Research Article
BibTex RIS Cite

Design of Fuzzy Logic Supported Car Driver Control System

Year 2021, Volume: 5 Issue: 3, 228 - 238, 30.09.2021
https://doi.org/10.30939/ijastech..902139

Abstract

Being one of the most basic needs of human life, vehicles are one of the basic building blocks of the transportation sector. Since automobiles are highly preferred, they cause intensity in daily traffic and the need for human control increases accordingly. Approximately 88% of traffic accidents occur due to driver-related errors and approximately 1.1% of the accidents are mortal. Although there are products and studies aimed to prevent human defects technologically, such as semi-autonomous, autonomous driving systems, and driving safety components, studies to improve people's driving abilities are rare. In this study, first of all, the conditions regarding proper and correct vehicle drive in traffic are examined. Then, the sensor and sensor systems that can control the conditions of frequently used cars are investigated. Fuzzy logic decision making model of the sensors and subsystems used in vehicles were designed and simulated in order to develop a car driver control system (CDCS) used to provide a safety control the vehicle in traffic. As a result of the study, the conceptual structure of a system that can solve decision making problem with fuzzy logic in controlling the car driver and a complex fuzzy logic model are presented. It is aimed to decrease the human defects in traffic, to teach driver to drive vehicle correctly, rapidly and economic.

Supporting Institution

This study is a part of the thesis project managed in Intelligent Transformation Systems and Technologies Department, Institute of Natural Sciences, Bandırma Onyedi Eylül University.

References

  • [1] A.Özen, & Onural, A. (2001). Egzoz Emisyon Sistemlerinin Neden Olduğu Çevre Kirliliği. 7. Otomotiv ve Yan Sanayi Sempozyumu (s. 107-112). Bursa: TMMOB Makine Mühendisleri Odası.
  • [2] Anonim. (2020, 10 18). Temel İstatistiksel Tablolar. Türkiye İstatistik Kurumu: https://data.tuik.gov.tr/Bulten/Index?p=Road-Traffic-Accident-Statistics-2019-33628 adresinden alındı
  • [3] Anonim. (Ağustos 2020). http://www.trafik.gov.tr/kurumlar/trafik.gov.tr/04-Istatistik/Aylik/aralilk20.pdf
  • [4] Chaim, M., & Shmerling, v. E. (2013). A Model for Vehicle Fuel Consumption Estimation at Urban Operating Conditions. International Journal of Mechanics (7), 18-23.
  • [5] Karaoğlu, R. (2019). Motorlu Kara Taşıtlarında Meydana Gelen Maddi Masarlı Trafik Kazalarının Ülke Ekonomisine Etkisi. Bursa: Bursa Uludağ Üniversitesi, Master' s Thesis.
  • [6] Kişi, Ö., Karahan, M. E., & Şen, Z. (2010). Nehirlerdeki askı maddesi miktarının bulanık mantık ile modellenmesi. İTÜDERGİSİ, 2(3), 43-54.
  • [7] Tiryaki, A. E., & Kazan, R. (2007). Bulaşık Makinesinin Bulanık Mantık ile Modellenmesi. Mühendis ve Makina , 3-8.
  • [8] PEARRE, Nathaniel S.; RIBBERINK, Hajo. Review of research on V2X technologies, strategies, and operations. Renewable and Sustainable Energy Reviews, 2019, 105: 61-70.
  • [9] Motorlu Taşıt Sürücüleri Kursu Direksiyon Eğitimi Dersi Uygulama Sınavı Kılavuzu, Özel Öğretim Kurumları Genel Müdürlüğü, T.C. Milli Eğitim Bakanlığı, 2018, p. 77-78.
  • [10] Zadeh, L.A. Fuzzy Sets. Inf. Control 1965, 8, 338–353.
  • [11] Mamdani, E.H.; Assilina, S. An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller. Int. J. Man-Mach. Stud. 1975, 7, 1–13.
  • [12] Yatak, M. Ö., & Şahin, F. (2021). Ride Comfort-Road Holding Trade-off Improvement of Full Vehicle Active Suspension System by Interval Type-2 Fuzzy Control. Engineering Science and Technology, an International Journal, 24(1), 259-270.
  • [13] Jang J-S.R., Sun C-T., Mizutani E., Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence, New Jersey, USA, Prentice Hall, 1997.
Year 2021, Volume: 5 Issue: 3, 228 - 238, 30.09.2021
https://doi.org/10.30939/ijastech..902139

