Research Article
BibTex RIS Cite

Study of Proton-Exchange Membrane Fuel Cell Degradation and its Counter Strategies: Flooding/drying, Cold Start and Carbon Monoxide Poisoning

Year 2024, Volume: 8 Issue: 1, 96 - 109, 31.03.2024
https://doi.org/10.30939/ijastech..1389241

Abstract

In the context of advancing automotive fleet electrification dynamics, the development of hybrid electric vehicles (HEV) and electric vehicles (EV) serves as a pivotal strategy to mitigate CO2 emissions and promote decarbonization in the transportation sector. While Battery Electric Vehicles (BEV) are prevalent, Fuel Cell Electric Vehicles (FCEV) are gaining traction as a compelling alternative for heavy mobility, particularly Light Commercial Vehicles (LCV) and trucks were relying solely on batteries may not be feasible. Ensuring the efficiency of FCEVs necessitates a profound understanding and control of fuel cell operational conditions. However, concerns persist regarding fuel cell durability due to specific aging phenomena leading to performance decay after operational cycles. The objective of this study is to build a model to accurately characterize and control the fuel cell within a FCEV, by simulating its behavior during cycling and by dealing with common ageing issues like flooding, cold start, and carbon monoxide poisoning. The model described in this study allows not only to simulate the cathode, the anode, and the fuel cell membrane, but it also proposes strategies to handle the wa-ter management at the membrane, deal with cold starts, counter poisoning and, in the end, en-hance the fuel cell performance and lifespan.

