Review
BibTex RIS Cite

Hybrid Energy System Based Electric Vehicle Charging Station: A Techno-Economic Review

Year 2025, Volume: 9 Issue: 4, 547 - 559, 31.12.2025
https://doi.org/10.30939/ijastech..1743934

Abstract

The adoption of electric vehicles (EVs) has globally replaced traditional vehicles. Hence, the demand for charging station (CS) infrastructure has also increased. This increased energy demand put a burden on the electric grid. Hence, it is expected that the upcoming CSs should be economical, reliable, and eco-friendly. Therefore, it is of utmost importance to use alternative renewable energy sources (RES) for EV charging. This paper presents an in-depth review of hybrid energy systems (HES)-based electric vehicle charging station (EVCS). The HES is a combination of RES and energy storage systems (ESS) with a grid to fulfil the EV charging demand. The paper is structured according to the capabilities of HES-based EVCS to reduce energy costs, power quality issues, and grid dependency, as well as increase revenue generation. Optimal use of HES with effective scheduling of EVs makes it possible to achieve both technical and economic benefits. The paper categorizes EV charging methods, examines possible HES combinations with their merits/demerits, and analyzes them from the technical and economic points of view. This review highlights scheduling and charging techniques, along with the literature gap and challenges. The paper summarizes the opportunities to develop an intelligent, resilient HES-based EVCSs as a sustainable charging infrastructure.

Ethical Statement

It is confirmed that this is original work and not submitted to any journal.

