Research Article
BibTex RIS Cite

Year 2025, Volume: 9 Issue: 2, 269 - 275, 30.06.2025
https://doi.org/10.30939/ijastech..1674906

Abstract

References

  • [1] Uygur I, Cicek A, Toklu E, KaraR, Saridemir S. Fatigue life predictions of metal matrix composites using artificial neural networks. Arch. Metall. Mater. 2014:59(1):97-103. https://doi.org/10.2478/amm-2014-0016
  • [2] Uygur I. Tensile behaviour of P/M processed (Al-Cu-Mg-Mn) / SiCp composites. Iranian J.Science & Techn. 2004:B28(B2): 239-48.
  • [3] Uygur I, Evans WJ, Bache M, ve Gulenc B. Fatigue behaviour of SiCp reinforced 2124 Aluminium matrix composites. Metallofiz. Nove. Tekhnol. 2004:26 (7): 927-39 .
  • [4] Uygur I. Notch behavior and fatigue life predictions of dis-continuously reinforced MMCs. Arch. Metall. Mater. 2011:56(1):109-115. https://doi.org/10.2478/v10172-011-0012-1
  • [5] Uygur I. Influence of Particle Sizes and Volume Fractions on Fatigue Crack Growth Rates of Aerospace Al-Alloys Compo-sites. Arch. Metall. Mater. 2024:69(1):337-41. https://doi.org/10.24425/amm.2024.147827
  • [6] Uygur I, Gerengi H. Investigation of Corrosion Fatigue Crack Growth in Aluminium Alloy-Based Metal Matrix Composites: A Comparative Study. Duzce University J. Sci. and Tech. 2025:13 (1):372-82. https://doi.org/10.29130/dubited.1562991
  • [7] Uygur I. Comparison of fatigue crack growth rates for particu-late reinforcement composite and base alloy. In Properties of Materials, Edt, I.Uygur, Bıdge Pub, Ankara, Türkiye, 2023: pp. 77-87.
  • [8] Ravishankar B, Nayak SK, Kader MA. Hybrid composites for automotive applications – A review. J Reinf Plast Compos. 2019;38(18):835–45. http://dx.doi.org/10.1177/0731684419849708
  • [9] Kartik Shubham S, Pandey A, Purohit R. Development and characterization of biodegradable hybrid fiber-reinforced sandwich composites using hand lay-up and compression molding technique. J Mater Eng Perform. 2025. http://dx.doi.org/10.1007/s11665-025-10742-4
  • [10] Agma O, Basturk S. Synthetic, hybrid and natural composite fabrication processes. In: Structural Integrity and Monitoring for Composite Materials. Singapore: Springer Nature Singa-pore; 2023. p. 115–37. https://doi.org/10.1007/978-981-19-6282-0_7
  • [11] Velmurugan S, Janakiraman T, Nandhini S, Ganesha Rathi-nam M. Exploring the mechanical and morphological charac-teristics of hybrid-reinforced polymer composites. In: SAE Technical Paper Series. 400 Commonwealth Drive, Warren-dale, PA, United States: SAE International; 2024. https://doi.org/10.4271/2023-01-5181
  • [12] Pandian A, Kaliappan S, Natrayan L, Reddy V. Analyzing the moisture and chemical retention behavior of flax fiber–ceramic hybrid composites for automotive underbody shields. In: SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International; 2024. https://doi.org/10.4271/2024-01-5006
  • [13] Kaliappan S, Natrayan L, Mohammed Ali H, Kumar P. Ther-mal and mechanical properties of <italic>Abutilon indi-cum</italic> fiber-based polyester composites under alkali treatment for automotive sector. In: SAE Technical Paper Se-ries. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International; 2024. https://doi.org/10.4271/2024-01-5031
  • [14] Malkapuram D. Development of hybrid natural fiber rein-forced composite material for automotive applications. In: SAE Technical Paper Series. 400 Commonwealth Drive, War-rendale, PA, United States: SAE International; 2023. https://doi.org/10.4271/2023-28-0131
  • [15] Krishnaraj, Sambandha T, Arun, Vaitheeswaran. Fabrication and wear characteristics basalt fiber reinforced polypropylene matrix composites. In: SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International; 2019. https://doi.org/10.4271/2019-28-2570
  • [16] Ramírez-Herrera CA, Tellez-Cruz MM, Pérez-González J, Solorza-Feria O, Flores-Vela A, Cabañas-Moreno JG. En-hanced mechanical properties and corrosion behavior of pol-ypropylene/multi-walled carbon nanotubes/carbon nanofibers nanocomposites for application in bipolar plates of proton ex-change membrane fuel cells. Int J Hydrogen Energy. 2021;46(51):26110–25. http://dx.doi.org/10.1016/j.ijhydene.2021.04.125
