Research Article
BibTex RIS Cite

A Comparative Study on the Usage of RON68 and Naphtha in an HCCI Engine

Year 2020, , 90 - 97, 30.06.2020
https://doi.org/10.30939/ijastech..721882

Abstract

The depletion of fossil fuels as a result of excessive use and increased environmental pollution brought up the research of environmentally conscious and renewable alternative fuels. The alternative fuel to be considered for internal combustion engines should not decrease the performance of the engine too much and positively affect the exhaust emissions. It is also important that this fuel should provide some specifications such as easy producibility, low cost, availability and usability in internal combustion engine without modification. Low temperature combustion modes are promising technologies providing nearly zero NOx and soot emissions and currently a lot of researcher has focused on this technology. In this experimental study naphtha was tested in an HCCI engine. In order to examine and understand the effects of the naphtha on HCCI mode a comparison study was also conducted by using RON68. Maximum imep was computed as 3.23 and 3.32 bar with RON68 and naphtha respectively at λ=1.7. SOC was determined 5.4 °CA and 5.76 °CA ATDC with naphtha and RON68 at λ=2. CA50 is far away from TDC fact that net work decreases. Maximum ITE was calculated as 45.42% and 46.07% at λ=2 with RON68 and naphtha respectively.

References

  • [1] Maurya, R. K. (2017) Characteristics and Control of Low Temperature Combustion Engines: Employing Gasoline, Ethanol and Methanol, Cham, Switzerland: Springer Interna-tional Publishing AG, 2-10.
  • [2] International Energy Agency (2010) World energy outlook. International Energy Agency, France. isbn 978-92-64-08624-1. www.iea.org.
  • [3] U.S. Energy Information Administration (2016) International energy outlook.
  • [4] T.S. Uyar, Enerji Sorunu Nedir? Alternatif Enerji Çözüm müdür? NEU-CEE 2001 Electrical, Electronic and Computer Engineering Symposium, 23-26, Lefkoşa TRNC, 2001.
  • [5] Pan, S., Liu, X., Cai, K., Li, X., Han, W., & Li, B. (2020). Experimental study on combustion and emission characteris-tics of iso-butanol/diesel and gasoline/diesel RCCI in a heavy-duty engine under low loads. Fuel, 261, 116434.
  • [6] İpci, D., Yılmaz, E., Aksoy, F., Uyumaz, A., Polat, S., & Solmaz, H. (2015). The Effects of iso-propanol and n-heptane Fuel Blends on HCCI Combustion Characteristics and Engine Performance. Makine Teknolojileri Elektronik Dergisi, 12(1), 49-56.
  • [7] Bastawissi, H. A. E., Elkelawy, M., Panchal, H., & Sa-dasivuni, K. K. (2019). Optimization of the multi-carburant dose as an energy source for the application of the HCCI en-gine. Fuel, 253, 15-24.
  • [8] Solmaz, H., Kocakulak, T. Buji ile Ateşlemeli Motor Kullanılan Seri Hibrit Elektrikli Bir Aracın Modellenmesi. In Proceedings on International Conference on Technology and Science, December, 2018.
  • [9] Kocakulak, T., Solmaz, H., Elektrikli Bir Aracın Modellen-mesi ve Rejeneratif Fren Sisteminin Bulanık Mantık Yöntemi ile Kontrol Edilmesi, International Symposium on Automo-tive Science and Technology, September,2019
  • [10] Kocakulak, T., Konukseven, E.İ., Çokgünlü, S.A., 6x6 Tak-tik Tekerlekli Askeri Kara Platformu Üzerinde Kullanılacak Hidropnömatik Süspansiyon Sisteminin Modellenmesi ve Sistem Elemanlarının Sönümlemeye Etkisinin İncelen-mesi, International Symposium on Automotive Science and Technology, September,2019.