References

  • [1] Güven A. F., Ateş N., Alotaibi S., Alzahrani T., Amsal A. M., Elsayed S. K. Sustainable hybrid systems for electric vehicle charging infrastructures in regional applications. Scientific Reports. 2025;15(1):4199. https://doi.org/10.1038/s41598-025-87985-7
  • [2] Aggarwal S., Singh A. K. Electric vehicles the future of transpor-tation sector: a review. Energy Sources, Part A: Recovery, Utiliza-tion, and Environmental Effects. 2021;47(1):11126–11146. https://doi.org/10.1080/15567036.2021.1976322
  • [3] Zhang M., Gai D., Ma S., Liu C., Liu G., Wang J., Ming X. Op-timized control of hybrid energy storage systems for microgrids. J Phys: Conf Ser. 2024;2846(1):012033. https://doi.org/10.1088/1742-6596/2846/1/012033
  • [4] Paredes Á., Aguado J. A., Rodríguez P. Uncertainty-aware trad-ing of congestion and imbalance mitigation services for multi-DSO local flexibility markets. IEEE Trans Sustain Energy. 2023;14(4):2133–2146. https://doi.org/10.1109/TSTE.2023.3257405
  • [5] Rana M. M., Alam S. M., Rafi F. A., Deb S. B., Agili B., He M., Ali M. H. Comprehensive Review on the Charging Technologies of Electric Vehicles (EV) and Their Impact on Power Grid. IEEE Access. 2025. https://doi.org/10.1109/ACCESS.2025.3538663
  • [6] Yousuf A. K. M., Wang Z., Paranjape R., Tang Y. An in-depth exploration of electric vehicle charging station infrastructure: A comprehensive review of challenges, mitigation approaches, and optimization strategies. IEEE Access. 2024. https://doi.org/10.1109/ACCESS.2024.3385731
  • [7] Bhatti A. R., Tamoor M., Liaqat R., Rasool A., Salam Z., Ali A., Sherefa A. Electric vehicle charging stations and the employed en-ergy management schemes: a classification based comparative survey. Discover Appl Sci. 2024;6(10):503. https://doi.org/10.1007/s42452-024-06190-9
  • [8] Jamadar N, Jamadar S. Comparative Analysis of Multi-Objective and Multi-Verse Optimization for Energy Management in Electric Vehicles. IJASTECH. 2025;9(3):397-408. https://doi.org/10.30939/ijastech..1711318
  • [9] Iheanetu K. J. Solar photovoltaic power forecasting: A review. Sustainability. 2022;14(24):17005. https://doi.org/10.3390/su142417005
  • [10] Amir M., Zaheeruddin, Haque A., Bakhsh F. I., Kurukuru V. B., Sedighizadeh M. Intelligent energy management scheme‐based coordinated control for reducing peak load in grid connected pho-tovoltaic‐powered electric vehicle charging stations. IET Gener-Transm Distrib. 2024;18(6):1205–1222. https://doi.org/10.1049/gtd2.12772
  • [11] Yadav K., Singh M. A novel energy management of public charg-ing stations using attention based deep learning model. Electr Power Syst Res. 2025;238:111090. https://doi.org/10.1016/j.epsr.2024.111090
  • [12] Demirci, O. K. (2025). Integrated Emission and Cost Analysis of Battery-Electric Vehicles up to 2035. Engineering Perspective, 5(3), 111-122. https://doi.org/10.64808/engineeringperspective.1753723
  • [13] Acharige S. S., Haque M. E., Arif M. T., Hosseinzadeh N., Ha-san K. N., Oo A. M. T. Review of electric vehicle charging tech-nologies, standards, architectures, and converter configurations. IEEE Access. 2023;11:41218–41255. https://doi.org/10.1109/ACCESS.2023.3267164
  • [14] Triviño A., Gonzalez-Gonzalez J. M., Castilla M. Review on control techniques for EV bidirectional wireless chargers. Elec-tronics. 2021;10(16):1905. https://doi.org/10.3390/electronics10161905
  • [15] Mahesh A., Chokkalingam B., Mihet-Popa L. Inductive wireless power transfer charging for electric vehicles–a review. IEEE Ac-cess. 2021;9:137667–137713. https://doi.org/10.1109/ACCESS.2021.3116678
