2007;262(5–6):736-41. https://doi.org/10.1016/j.wear.2006.08.010 .
  • [44] Sandahl JF, Baldwin DH, Jenkins JJ, Scholz NL. A sensory system at the interface between urban stormwater runoff and salmon survival. Environmental science & technology. 2007;41(8):2998-3004. https://doi.org/10.1021/es062287r
  • [45] Visnic B. Europe’s dust buster. SAE International News; 2023,
  • [46] Amato F, Dimitropoulos A, Farrow K, Oueslati W. Non-exhaust Particulate Emissions from Road Transport. In: Agrawala S, editor. An Ignored Environmental Policy Chal-lenge, 2020.
There are 46 citations in total.

Details

Primary Language English
Subjects Automotive Engineering Materials
Journal Section Articles
Authors

Mahmut Ünaldı 0000-0003-2144-8085

Ayhan Uyaroğlu 0000-0001-7914-9665

Publication Date December 31, 2024
Submission Date August 5, 2024
Acceptance Date November 1, 2024
Published in Issue Year 2024

Cite

APA Ünaldı, M., & Uyaroğlu, A. (2024). A Systematic Review of Brake Pad. International Journal of Automotive Science And Technology, 8(4), 404-418. https://doi.org/10.30939/ijastech..1528450
AMA Ünaldı M, Uyaroğlu A. A Systematic Review of Brake Pad. IJASTECH. December 2024;8(4):404-418. doi:10.30939/ijastech.1528450
Chicago Ünaldı, Mahmut, and Ayhan Uyaroğlu. “A Systematic Review of Brake Pad”. International Journal of Automotive Science And Technology 8, no. 4 (December 2024): 404-18. https://doi.org/10.30939/ijastech. 1528450.
EndNote Ünaldı M, Uyaroğlu A (December 1, 2024) A Systematic Review of Brake Pad. International Journal of Automotive Science And Technology 8 4 404–418.
IEEE M. Ünaldı and A. Uyaroğlu, “A Systematic Review of Brake Pad”, IJASTECH, vol. 8, no. 4, pp. 404–418, 2024, doi: 10.30939/ijastech..1528450.
ISNAD Ünaldı, Mahmut - Uyaroğlu, Ayhan. “A Systematic Review of Brake Pad”. International Journal of Automotive Science And Technology 8/4 (December 2024), 404-418. https://doi.org/10.30939/ijastech. 1528450.
JAMA Ünaldı M, Uyaroğlu A. A Systematic Review of Brake Pad. IJASTECH. 2024;8:404–418.
MLA Ünaldı, Mahmut and Ayhan Uyaroğlu. “A Systematic Review of Brake Pad”. International Journal of Automotive Science And Technology, vol. 8, no. 4, 2024, pp. 404-18, doi:10.30939/ijastech. 1528450.
Vancouver Ünaldı M, Uyaroğlu A. A Systematic Review of Brake Pad. IJASTECH. 2024;8(4):404-18.


International Journal of Automotive Science and Technology (IJASTECH) is published by Society of Automotive Engineers Turkey

by.png