  • [11] Kıyaklı, A. O., & Solmaz, H. (2018). Modeling of an Electric Vehicle with MATLAB/Simulink. International Journal of Automotive Science And Technology, 2(4), 9-15.
  • [12] Uyumaz, A. (2018). Combustion, performance and emission characteristics of a DI diesel engine fueled with mustard oil biodiesel fuel blends at different engine loads. Fuel, 212, 256-267.
  • [13] Gómez, A., García-Contreras, R., Soriano, J. A., & Mata, C. (2020). Comparative study of the opacity tendency of alterna-tive diesel fuels blended with gasoline. Fuel, 264, 116860.
  • [14] Sadeq, A. M., Bassiony, M. A., Elbashir, A. M., Ahmed, S. F., Khraisheh, M. (2019). Combustion and emissions of a diesel engine utilizing novel intake manifold designs and running on alternative fuels. Fuel, 255, 115769.
  • [15] Ardebili, S. M. S., & Khademalrasoul, A. (2018). An analy-sis of liquid-biofuel production potential from agricultural residues and animal fat (case study: Khuzestan Prov-ince). Journal of cleaner production, 204, 819-831.
  • [16] Setiyo, M., & Waluyo, B. (2019). Mixer with Secondary Venturi: An Invention for the First-Generation LPG Kits. International Journal of Automotive Science and Tech-nology, 3(1), 21-26.
  • [17] Londhe, H., Luo, G., Park, S., Kelley, S. S., & Fang, T. (2019). Testing of anisole and methyl acetate as additives to diesel and biodiesel fuels in a compression ignition en-gine. Fuel, 246, 79-92.
  • [18] Keskin, A., Yaşar, A., Yıldızhan, Ş., Uludamar, E., Emen, F. M., & Külcü, N. (2018). Evaluation of diesel fuel-biodiesel blends with palladium and acetylferrocene-based additives in a diesel engine. Fuel, 216, 349-355.
  • [19] Halis, S., Nacak, Ç., Solmaz, H., Yilmaz, E., & Yücesu, H. S. (2018). HCCI bir motorda oktan sayisinin yanma karak-teristikleri ve motor performansi üzerine etkilerinin incelen-mesi. Isi Bilimi ve Teknigi Dergisi/Journal of Thermal Sci-ence & Technology, 38(2).
  • [20] Polat, S., Yücesu, H. S., Kannan, K., Uyumaz, A., Solmaz, H., & Shahbakhti, M. (2017). Experimental comparison of different injection timings in an HCCI engine fueled with n-heptane. International Journal of Automotive Science and Technology, 1(1), 1-6.
  • [21] Rather, M. A., & Wani, M. M. (2018). A numerical study on the effects of exhaust gas recirculation temperature on con-trolling combustion and emissions of a diesel engine running on HCCI combustion mode. International Journal of Auto-motive Science and Technology, 2(3), 17-27.
  • [22] Uyumaz, A., Aydoğan, B., Calam, A., Aksoy, F., & Yılmaz, E. (2020). The effects of diisopropyl ether on combustion, performance, emissions and operating range in a HCCI en-gine. Fuel, 265, 116919.
  • [23] Calam, A., Aydoğan, B., & Halis, S. (2020). The compari-son of combustion, engine performance and emission charac-teristics of ethanol, methanol, fusel oil, butanol, isopropanol and naphtha with n-heptane blends on HCCI en-gine. Fuel, 266, 117071.
  • [24] Waqas, M. U., Hoth, A., Kolodziej, C. P., Rockstroh, T., Gonzalez, J. P., & Johansson, B. (2019). Detection of low Temperature heat release (LTHR) in the standard Cooperative Fuel Research (CFR) engine in both SI and HCCI combus-tion modes. Fuel, 256, 115745.