  • [16] Kumbhar S. S., Kalkhambkar V. N., Bhakar R. Optimal Location and Sizing of Coordinated Battery Swapping and Charging Sta-tion in Power and Road Transportation Networks. Energy Stor-age. 2025;7:e70186. https://doi.org/10.1002/est2.70186
  • [17] Revankar S. R., Kalkhambkar V. N. Grid integration of battery swapping station: A review. J Energy Storage. 2021;41:102937. https://doi.org/10.1016/j.est.2021.102937
  • [18] Feng Y., Lu X. Construction planning and operation of battery swapping stations for electric vehicles: a literature review. Ener-gies. 2021;14(24):8202. https://doi.org/10.3390/en14248202
  • [19] Alkawsi G., Baashar Y., Abbas U D., Alkahtani A. A., Tiong S. K. Review of renewable energy-based charging infrastructure for electric vehicles. Applied Sciences. 2021;11(9):3847. https://doi.org/10.3390/app11093847
  • [20] Li C., Zhang L., Ou Z., Wang Q., Zhou D., Ma J. Robust model of electric vehicle charging station location considering renewable energy and storage equipment. Energy. 2022;238:121713. https://doi.org/10.1016/j.energy.2021.121713
  • [21] Noman F., Alkahtani A. A., Agelidis V., Tiong K. S., Alkawsi G., Ekanayake J. Wind-energy-powered electric vehicle charging sta-tions: Resource availability data analysis. Applied Sciences. 2020;10(16):5654. https://doi.org/10.3390/app10165654
  • [22] Kumari N., Awati J. S., Gupta P. P., Kalkhambkar V. Operation Strategies of Electric Vehicle Charging Stations with Wind Power Generation. In: 2023 IEEE 3rd International Conference on Sus-tainable Energy and Future Electric Transportation (SEFET). IEEE; 2023. p. 1–6. https://doi.org/10.1109/SeFeT57834.2023.10245945
  • [23] Nikkhah M. H., Lotfi H., Samadi M., Hajiabadi M. E. Optimal allocation of transmission fixed costs to electric vehicle charging stations and wind farms using an analytical method and structural decomposition. Sustainable Energy, Grids and Networks. 2023;34:101061. https://doi.org/10.1016/j.segan.2023.101061
  • [24] Asgharzadeh F., Tabar V. S., Ghassemzadeh S. Stochastic bi-level allocation of electric vehicle charging stations in the presence of wind turbines, crypto-currency loads and demand side man-agement. Electr Power Syst Res. 2023;220:109383. https://doi.org/10.1016/j.epsr.2023.109383
  • [25] Tamoor M., Bhatti A. R., Hussain M. I., Miran S., Kiren T., Ali A., Lee G. H. Optimal sizing and technical assessment of a hybrid renewable energy solution for off-grid community center power. Front Energy Res. 2023;11:1283586. https://doi.org/10.3389/fenrg.2023.1283586
  • [26] Pocha C. K. R., Chia W. Y., Kurniawan T. A., Khoo K. S., Chew K. W. Thermochemical conversion of different biomass feed-stocks into hydrogen for power plant electricity generation. Fuel. 2023;340:127472. https://doi.org/10.1016/j.fuel.2023.127472
  • [27] Habib S., Jia Y., Tamoor M., Zaka M. A., Shi M., Dong Q. Modeling, simulation, and experimental analysis of a photovoltaic and biogas hybrid renewable energy system for electrification of rural community. Energy Technol. 2023;11(10):2300474. https://doi.org/10.1002/ente.202300474
  • [28] Karmaker A. K., Hossain M. A., Manoj Kumar N., Jagadeesan V., Jayakumar A., Ray B. Analysis of using biogas resources for electric vehicle charging in Bangladesh: A techno-economic-environmental perspective. Sustainability. 2020;12(7):2579. https://doi.org/10.3390/su12072579
  • [29] Nishanthy J., Raja S. C., Nesamalar J. J. D. Feasibility analysis of solar PV system in presence of EV charging with transactive en-ergy management for a community-based residential system. En-ergy Convers Manag. 2023;288:117125. https://doi.org/10.1016/j.enconman.2023.117125
  • [30] Erdemir D., Dincer I. Development of solar-driven charging sta-tion integrated with hydrogen as an energy storage option. Energy Convers Manag. 2022;257:115436. https://doi.org/10.1016/j.enconman.2022.115436