Abstract

References

  • [1] A.Özen, & Onural, A. (2001). Egzoz Emisyon Sistemlerinin Neden Olduğu Çevre Kirliliği. 7. Otomotiv ve Yan Sanayi Sempozyumu (s. 107-112). Bursa: TMMOB Makine Mühendisleri Odası.
  • [2] Anonim. (2020, 10 18). Temel İstatistiksel Tablolar. Türkiye İstatistik Kurumu: https://data.tuik.gov.tr/Bulten/Index?p=Road-Traffic-Accident-Statistics-2019-33628 adresinden alındı
  • [3] Anonim. (Ağustos 2020). http://www.trafik.gov.tr/kurumlar/trafik.gov.tr/04-Istatistik/Aylik/aralilk20.pdf
  • [4] Chaim, M., & Shmerling, v. E. (2013). A Model for Vehicle Fuel Consumption Estimation at Urban Operating Conditions. International Journal of Mechanics (7), 18-23.
  • [5] Karaoğlu, R. (2019). Motorlu Kara Taşıtlarında Meydana Gelen Maddi Masarlı Trafik Kazalarının Ülke Ekonomisine Etkisi. Bursa: Bursa Uludağ Üniversitesi, Master' s Thesis.
  • [6] Kişi, Ö., Karahan, M. E., & Şen, Z. (2010). Nehirlerdeki askı maddesi miktarının bulanık mantık ile modellenmesi. İTÜDERGİSİ, 2(3), 43-54.
  • [7] Tiryaki, A. E., & Kazan, R. (2007). Bulaşık Makinesinin Bulanık Mantık ile Modellenmesi. Mühendis ve Makina , 3-8.
  • [8] PEARRE, Nathaniel S.; RIBBERINK, Hajo. Review of research on V2X technologies, strategies, and operations. Renewable and Sustainable Energy Reviews, 2019, 105: 61-70.
  • [9] Motorlu Taşıt Sürücüleri Kursu Direksiyon Eğitimi Dersi Uygulama Sınavı Kılavuzu, Özel Öğretim Kurumları Genel Müdürlüğü, T.C. Milli Eğitim Bakanlığı, 2018, p. 77-78.
  • [10] Zadeh, L.A. Fuzzy Sets. Inf. Control 1965, 8, 338–353.
  • [11] Mamdani, E.H.; Assilina, S. An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller. Int. J. Man-Mach. Stud. 1975, 7, 1–13.
  • [12] Yatak, M. Ö., & Şahin, F. (2021). Ride Comfort-Road Holding Trade-off Improvement of Full Vehicle Active Suspension System by Interval Type-2 Fuzzy Control. Engineering Science and Technology, an International Journal, 24(1), 259-270.
  • [13] Jang J-S.R., Sun C-T., Mizutani E., Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence, New Jersey, USA, Prentice Hall, 1997.
There are 13 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

İlker Özmen 0000-0002-6920-4429

Cemil Közkurt 0000-0003-1407-9867

Publication Date September 30, 2021
Submission Date March 24, 2021
Acceptance Date June 30, 2021
Published in Issue Year 2021 Volume: 5 Issue: 3

Cite

APA Özmen, İ., & Közkurt, C. (2021). Design of Fuzzy Logic Supported Car Driver Control System. International Journal of Automotive Science And Technology, 5(3), 228-238. https://doi.org/10.30939/ijastech..902139
AMA Özmen İ, Közkurt C. Design of Fuzzy Logic Supported Car Driver Control System. IJASTECH. September 2021;5(3):228-238. doi:10.30939/ijastech.902139
Chicago Özmen, İlker, and Cemil Közkurt. “Design of Fuzzy Logic Supported Car Driver Control System”. International Journal of Automotive Science And Technology 5, no. 3 (September 2021): 228-38. https://doi.org/10.30939/ijastech. 902139.
EndNote Özmen İ, Közkurt C (September 1, 2021) Design of Fuzzy Logic Supported Car Driver Control System. International Journal of Automotive Science And Technology 5 3 228–238.
IEEE İ. Özmen and C. Közkurt, “Design of Fuzzy Logic Supported Car Driver Control System”, IJASTECH, vol. 5, no. 3, pp. 228–238, 2021, doi: 10.30939/ijastech..902139.
ISNAD Özmen, İlker - Közkurt, Cemil. “Design of Fuzzy Logic Supported Car Driver Control System”. International Journal of Automotive Science And Technology 5/3 (September 2021), 228-238. https://doi.org/10.30939/ijastech. 902139.
JAMA Özmen İ, Közkurt C. Design of Fuzzy Logic Supported Car Driver Control System. IJASTECH. 2021;5:228–238.
MLA Özmen, İlker and Cemil Közkurt. “Design of Fuzzy Logic Supported Car Driver Control System”. International Journal of Automotive Science And Technology, vol. 5, no. 3, 2021, pp. 228-3, doi:10.30939/ijastech. 902139.
Vancouver Özmen İ, Közkurt C. Design of Fuzzy Logic Supported Car Driver Control System. IJASTECH. 2021;5(3):228-3.


International Journal of Automotive Science and Technology (IJASTECH) is published by Society of Automotive Engineers Turkey

by.png