  • [25] Gharehghani, A. (2019). Load limits of an HCCI engine fueled with natural gas, ethanol, and methanol. Fuel, 239, 1001-1014.
  • [26] Noguchi M, Tanaka Y, Tanaka T, Takeuchi Y. A Study on Gasoline engine combustion by observation of intermediate reactive products during combustion. SAE Tech Pap 1979. https://doi.org/10.4271/790840.
  • [27] Onishi S, Jo SH, Shoda K. Active Thermo-Atmosphere Combustion (ATAC) – a new combustion process for inter-nal combustion engines. SAE Trans 1979:1851–60.
  • [28] Shi, H., Tang, Q., An, Y., Raman, V., Sim, J., Chang, J., Johansson, B. (2020). Study of spray/wall interaction in transition zones from HCCI via PPC to CI combustion modes. Fuel, 268, 117341.
  • [29] Calam, A., Solmaz, H., Yılmaz, E., & İçingür, Y. (2019). Investigation of effect of compression ratio on combustion and exhaust emissions in A HCCI engine. Energy, 168, 1208-1216.
  • [30] Polat, S., Solmaz, H., Calam, A., & Yılmaz, E. Estimation of the COVIMEP Variation in a HCCI Engine. Politeknik Dergisi.
  • [31] Polat, S., Solmaz, H., Yılmaz, E., Calam, A., Uyumaz, A., & Yücesu, H. S. (2019). Mapping of an HCCI engine using negative valve overlap strategy. Energy Sources, Part A: Re-covery, Utilization, and Environmental Effects, 1-15.
  • [32] Shim, E., Park, H., & Bae, C. (2020). Comparisons of ad-vanced combustion technologies (HCCI, PCCI, and dual-fuel PCCI) on engine performance and emission characteristics in a heavy-duty diesel engine. Fuel, 262, 116436.
  • [33] Calam, A., & İçingür, Y. Hava fazlalık katsayısı ve oktan sayısı değişiminin HCCI yanma karakteristiklerine ve motor performansına etkileri. Politeknik Dergisi, 22(3), 607-618.
  • [34] Bastawissi, H. A. E., Elkelawy, M., Panchal, H., & Sa-dasivuni, K. K. (2019). Optimization of the multi-carburant dose as an energy source for the application of the HCCI en-gine. Fuel, 253, 15-24.
  • [35] Putrasari, Y., Jamsran, N., & Lim, O. (2017). An investiga-tion on the DME HCCI autoignition under EGR and boosted operation. Fuel, 200, 447-457.
  • [36] Kozlov, V. E., Titova, N. S., & Chechet, I. V. (2018). Mod-eling study of hydrogen or syngas addition on combustion and emission characteristics of HCCI engine operating on iso-octane. Fuel, 221, 61-71.
  • [37] Poorghasemi, K., Saray, R. K., Bahlouli, K., & Zehni, A. (2016). 3D CFD simulation of a natural gas fueled HCCI engine with employing a reduced mechanism. Fuel, 182, 816-830.
  • [38] Lacey, J., Kameshwaran, K., Filipi, Z., Cannella, W., & Fuentes-Afflick, P. (2014). Influence of ethanol addition in refinery stream fuels and the HCCI combustion. Fuel, 126, 122-133.
  • [39] Speight, J. G. (2007). The Chemistry and Technology of Petroleum Fourth Edition Preface.
  • [40] Wang, B., Wang, Z., Shuai, S., Yang, H., & Wang, J. (2014). Combustion and emission characteristics of Multiple Pre-mixed Compression Ignition (MPCI) fuelled with naphtha and gasoline in wide load range. Energy conversion and management, 88, 79-87.
  • [41] Vallinayagam, R., An, Y., Vedharaj, S., Sim, J., Chang, J., & Johansson, B. (2018). Naphtha vs. dieseline–The effect of fuel properties on combustion homogeneity in transition from CI combustion towards HCCI. Fuel, 224, 451-460.
Year 2020, , 90 - 97, 30.06.2020
https://doi.org/10.30939/ijastech..721882