  • [31] Vural AM, Eren A. Design and Analysis of a Bidirectional TNPC Converter-Cased Electric Vehicle Charging Station with Photo-voltaic Support. IJASTECH. 2025;9(3):382-96. https://doi.org/10.30939/ijastech..1638589
  • [32] Ghenai C., Ahmad F. F., Rejeb O. Artificial neural network-based models for short term forecasting of solar PV power output and battery state of charge of solar electric vehicle charging station. Case Stud Therm Eng. 2024;61:105152. https://doi.org/10.1016/j.csite.2024.105152
  • [33] Zhu Z., Wang Y., Yuan M., Zhang R., Chen Y., Lou G., Sun Y. Energy saving and carbon reduction schemes for families with the household PV-BES-EV system. Energy Buildings. 2023 ; 288: 113007. https://doi.org/10.1016/j.enbuild.2023.113007
  • [34] Gupta P. P., Kalkhambkar V., Kumari N., Awati J. S., Sharma H. Optimal Scheduling of EV Charging Station with Renewable Generation Considering Line Outages and Network Losses. IEEE Trans Ind Appl. 2025. https://doi.org/10.1109/TIA.2025.3545018
  • [35] Gupta P. P., Kalkhambkar V., Sharma K. C., Bhui P. Hydrogen energy storage train scheduling with renewable generation and demand response. J Energy Storage. 2025;115:115905. https://doi.org/10.1016/j.est.2025.115905
  • [36] Bayzou, R., Soloy, A., Bartoli, T., Haıdar, F. (2025). Thermal Model of Lithium-Ion Batteries for Hybrid Electric Vehicles. En-gineering Perspective, 5(2), 60-67. https://doi.org/10.29228/eng.pers.76492
  • [37] Amry Y., Elbouchikhi E., Le Gall F., Ghogho M., El Hani S. Optimal sizing and energy management strategy for EV work-place charging station considering PV and flywheel energy stor-age system. J Energy Storage. 2023;62:106937. https://doi.org/10.1016/j.est.2023.106937
  • [38] Singh S., Chauhan P., Singh N. J. Feasibility of grid-connected solar-wind hybrid system with electric vehicle charging station. J Mod Power Syst Clean Energy. 2020;9(2):295–306. https://doi.org/10.35833/MPCE.2019.000081
  • [39] Roslan M. F., et al. Techno-economic impact analysis for renewa-ble energy-based hydrogen storage integrated grid electric vehicle charging stations in different potential locations of Malaysia. En-ergy Strategy Rev. 2024; 54: 101478. https://doi.org/10.1016/j.esr.2024.101478
  • [40] Nirbheram, Joshi S., Mahesh A., Bhimaraju A. Feasibility study of a PV-grid-assisted charging station for electric and hydrogen fuel cell vehicles under uncertain arrivals. Energy. 2025;322:135449. https://doi.org/10.1016/j.energy.2025.135449
  • [41] Wu Y., Zhang J., Ravey A., Chrenko D., Miraoui A. Real-time energy management of photovoltaic-assisted electric vehicle charging station by markov decision process. J Power Sources. 2020;476:228504.https://doi.org/10.1016/j.jpowsour.2020.228504
  • [42] Rani G. A., Priya P. L., Jayan J., Satheesh R., Kolhe M. L. Data Driven Energy Management of an Electric Vehicle Charging Sta-tion using Deep Reinforcement Learning. IEEE Access. 2024. https://doi.org/10.1109/ACCESS.2024.3398059
  • [43] González-Rivera E., García-Triviño P., Sarrias-Mena R., Tor-reglosa J. P., Jurado F., Fernández Ramírez L. M. Model predic-tive control-based optimized operation of a hybrid charging station for electric vehicles. IEEE Access. 2021;9:115766–115776. https://doi.org/10.1109/ACCESS.2021.3106145
  • [44] Jaman S., Verbrugge B., Zhaksylyk A., Geury T., El Baghdadi M., Hegazy O. Development of smart charging scheduling and power management strategy of a PV-ESS based scalable EV charging station. Transp Res Procedia. 2023;72:1240–1247. https://doi.org/10.1016/j.trpro.2023.11.583