  • [17] Kaya N, Demiç Ş, Karaman M. Fabrication of carbon fi-ber/silicon carbide hybride polypropylene composites as thermal interface material. Polym Sci Ser A. 2025; http://dx.doi.org/10.1134/s0965545x2460128x
  • [18] Rana S, Hasan M, Sheikh MRK, Faruqui AN. Mechanical and morphological properties of high density polyethylene-Al-SiC hybrid composites. Adv Mater Process Technol. 2022;8(1):1135–46. http://dx.doi.org/10.1080/2374068x.2020.1853497
  • [19] Hayajneh MT, AL-Oqla FM, Al-Shrida MM. Hybrid green organic/inorganic filler polypropylene composites: Morpho-logical study and mechanical performance investigations. E-polymers. 2021;21(1):710–21. http://dx.doi.org/10.1515/epoly-2021-0074
  • [20] Bhudolia SK, Gohel G, Subramanyam ESB, Leong KF, Gerard P. Enhanced impact energy absorption and failure characteris-tics of novel fully thermoplastic and hybrid composite bicycle helmet shells. Mater Des. 2021;209(110003):110003. http://dx.doi.org/10.1016/j.matdes.2021.110003
  • [21] Ajorloo M, Ghodrat M, Kang W-H. Incorporation of recycled polypropylene and fly ash in polypropylene-based composites for automotive applications. J Polym Environ. 2021;29(4):1298–309. http://dx.doi.org/10.1007/s10924-020-01961-y
  • [22] Ali NH, Shihab SK, Mohamed MT. Mechanical and physical characteristics of hybrid particles/fibers-polymer composites: A review. Mater Today. 2022;62:178–83. http://dx.doi.org/10.1016/j.matpr.2022.02.614
  • [23] Aruna M, Devanathan C, Chandramohan P, Manivannan S, Kumar MV, Kumar A, et al. Exposure of glass fiber on behav-iour of epoxy/flax fiber hybrid composite made through injec-tion mould route. J Inst Eng (India) Ser D. 2024; http://dx.doi.org/10.1007/s40033-024-00779-5
  • [24] Hangargi S, Swamy A, Raj RG, Aruna M, Venkatesh R, Madhu S, et al. Enhancement of Kevlar fiber-polypropylene composite by the inclusions of cotton stalk and granite particle: characteristics study. Biomass Convers Biorefin. 2024;14(23):30305–14. http://dx.doi.org/10.1007/s13399-023-04817-2
  • [25] Satish Kumar D, Sathish T, Mavinkere Rangappa S, Boonyasopon P, Siengchin S. Mechanical property analysis of nanocarbon particles/glass fiber reinforced hybrid epoxy composites using RSM. Compos Commun. 2022;32(101147):101147. http://dx.doi.org/10.1016/j.coco.2022.101147
  • [26] Das AD, Kamatchi RM, Kaliyaperumal G, Ajin M, Shanmu-gam R. Synthesis and functional behavior of sisal fiber-incorporated epoxy hybrid nanocomposite enriched by nano-SiC. J Inst Eng (India) Ser D. 2024; http://dx.doi.org/10.1007/s40033-024-00683-y
  • [27] Jagadeesh P, Puttegowda M, Boonyasopon P, Rangappa SM, Khan A, Siengchin S. Recent developments and challenges in natural fiber composites: A review. Poly. Composites. 2022:43(5):2545-61. https://doi.org/10.1002/pc.26619
  • [28] Dundar M, Ficici F, Ozen F, Unal H. Investigation of the De-lamination Factor of Glass Sphere and Silicon Particle Rein-forced (GS-SCR) Hybrid Composite Material. in Proceedings of the 6th International Congress & Exhibition on Advances in Applied Physics and Materials Science (APMAS 2016), 2017:131(3) 595–97. https://doi.org/10.12693/APhysPolA.131.595
  • [29] Venkatesh R. Influences of silicon carbide on mechanical performance of polypropylene/hemp fiber composite for au-tomotive applications. Interactions. 2025:246:26. https://doi.org/10.1007/s10751-025-02251-6
  • [30] Iskakov, RM, Bukanova, AS, Obidin IM, Kuzin MS, Skvort-sov IY. Eco-fricendly polypropylene composites reinforced with cellulose fibers and silica nanoparticles. Polymer. 2025:17(10):1290. https://doi.org/10.3390/polym17101290
  • [31] Tahir D, Karim MRA, Hu H. Analysis of mechanical and wa-ter absorption properties of hybrid composites reinforced with micron-size bamboo fibers and ceramic particles. Int. Polym. Proc. 2024:39(1):115-124. https://doi.org/10.1515/ipp-2023-4374