Abstract

References

  • [1] Maurya, R. K. (2017) Characteristics and Control of Low Temperature Combustion Engines: Employing Gasoline, Ethanol and Methanol, Cham, Switzerland: Springer Interna-tional Publishing AG, 2-10.
  • [2] International Energy Agency (2010) World energy outlook. International Energy Agency, France. isbn 978-92-64-08624-1. www.iea.org.
  • [3] U.S. Energy Information Administration (2016) International energy outlook.
  • [4] T.S. Uyar, Enerji Sorunu Nedir? Alternatif Enerji Çözüm müdür? NEU-CEE 2001 Electrical, Electronic and Computer Engineering Symposium, 23-26, Lefkoşa TRNC, 2001.
  • [5] Pan, S., Liu, X., Cai, K., Li, X., Han, W., & Li, B. (2020). Experimental study on combustion and emission characteris-tics of iso-butanol/diesel and gasoline/diesel RCCI in a heavy-duty engine under low loads. Fuel, 261, 116434.
  • [6] İpci, D., Yılmaz, E., Aksoy, F., Uyumaz, A., Polat, S., & Solmaz, H. (2015). The Effects of iso-propanol and n-heptane Fuel Blends on HCCI Combustion Characteristics and Engine Performance. Makine Teknolojileri Elektronik Dergisi, 12(1), 49-56.
  • [7] Bastawissi, H. A. E., Elkelawy, M., Panchal, H., & Sa-dasivuni, K. K. (2019). Optimization of the multi-carburant dose as an energy source for the application of the HCCI en-gine. Fuel, 253, 15-24.
  • [8] Solmaz, H., Kocakulak, T. Buji ile Ateşlemeli Motor Kullanılan Seri Hibrit Elektrikli Bir Aracın Modellenmesi. In Proceedings on International Conference on Technology and Science, December, 2018.
  • [9] Kocakulak, T., Solmaz, H., Elektrikli Bir Aracın Modellen-mesi ve Rejeneratif Fren Sisteminin Bulanık Mantık Yöntemi ile Kontrol Edilmesi, International Symposium on Automo-tive Science and Technology, September,2019
  • [10] Kocakulak, T., Konukseven, E.İ., Çokgünlü, S.A., 6x6 Tak-tik Tekerlekli Askeri Kara Platformu Üzerinde Kullanılacak Hidropnömatik Süspansiyon Sisteminin Modellenmesi ve Sistem Elemanlarının Sönümlemeye Etkisinin İncelen-mesi, International Symposium on Automotive Science and Technology, September,2019.
  • [11] Kıyaklı, A. O., & Solmaz, H. (2018). Modeling of an Electric Vehicle with MATLAB/Simulink. International Journal of Automotive Science And Technology, 2(4), 9-15.
  • [12] Uyumaz, A. (2018). Combustion, performance and emission characteristics of a DI diesel engine fueled with mustard oil biodiesel fuel blends at different engine loads. Fuel, 212, 256-267.
  • [13] Gómez, A., García-Contreras, R., Soriano, J. A., & Mata, C. (2020). Comparative study of the opacity tendency of alterna-tive diesel fuels blended with gasoline. Fuel, 264, 116860.
  • [14] Sadeq, A. M., Bassiony, M. A., Elbashir, A. M., Ahmed, S. F., Khraisheh, M. (2019). Combustion and emissions of a diesel engine utilizing novel intake manifold designs and running on alternative fuels. Fuel, 255, 115769.
  • [15] Ardebili, S. M. S., & Khademalrasoul, A. (2018). An analy-sis of liquid-biofuel production potential from agricultural residues and animal fat (case study: Khuzestan Prov-ince). Journal of cleaner production, 204, 819-831.
  • [16] Setiyo, M., & Waluyo, B. (2019). Mixer with Secondary Venturi: An Invention for the First-Generation LPG Kits. International Journal of Automotive Science and Tech-nology, 3(1), 21-26.
  • [17] Londhe, H., Luo, G., Park, S., Kelley, S. S., & Fang, T. (2019). Testing of anisole and methyl acetate as additives to diesel and biodiesel fuels in a compression ignition en-gine. Fuel, 246, 79-92.
  • [18] Keskin, A., Yaşar, A., Yıldızhan, Ş., Uludamar, E., Emen, F. M., & Külcü, N. (2018). Evaluation of diesel fuel-biodiesel blends with palladium and acetylferrocene-based additives in a diesel engine. Fuel, 216, 349-355.
  • [19] Halis, S., Nacak, Ç., Solmaz, H., Yilmaz, E., & Yücesu, H. S. (2018). HCCI bir motorda oktan sayisinin yanma karak-teristikleri ve motor performansi üzerine etkilerinin incelen-mesi. Isi Bilimi ve Teknigi Dergisi/Journal of Thermal Sci-ence & Technology, 38(2).
  • [20] Polat, S., Yücesu, H. S., Kannan, K., Uyumaz, A., Solmaz, H., & Shahbakhti, M. (2017). Experimental comparison of different injection timings in an HCCI engine fueled with n-heptane. International Journal of Automotive Science and Technology, 1(1), 1-6.