  • [45] Cai T., Li X., Wang Y., Zhang Y., Ye Z., He Q., Hung P. C. TEMP: Cost Aware Two Stage Energy Management for Electri-cal Vehicles Empowered by Blockchain. IEEE Internet of Things Journal. 2024;11(23):38246–38261. https://doi.org/10.1109/JIOT.2024.3445601
  • [46] Choudhary D., Mahanty R. N., Kumar N. Demand management of plug-in electric vehicle charging station considering bidirection-al power flow using deep reinforcement learning. Eng Appl Artif In-tell.2025;139:109585.https://doi.org/10.1016/j.engappai.2024.109585
  • [47] Cheikh-Mohamad S., Celik B., Sechilariu M., Locment F. PV-powered charging station with energy cost optimization via V2G services. Appl Sci. 2023;13(9):5627. https://doi.org/10.3390/app13095627
  • [48] Liu Y., Jian L., Jia Y. Energy management of green charging station integrated with photovoltaics and energy storage system based on electric vehicles classification. Energy Reports. 2023;9:1961–1973. https://doi.org/10.1016/j.egyr.2023.04.099
  • [49] Karmaker A. K., Hossain M. A., Pota H. R., Onen A., Jung J. Energy management system for hybrid renewable energy-based electric vehicle charging station. IEEE Access. 2023;11:27793–27805. https://doi.org/10.1109/ACCESS.2023.3259232
  • [50] Sun X, Mi Y, Ahtam A, Zuo Z. Integrated Planning for Shared Electric Vehicle System Considering Carbon Emission Reduction. World Electric Vehicle Journal 2025;16(1):15. doi: https://doi.org/10.3390/wevj16010015.
  • [51] Zhang Z., Wan Y., Qin J., Fu W., Kang Y. A deep RL-based algorithm for coordinated charging of electric vehicles. IEEE Trans Intell Transp Syst. 2022;23(10):18774–18784. https://doi.org/10.1109/TITS.2022.3170000
  • [52] Zhang A., Liu Q., Liu J., Cheng L. CASA: cost-effective EV charging scheduling based on deep reinforcement learning. Neural Comput Appl. 2024;36(15):8355–8370. https://doi.org/10.1007/s00521-024-09530-3
  • [53] Fahim S. R., Atat R., Kececi C., Takiddin A., Ismail M., Davis K. R., Serpedin E. Dynamic Spatio-Temporal Planning Strategy of EV Charging Stations and DGs Using GCNN-Based Predicted Power Demand. IEEE Trans Intell Transp Syst. 2025. https://doi.org/10.1109/TITS.2025.3541190
  • [54] Zhang R., Zhang K., Manandhar U., Wang B., Qu X., Chen H. Economic Operation Strategy for Fast Charging Station Assisted by HESS Consisting of Retired Batteries Considering Concurrent Decommissioning. IEEE Trans Transp Electrification. 2025. https://doi.org/10.1109/TTE.2025.3532989
  • [55] Paraskevas A., Aletras D., Chrysopoulos A., Marinopoulos A., Doukas D. I. Optimal management for EV charging stations: A win–win strategy for different stakeholders using constrained Deep Q-learning. Energies. 2022;15(7):2323. https://doi.org/10.3390/en15072323
  • [56] Ding T., Zeng Z., Bai J., Qin B., Yang Y., Shahidehpour M. Optimal electric vehicle charging strategy with Markov decision process and reinforcement learning technique. IEEE Trans Ind Appl. 2020;56(5):5811–5823. https://doi.org/10.1109/TIA.2020.2990096
  • [57] Lai S., Qiu J., Tao Y., Zhao J. Pricing for electric vehicle charging stations based on the responsiveness of demand. IEEE Trans Smart Grid. 2022;14(1):530–544. https://doi.org/10.1109/TSG.2022.3188832
  • [58] Hamdare S., Brown D. J., Cao Y., Aljaidi M., Kaiwartya O., Yadav R., Jugran M. EV charging management and security for multi charging stations environment. IEEE Open J Veh Technol. 2024. https://doi.org/10.1109/OJVT.2024.3418201
  • [59] Antoun J., Kabir M. E., Atallah R. F., Assi C. A data driven per-formance analysis approach for enhancing the QoS of public charging stations. IEEE Trans Intell Transp Syst. 2021;23(8):11116–11125. https://doi.org/10.1109/TITS.2021.3100875