Nano Silicon Carbide Content on Functional Behaviour of Polypropylene Composites Featured With Basalt Fiber for Automotive Material

Year 2025, Volume: 9 Issue: 2, 269 - 275, 30.06.2025
https://doi.org/10.30939/ijastech..1674906

Abstract

Polypropylene (PP) is commonly used for lightweight automotive cabinetry and panel applications due to its unique properties, including low density, chemical resistance, improved fatigue resistance, and good thermal insulation. However, the PP matrix typically exhibits lower strength and impact toughness. This research aims to enhance the mechanical properties of PP composites by incorporating 20 weight percent (wt%) of basalt fiber (3-5 mm) along with varying wt% of silicon carbide (SiC) nanoparticles, using the hot compression molding technique. To improve adhesive strength, an epoxy coupling agent is used, and a compression load of 100 MPa is applied. The effectiveness of the composite processing, the fiber-ceramic combination in surface morphology, and the effects of SiC nanoparticles on stress-strain behavior, impact strength, and microhardness of both pure PP and the PP/20 wt% basalt fiber composites are evaluated. The results are compared with the properties of the unreinforced PP matrix. Transmission electron microscope (TEM) analysis revealed a uniform distribution of fibers and ceramics with minimal spacing between the fibers, contributing to the enhanced mechanical properties of the composite. Notably, the PP composite with 20 wt% basalt fiber and 5 wt% silicon carbide demonstrated a tensile strength of 48 MPa, with a slight decrease in strain percentage to 10.5% due to the increased SiC content. It also exhibited a high impact toughness of 24 kJ/m² and improved microhardness of 39 HV. This PP/20 wt% chopped basalt fiber/5 wt% silicon carbide nanoparticle hybrid nanocomposite shows great potential for automotive cabinetry and panel applications.