  • [21] Rather, M. A., & Wani, M. M. (2018). A numerical study on the effects of exhaust gas recirculation temperature on con-trolling combustion and emissions of a diesel engine running on HCCI combustion mode. International Journal of Auto-motive Science and Technology, 2(3), 17-27.
  • [22] Uyumaz, A., Aydoğan, B., Calam, A., Aksoy, F., & Yılmaz, E. (2020). The effects of diisopropyl ether on combustion, performance, emissions and operating range in a HCCI en-gine. Fuel, 265, 116919.
  • [23] Calam, A., Aydoğan, B., & Halis, S. (2020). The compari-son of combustion, engine performance and emission charac-teristics of ethanol, methanol, fusel oil, butanol, isopropanol and naphtha with n-heptane blends on HCCI en-gine. Fuel, 266, 117071.
  • [24] Waqas, M. U., Hoth, A., Kolodziej, C. P., Rockstroh, T., Gonzalez, J. P., & Johansson, B. (2019). Detection of low Temperature heat release (LTHR) in the standard Cooperative Fuel Research (CFR) engine in both SI and HCCI combus-tion modes. Fuel, 256, 115745.
  • [25] Gharehghani, A. (2019). Load limits of an HCCI engine fueled with natural gas, ethanol, and methanol. Fuel, 239, 1001-1014.
  • [26] Noguchi M, Tanaka Y, Tanaka T, Takeuchi Y. A Study on Gasoline engine combustion by observation of intermediate reactive products during combustion. SAE Tech Pap 1979. https://doi.org/10.4271/790840.
  • [27] Onishi S, Jo SH, Shoda K. Active Thermo-Atmosphere Combustion (ATAC) – a new combustion process for inter-nal combustion engines. SAE Trans 1979:1851–60.
  • [28] Shi, H., Tang, Q., An, Y., Raman, V., Sim, J., Chang, J., Johansson, B. (2020). Study of spray/wall interaction in transition zones from HCCI via PPC to CI combustion modes. Fuel, 268, 117341.
  • [29] Calam, A., Solmaz, H., Yılmaz, E., & İçingür, Y. (2019). Investigation of effect of compression ratio on combustion and exhaust emissions in A HCCI engine. Energy, 168, 1208-1216.
  • [30] Polat, S., Solmaz, H., Calam, A., & Yılmaz, E. Estimation of the COVIMEP Variation in a HCCI Engine. Politeknik Dergisi.
  • [31] Polat, S., Solmaz, H., Yılmaz, E., Calam, A., Uyumaz, A., & Yücesu, H. S. (2019). Mapping of an HCCI engine using negative valve overlap strategy. Energy Sources, Part A: Re-covery, Utilization, and Environmental Effects, 1-15.
  • [32] Shim, E., Park, H., & Bae, C. (2020). Comparisons of ad-vanced combustion technologies (HCCI, PCCI, and dual-fuel PCCI) on engine performance and emission characteristics in a heavy-duty diesel engine. Fuel, 262, 116436.
  • [33] Calam, A., & İçingür, Y. Hava fazlalık katsayısı ve oktan sayısı değişiminin HCCI yanma karakteristiklerine ve motor performansına etkileri. Politeknik Dergisi, 22(3), 607-618.
  • [34] Bastawissi, H. A. E., Elkelawy, M., Panchal, H., & Sa-dasivuni, K. K. (2019). Optimization of the multi-carburant dose as an energy source for the application of the HCCI en-gine. Fuel, 253, 15-24.
  • [35] Putrasari, Y., Jamsran, N., & Lim, O. (2017). An investiga-tion on the DME HCCI autoignition under EGR and boosted operation. Fuel, 200, 447-457.
  • [36] Kozlov, V. E., Titova, N. S., & Chechet, I. V. (2018). Mod-eling study of hydrogen or syngas addition on combustion and emission characteristics of HCCI engine operating on iso-octane. Fuel, 221, 61-71.
  • [37] Poorghasemi, K., Saray, R. K., Bahlouli, K., & Zehni, A. (2016). 3D CFD simulation of a natural gas fueled HCCI engine with employing a reduced mechanism. Fuel, 182, 816-830.
  • [38] Lacey, J., Kameshwaran, K., Filipi, Z., Cannella, W., & Fuentes-Afflick, P. (2014). Influence of ethanol addition in refinery stream fuels and the HCCI combustion. Fuel, 126, 122-133.
  • [39] Speight, J. G. (2007). The Chemistry and Technology of Petroleum Fourth Edition Preface.
  • [40] Wang, B., Wang, Z., Shuai, S., Yang, H., & Wang, J. (2014). Combustion and emission characteristics of Multiple Pre-mixed Compression Ignition (MPCI) fuelled with naphtha and gasoline in wide load range. Energy conversion and management, 88, 79-87.
  • [41] Vallinayagam, R., An, Y., Vedharaj, S., Sim, J., Chang, J., & Johansson, B. (2018). Naphtha vs. dieseline–The effect of fuel properties on combustion homogeneity in transition from CI combustion towards HCCI. Fuel, 224, 451-460.
There are 41 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Emre Yılmaz 0000-0002-5653-2079