  • [60] Lee S., Seo S. H., Kang K., Hu Q. A Blockchain-Based Electric Vehicle Charging Cooperation Model. IEEE Trans Veh Technol. 2024. https://doi.org/10.1109/TVT.2024.3492393
  • [61] Hussain S., Kim Y. S., Thakur S., Breslin J. G. Optimization of waiting time for electric vehicles using a fuzzy inference system. IEEE Trans Intell Transp Syst. 2022;23(9):15396–15407. https://doi.org/10.1109/TITS.2022.3140461
  • [62] Liu J., Wang S., Tang X. Cooperative charging stations manage-ment under irrational hierarchy EV behaviors. IEEE Internet Things J. 2023;11(6):11137–11151. https://doi.org/10.1109/JIOT.2023.3334027
  • [63] Yang Y., Yeh H. G., Nguyen R. A robust model predictive con-trol-based scheduling approach for electric vehicle charging with photovoltaic systems. IEEE Syst J. 2022;17(1):111–121. https://doi.org/10.1109/JSYST.2022.3183626
  • [64] Engelhardt J., Zepter J. M., Gabderakhmanova T., Marinelli M. Energy management of a multi-battery system for renewable-based high power EV charging. eTransportation. 2022;14:100198. https://doi.org/10.1016/j.etran.2022.100198
  • [65] Pal K., Kunj T. Electric vehicle fast charging station energy man-agement system for radial distribution network with a photovoltaic distributed generator (PV-DG). e-Prime-Adv Electr Eng Electron Energy. 2024;9:100694. https://doi.org/10.1016/j.prime.2024.100694
  • [66] Lyu C., Zhan S., Zhang Y., Song Z. Synergistic two-stage opti-mization for multi-objective energy management strategy of inte-grated photovoltaic-storage charging stations. J Energy Storage. 2024;89:111665. https://doi.org/10.1016/j.est.2024.111665
  • [67] Watil A., Chojaa H. Enhancing grid-connected PV-EV charging station performance through a real-time dynamic power manage-ment using model predictive control. Results Eng. 2024;24:103192. https://doi.org/10.1016/j.rineng.2024.103192
  • [68] Sarmokadam S., Suresh M., Mathew R. Power flow control strat-egy for prosumer based EV charging scheme to minimize charg-ing impact on distribution network. Energy Reports. 2025;13:3794–3809. https://doi.org/10.1016/j.egyr.2025.03.032
  • [69] Çakmak R., Bayrak G., Koç M. A Fuzzy Logic-based Energy Management Approach for Fuel Cell and Photovoltaic Powered Electric Vehicle Charging Station in DC Microgrid Operations. IEEE Access. 2025. https://doi.org/10.1109/ACCESS.2025.3552253
  • [70] Hussain A., Bui V. H., Kim H. M. Deep reinforcement learning-based operation of fast charging stations coupled with energy storage system. Electr Power Syst Res. 2022;210:108087. https://doi.org/10.1016/j.epsr.2022.108087
  • [71] Raghuveer R. M., Bhalja B., Agarwal P. Energy management system for a workplace PV EV charging station with active and reactive power dispatch of EVs considering transformer aging and uncertainties. Electr Power Syst Res. 2024;238:111062. https://doi.org/10.1016/j.epsr.2024.111062
  • [72] Mohamed A. A., Jun M., Mahmud R., Mishra P., Patel S. N., Tolbert I., Meintz A. Hierarchical control of megawatt-scale charging stations for electric trucks with distributed energy re-sources. IEEE Trans Transp Electrification. 2022;9(4):4951–4963. https://doi.org/10.1109/TTE.2022.3167647
  • [73] Yang H., Xu Y., Guo Q. Dynamic incentive pricing on charging stations for real-time congestion management in distribution net-work: an adaptive model-based safe deep reinforcement learning method. IEEE Trans Sustain Energy. 2023;15(2):1100–1113. https://doi.org/10.1109/TSTE.2023.3327986
  • [74] Secchi M., Barchi G., Macii D., Petri D. Smart electric vehicles charging with centralised vehicle-to-grid capability for net-load variance minimisation under increasing EV and PV penetration levels. Sustainable Energy, Grids and Networks. 2023;35:101120. https://doi.org/10.1016/j.segan.2023.101120