References

  • [1] Uygur I, Cicek A, Toklu E, KaraR, Saridemir S. Fatigue life predictions of metal matrix composites using artificial neural networks. Arch. Metall. Mater. 2014:59(1):97-103. https://doi.org/10.2478/amm-2014-0016
  • [2] Uygur I. Tensile behaviour of P/M processed (Al-Cu-Mg-Mn) / SiCp composites. Iranian J.Science & Techn. 2004:B28(B2): 239-48.
  • [3] Uygur I, Evans WJ, Bache M, ve Gulenc B. Fatigue behaviour of SiCp reinforced 2124 Aluminium matrix composites. Metallofiz. Nove. Tekhnol. 2004:26 (7): 927-39 .
  • [4] Uygur I. Notch behavior and fatigue life predictions of dis-continuously reinforced MMCs. Arch. Metall. Mater. 2011:56(1):109-115. https://doi.org/10.2478/v10172-011-0012-1
  • [5] Uygur I. Influence of Particle Sizes and Volume Fractions on Fatigue Crack Growth Rates of Aerospace Al-Alloys Compo-sites. Arch. Metall. Mater. 2024:69(1):337-41. https://doi.org/10.24425/amm.2024.147827
  • [6] Uygur I, Gerengi H. Investigation of Corrosion Fatigue Crack Growth in Aluminium Alloy-Based Metal Matrix Composites: A Comparative Study. Duzce University J. Sci. and Tech. 2025:13 (1):372-82. https://doi.org/10.29130/dubited.1562991
  • [7] Uygur I. Comparison of fatigue crack growth rates for particu-late reinforcement composite and base alloy. In Properties of Materials, Edt, I.Uygur, Bıdge Pub, Ankara, Türkiye, 2023: pp. 77-87.
  • [8] Ravishankar B, Nayak SK, Kader MA. Hybrid composites for automotive applications – A review. J Reinf Plast Compos. 2019;38(18):835–45. http://dx.doi.org/10.1177/0731684419849708
  • [9] Kartik Shubham S, Pandey A, Purohit R. Development and characterization of biodegradable hybrid fiber-reinforced sandwich composites using hand lay-up and compression molding technique. J Mater Eng Perform. 2025. http://dx.doi.org/10.1007/s11665-025-10742-4
  • [10] Agma O, Basturk S. Synthetic, hybrid and natural composite fabrication processes. In: Structural Integrity and Monitoring for Composite Materials. Singapore: Springer Nature Singa-pore; 2023. p. 115–37. https://doi.org/10.1007/978-981-19-6282-0_7
  • [11] Velmurugan S, Janakiraman T, Nandhini S, Ganesha Rathi-nam M. Exploring the mechanical and morphological charac-teristics of hybrid-reinforced polymer composites. In: SAE Technical Paper Series. 400 Commonwealth Drive, Warren-dale, PA, United States: SAE International; 2024. https://doi.org/10.4271/2023-01-5181
  • [12] Pandian A, Kaliappan S, Natrayan L, Reddy V. Analyzing the moisture and chemical retention behavior of flax fiber–ceramic hybrid composites for automotive underbody shields. In: SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International; 2024. https://doi.org/10.4271/2024-01-5006
  • [13] Kaliappan S, Natrayan L, Mohammed Ali H, Kumar P. Ther-mal and mechanical properties of <italic>Abutilon indi-cum</italic> fiber-based polyester composites under alkali treatment for automotive sector. In: SAE Technical Paper Se-ries. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International; 2024. https://doi.org/10.4271/2024-01-5031
  • [14] Malkapuram D. Development of hybrid natural fiber rein-forced composite material for automotive applications. In: SAE Technical Paper Series. 400 Commonwealth Drive, War-rendale, PA, United States: SAE International; 2023. https://doi.org/10.4271/2023-28-0131
  • [15] Krishnaraj, Sambandha T, Arun, Vaitheeswaran. Fabrication and wear characteristics basalt fiber reinforced polypropylene matrix composites. In: SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International; 2019. https://doi.org/10.4271/2019-28-2570
  • [16] Ramírez-Herrera CA, Tellez-Cruz MM, Pérez-González J, Solorza-Feria O, Flores-Vela A, Cabañas-Moreno JG. En-hanced mechanical properties and corrosion behavior of pol-ypropylene/multi-walled carbon nanotubes/carbon nanofibers nanocomposites for application in bipolar plates of proton ex-change membrane fuel cells. Int J Hydrogen Energy. 2021;46(51):26110–25. http://dx.doi.org/10.1016/j.ijhydene.2021.04.125
  • [17] Kaya N, Demiç Ş, Karaman M. Fabrication of carbon fi-ber/silicon carbide hybride polypropylene composites as thermal interface material. Polym Sci Ser A. 2025; http://dx.doi.org/10.1134/s0965545x2460128x
  • [18] Rana S, Hasan M, Sheikh MRK, Faruqui AN. Mechanical and morphological properties of high density polyethylene-Al-SiC hybrid composites. Adv Mater Process Technol. 2022;8(1):1135–46. http://dx.doi.org/10.1080/2374068x.2020.1853497