References

  • [1] Jemei S. Ph.D. Thesis, Belfort Technology and Franche Comte University, France. 2004.
  • [2] Apostolou D, Xydis G. Renewable and Sustainable Energy Reviews 2019;113. https://doi.org/10.1016/j.rser.2019.109292.
  • [3] Eberle U, Müller B, von Helmolt R. Energy and Environmen-tal Science 2012;5:8780–98. https://doi.org/10.1039/c2ee22596d.
  • [4] Haddad A. Ph.D. Thesis, Belfort Montbeliard University, France. 2011.
  • [5] Kocakulak T, Arslan A. Investigation of the Use of Fuel Cell Hybrid Systems for Different Purposes. Engineering Perspec-tive 2023; 3:1–8.
  • [6] Boyacıoğlu NM, Kocakulak T, Batar M, Uyumaz A, Solmaz H. Modelling and Control of a PEM Fuel Cell Hybrid Energy System Used in a Vehicle with Fuzzy Logic Method. Interna-tional Journal of Automotive Science and Technology 2023; 7:295–308. https://doi.org/10.30939/ijastech..1340339.
  • [7] Cavaliere S, Zatoń M, Farina F, Jones D, Rozière J. Chapter 9: Electrospun Materials for Proton Exchange Membrane Fuel Cells and Water Electrolysis. RSC Soft Matter, vol. 2018- January 2018. https://doi.org/10.1039/9781788012942-00205.
  • [8] Haidar F. Ph.D. Thesis, Montpellier University, France. Montpellier, 2018.
  • [9] Le Ny M. Ph.D. Thesis, Grenoble University, France. 2012.
  • [10] Fouquet N, Doulet C, Nouillant C, Dauphin-Tanguy G, Ould-Bouamama B. J. of Power Sources 2006;159:905–13. https://doi.org/10.1016/j.jpowsour.2005.11.035.
  • [11] Jimenez-Morales I, Haidar F, Cavaliere S, Jones D, Roziere J. Strong Interaction between Platinum Nanoparticles and Tan-talum-Doped Tin Oxide Nanofibers and Its Activation and Stabilization Effects for Oxygen Reduction Reaction. ACS Catal 2020; 10:10399–411. https://doi.org/10.1021/acscatal.0c02220.
  • [12] Zawodzinski TA, Derouin C, Radzinski S, Sherman RJ, Smith VT, Springer TE, et al. J. of the Electrochemical Society 1993;140:3278.
  • [13] Amphlett JC, Baumert RM, Mann RF, Peppley BA, Roberge PR, Harris TJ. J. of the Electrochemical Society 1995;142.
  • [14] Springer TE, Zawodzinski TA, Gottesfeld S. J. of the Electro-chemical Society 1991;138:208.
  • [15] Ramousse J, Deseure J, Lottin O, Didierjean S, Maillet D. J. of Power Sources 2005;145:416–27. https://doi.org/10.1016/j.jpowsour.2005.01.067.
  • [16] Wilson MS, Derouin CR, Valerio JA, Gottesfeld S. Proc. 28th Intersociety Energy Conversion Engineering conference, At-lanta, Georgia, 1993.
  • [17] Dicks AL, Rand DAJ. Fuel Cell Systems Explained, WILEY,Griffith University- Brisbane, Australia and CSIRO Energy-Melbourne, Australia. 2018.
  • [18] Dutta S, Shimpalee S, van Zee JW. International Journal of Heat and Mass Transfer 2001.
  • [19] Pukrushpan JT. Ph.D. Thesis, Michigan University, United states. 2003.
  • [20] Ciureanu M, Wang H. Electrochemical impedance study of anode CO-poisoning in PEM fuel cells. Journal of New Mate-rials for Electrochemical Systems 2000;3.
  • [21] Tingelöf T, Hedström L, Holmström N, Alvfors P, Lindbergh G. International Journal of Hydrogen Energy 2008;33:2064–72. https://doi.org/10.1016/j.ijhydene.2008.02.002.
  • [22] De Becdelièvre AM, de Becdelièvre J, Clavilier J. J. Electro-anal. Chem 1990; 294:97–110.
  • [23] Kim J-D, Park Y-I, Kobayashi K, Nagai M. J. of Power Sources 2001;127.
  • [24] Urian RC, Gullá AF, Mukerjee S. J. of Electroanalytical Chemistry 2003;554–555:307–24. https://doi.org/10.1016/S0022-0728(03)00241-9.
  • [25] Wee JH, Lee KY. J. of Power Sources 2006;157:128–35. https://doi.org/10.1016/j.jpowsour.2005.08.010.
  • [26] Murthy M, Esayian M, Lee W, van Zee JW. J.of The Electro-chemical Society 2003;150:A29. https://doi.org/10.1149/1.1522383.
  • [27] Kawatsu S. Canada Patent,CA 2214769A1. 5,925,476, 1999.
  • [28] Springer TE, Rockward T, Zawodzinski TA, Gottesfeld S. J. of The Electrochemical Society 2001;148:11–23.
  • [29] Carrette LPL, Friedrich KA, Huber M, Stimming U. Physical Chemistry Chemical Physics 2001;3:320–4. https://doi.org/10.1039/b005843m.
  • [30] Baschuk JJ, Li X. International Journal of Energy Research 2003;27:1095–116. https://doi.org/10.1002/er.934.
  • [31] Zamel N, Li X. International Journal of Hydrogen Energy 2008;33:1335–44. https://doi.org/10.1016/j.ijhydene.2007.12.060.
  • [32] James McBreen, Sanjeev Mukerjee, S. Srinivasan. Electro-chemical Society, Pennington, New Jersey. vol. 1. 1997.
  • [33] Baschuk JJ, Li X. International Journal of Energy Research 2003;27:1095–116. https://doi.org/10.1002/er.934.
  • [34] Shah AA, Sui PC, Kim GS, Ye S. J. of Power Sources 2007;166:1–21. https://doi.org/10.1016/j.jpowsour.2007.01.020.
  • [35] Delgado S, Lagarteira T, Mendes A. Air bleeding strategies to increase the efficiency of proton exchange membrane fuel cell stationary applications fuelled with CO ppm-levels. Int J Electrochem Sci 2020; 15:613–27.https://doi.org/10.20964/2020.01.58.
  • [36] Luo Y, Jiao K. Progress in Energy and Combustion Science 2018;64:29–61. https://doi.org/10.1016/j.pecs.2017.10.003.
  • [37] Amamou AA, Kelouwani S, Boulon L, Agbossou K. IEEE Access 2016;4:4989–5002. https://doi.org/10.1109/access.2016.2597058.
Year 2024, Volume: 8 Issue: 1, 96 - 109, 31.03.2024
https://doi.org/10.30939/ijastech..1389241