  • [75] Yang Y., Xu J., Ibrahim A. W., Aboudrar I., Shi Z., He Y. Dy-namic LADRC and modified indirect P&O algorithm based-power flow management of PV-BESS-grid integrated fast EV charging stations with G2V, V2G and V2H capability. J Energy Storage. 2025;112:115505. https://doi.org/10.1016/j.est.2025.115505
  • [76] Kaur A., Singh P. Renewable Energy Optimization for Distribut-ed EV Charging Stations Using HBA and Smart Contracts. IEEE Internet Things J. 2025. https://doi.org/10.1109/JIOT.2025.3554506
  • [77] Zahedmanesh A., Muttaqi K. M., Sutanto D. A cooperative ener-gy management in a virtual energy hub of an electric transporta-tion system powered by PV generation and energy storage. IEEE Trans Transp Electrification. 2021;7(3):1123–1133. https://doi.org/10.1109/TTE.2021.3055218
  • [78] Zhang J., Sun K., Li C., Yang H., Zhou B., Hou X., Ge R. MPC-based co-optimization of an integrated PV-EV-Hydrogen station to reduce network loss and meet EV charging demand. eTrans-portation. 2023;15:100209. https://doi.org/10.1016/j.etran.2022.100209
  • [79] Gogoi D., Bharatee A., Ray P. K. Implementation of battery stor-age system in a solar PV-based EV charging station. Electr Power Syst Res. 2024;229:110113. https://doi.org/10.1016/j.epsr.2024.110113
  • [80] Sadiq M., Su C. L., Aragon C. A., Mutarraf M. U., Hoang L. Q. N., Buzna L., Micallef A. Dual Output Voltage Balancing Strate-gy in EV Charging Stations Using Model Predictive Control. IEEE Trans Ind Appl. 2025. https://doi.org/10.1109/TIA.2025.3541600
  • [81] Nandini K. K., Jayalakshmi N. S. A combined approach to evalu-ate power quality and grid dependency by solar photovoltaic based electric vehicle charging station using hybrid optimization. J Energy Storage. 2024;84:110967. https://doi.org/10.1016/j.est.2024.110967
  • [82] Krishna R. R., Yesuratnam G., Veeraboina P. A multi active full bridge integrated renewable energy standalone EV charging sta-tion with battery storage backup. Franklin Open. 2025;10:100235. https://doi.org/10.1016/j.fraope.2025.100235
  • [83] Mateen S., Haque A., Kurukuru V. S. B., Khan M. A. Discrete stochastic control for energy management with photovoltaic elec-tric vehicle charging station. CPSS Trans Power Electron Appl. 2022;7(2):216–225. https://doi.org/10.24295/CPSSTPEA.2022.00020
  • [84] Sithambaram M., Rajesh P., Shajin F. H., Rajeswari I. R. Grid connected photovoltaic system powered electric vehicle charging station for energy management using hybrid method. J Energy Storage. 2025;108:114828. https://doi.org/10.1016/j.est.2024.114828
  • [85] Pattnaik M., Badoni M., Kumar R., Khetrapal P., Kumari P. En-hancing the performance of solar-powered EV charging stations using the TOSSI-based CTF technique. Electr Power Syst Res. 2024;239:111206. https://doi.org/10.1016/j.epsr.2024.111206
  • [86] Saha J., Kumar N., Panda S. K. Adaptive grid-supportive control for solar-power integrated electric-vehicle fast charging station. IEEE Trans Energy Convers. 2023;38(3):2034–2044. https://doi.org/10.1109/TEC.2023.3260191
There are 86 citations in total.

Details

Primary Language English
Subjects Hybrid and Electric Vehicles and Powertrains
Journal Section Review
Authors

Kiran Nathgosavi 0000-0002-3404-4138

Vaiju Kalkhambkar 0000-0002-6449-8464

Submission Date July 16, 2025
Acceptance Date September 19, 2025
Publication Date December 31, 2025
Published in Issue Year 2025 Volume: 9 Issue: 4

Cite

Vancouver Nathgosavi K, Kalkhambkar V. Hybrid Energy System Based Electric Vehicle Charging Station: A Techno-Economic Review. IJASTECH. 2025;9(4):547-59.


International Journal of Automotive Science and Technology (IJASTECH) is published by Society of Automotive Engineers Turkey

by.png