Publication Date June 30, 2020
Submission Date April 17, 2020
Acceptance Date May 23, 2020
Published in Issue Year 2020

Cite

APA Yılmaz, E. (2020). A Comparative Study on the Usage of RON68 and Naphtha in an HCCI Engine. International Journal of Automotive Science And Technology, 4(2), 90-97. https://doi.org/10.30939/ijastech..721882
AMA Yılmaz E. A Comparative Study on the Usage of RON68 and Naphtha in an HCCI Engine. IJASTECH. June 2020;4(2):90-97. doi:10.30939/ijastech.721882
Chicago Yılmaz, Emre. “A Comparative Study on the Usage of RON68 and Naphtha in an HCCI Engine”. International Journal of Automotive Science And Technology 4, no. 2 (June 2020): 90-97. https://doi.org/10.30939/ijastech. 721882.
EndNote Yılmaz E (June 1, 2020) A Comparative Study on the Usage of RON68 and Naphtha in an HCCI Engine. International Journal of Automotive Science And Technology 4 2 90–97.
IEEE E. Yılmaz, “A Comparative Study on the Usage of RON68 and Naphtha in an HCCI Engine”, IJASTECH, vol. 4, no. 2, pp. 90–97, 2020, doi: 10.30939/ijastech..721882.
ISNAD Yılmaz, Emre. “A Comparative Study on the Usage of RON68 and Naphtha in an HCCI Engine”. International Journal of Automotive Science And Technology 4/2 (June 2020), 90-97. https://doi.org/10.30939/ijastech. 721882.
JAMA Yılmaz E. A Comparative Study on the Usage of RON68 and Naphtha in an HCCI Engine. IJASTECH. 2020;4:90–97.
MLA Yılmaz, Emre. “A Comparative Study on the Usage of RON68 and Naphtha in an HCCI Engine”. International Journal of Automotive Science And Technology, vol. 4, no. 2, 2020, pp. 90-97, doi:10.30939/ijastech. 721882.
Vancouver Yılmaz E. A Comparative Study on the Usage of RON68 and Naphtha in an HCCI Engine. IJASTECH. 2020;4(2):90-7.

Cited By

















International Journal of Automotive Science and Technology (IJASTECH) is published by Society of Automotive Engineers Turkey

by.png