  • [19] Hayajneh MT, AL-Oqla FM, Al-Shrida MM. Hybrid green organic/inorganic filler polypropylene composites: Morpho-logical study and mechanical performance investigations. E-polymers. 2021;21(1):710–21. http://dx.doi.org/10.1515/epoly-2021-0074
  • [20] Bhudolia SK, Gohel G, Subramanyam ESB, Leong KF, Gerard P. Enhanced impact energy absorption and failure characteris-tics of novel fully thermoplastic and hybrid composite bicycle helmet shells. Mater Des. 2021;209(110003):110003. http://dx.doi.org/10.1016/j.matdes.2021.110003
  • [21] Ajorloo M, Ghodrat M, Kang W-H. Incorporation of recycled polypropylene and fly ash in polypropylene-based composites for automotive applications. J Polym Environ. 2021;29(4):1298–309. http://dx.doi.org/10.1007/s10924-020-01961-y
  • [22] Ali NH, Shihab SK, Mohamed MT. Mechanical and physical characteristics of hybrid particles/fibers-polymer composites: A review. Mater Today. 2022;62:178–83. http://dx.doi.org/10.1016/j.matpr.2022.02.614
  • [23] Aruna M, Devanathan C, Chandramohan P, Manivannan S, Kumar MV, Kumar A, et al. Exposure of glass fiber on behav-iour of epoxy/flax fiber hybrid composite made through injec-tion mould route. J Inst Eng (India) Ser D. 2024; http://dx.doi.org/10.1007/s40033-024-00779-5
  • [24] Hangargi S, Swamy A, Raj RG, Aruna M, Venkatesh R, Madhu S, et al. Enhancement of Kevlar fiber-polypropylene composite by the inclusions of cotton stalk and granite particle: characteristics study. Biomass Convers Biorefin. 2024;14(23):30305–14. http://dx.doi.org/10.1007/s13399-023-04817-2
  • [25] Satish Kumar D, Sathish T, Mavinkere Rangappa S, Boonyasopon P, Siengchin S. Mechanical property analysis of nanocarbon particles/glass fiber reinforced hybrid epoxy composites using RSM. Compos Commun. 2022;32(101147):101147. http://dx.doi.org/10.1016/j.coco.2022.101147
  • [26] Das AD, Kamatchi RM, Kaliyaperumal G, Ajin M, Shanmu-gam R. Synthesis and functional behavior of sisal fiber-incorporated epoxy hybrid nanocomposite enriched by nano-SiC. J Inst Eng (India) Ser D. 2024; http://dx.doi.org/10.1007/s40033-024-00683-y
  • [27] Jagadeesh P, Puttegowda M, Boonyasopon P, Rangappa SM, Khan A, Siengchin S. Recent developments and challenges in natural fiber composites: A review. Poly. Composites. 2022:43(5):2545-61. https://doi.org/10.1002/pc.26619
  • [28] Dundar M, Ficici F, Ozen F, Unal H. Investigation of the De-lamination Factor of Glass Sphere and Silicon Particle Rein-forced (GS-SCR) Hybrid Composite Material. in Proceedings of the 6th International Congress & Exhibition on Advances in Applied Physics and Materials Science (APMAS 2016), 2017:131(3) 595–97. https://doi.org/10.12693/APhysPolA.131.595
  • [29] Venkatesh R. Influences of silicon carbide on mechanical performance of polypropylene/hemp fiber composite for au-tomotive applications. Interactions. 2025:246:26. https://doi.org/10.1007/s10751-025-02251-6
  • [30] Iskakov, RM, Bukanova, AS, Obidin IM, Kuzin MS, Skvort-sov IY. Eco-fricendly polypropylene composites reinforced with cellulose fibers and silica nanoparticles. Polymer. 2025:17(10):1290. https://doi.org/10.3390/polym17101290
  • [31] Tahir D, Karim MRA, Hu H. Analysis of mechanical and wa-ter absorption properties of hybrid composites reinforced with micron-size bamboo fibers and ceramic particles. Int. Polym. Proc. 2024:39(1):115-124. https://doi.org/10.1515/ipp-2023-4374
There are 31 citations in total.

Details

Primary Language English
Subjects Materials Engineering (Other), Automotive Engineering Materials
Journal Section Research Article
Authors

Vaitheeswaran T 0009-0008-3793-4540

Jayakumar J This is me 0009-0007-5615-5123

Periasamy P This is me 0009-0002-5143-3474

Anandan R This is me 0009-0008-7219-4824

Ranjth R This is me 0009-0009-2167-5051

Nageswaran M This is me 0009-0005-7082-8676

Submission Date April 13, 2025
Acceptance Date June 16, 2025
Publication Date June 30, 2025
Published in Issue Year 2025 Volume: 9 Issue: 2

Cite

Vancouver T V, J J, P P, R A, R R, M N. Nano Silicon Carbide Content on Functional Behaviour of Polypropylene Composites Featured With Basalt Fiber for Automotive Material. IJASTECH. 2025;9(2):269-75.


International Journal of Automotive Science and Technology (IJASTECH) is published by Society of Automotive Engineers Turkey

by.png