Abstract

References

  • [1] Jemei S. Ph.D. Thesis, Belfort Technology and Franche Comte University, France. 2004.
  • [2] Apostolou D, Xydis G. Renewable and Sustainable Energy Reviews 2019;113. https://doi.org/10.1016/j.rser.2019.109292.
  • [3] Eberle U, Müller B, von Helmolt R. Energy and Environmen-tal Science 2012;5:8780–98. https://doi.org/10.1039/c2ee22596d.
  • [4] Haddad A. Ph.D. Thesis, Belfort Montbeliard University, France. 2011.
  • [5] Kocakulak T, Arslan A. Investigation of the Use of Fuel Cell Hybrid Systems for Different Purposes. Engineering Perspec-tive 2023; 3:1–8.
  • [6] Boyacıoğlu NM, Kocakulak T, Batar M, Uyumaz A, Solmaz H. Modelling and Control of a PEM Fuel Cell Hybrid Energy System Used in a Vehicle with Fuzzy Logic Method. Interna-tional Journal of Automotive Science and Technology 2023; 7:295–308. https://doi.org/10.30939/ijastech..1340339.
  • [7] Cavaliere S, Zatoń M, Farina F, Jones D, Rozière J. Chapter 9: Electrospun Materials for Proton Exchange Membrane Fuel Cells and Water Electrolysis. RSC Soft Matter, vol. 2018- January 2018. https://doi.org/10.1039/9781788012942-00205.
  • [8] Haidar F. Ph.D. Thesis, Montpellier University, France. Montpellier, 2018.
  • [9] Le Ny M. Ph.D. Thesis, Grenoble University, France. 2012.
  • [10] Fouquet N, Doulet C, Nouillant C, Dauphin-Tanguy G, Ould-Bouamama B. J. of Power Sources 2006;159:905–13. https://doi.org/10.1016/j.jpowsour.2005.11.035.
  • [11] Jimenez-Morales I, Haidar F, Cavaliere S, Jones D, Roziere J. Strong Interaction between Platinum Nanoparticles and Tan-talum-Doped Tin Oxide Nanofibers and Its Activation and Stabilization Effects for Oxygen Reduction Reaction. ACS Catal 2020; 10:10399–411. https://doi.org/10.1021/acscatal.0c02220.
  • [12] Zawodzinski TA, Derouin C, Radzinski S, Sherman RJ, Smith VT, Springer TE, et al. J. of the Electrochemical Society 1993;140:3278.
  • [13] Amphlett JC, Baumert RM, Mann RF, Peppley BA, Roberge PR, Harris TJ. J. of the Electrochemical Society 1995;142.
  • [14] Springer TE, Zawodzinski TA, Gottesfeld S. J. of the Electro-chemical Society 1991;138:208.
  • [15] Ramousse J, Deseure J, Lottin O, Didierjean S, Maillet D. J. of Power Sources 2005;145:416–27. https://doi.org/10.1016/j.jpowsour.2005.01.067.
  • [16] Wilson MS, Derouin CR, Valerio JA, Gottesfeld S. Proc. 28th Intersociety Energy Conversion Engineering conference, At-lanta, Georgia, 1993.
  • [17] Dicks AL, Rand DAJ. Fuel Cell Systems Explained, WILEY,Griffith University- Brisbane, Australia and CSIRO Energy-Melbourne, Australia. 2018.
  • [18] Dutta S, Shimpalee S, van Zee JW. International Journal of Heat and Mass Transfer 2001.
  • [19] Pukrushpan JT. Ph.D. Thesis, Michigan University, United states. 2003.
  • [20] Ciureanu M, Wang H. Electrochemical impedance study of anode CO-poisoning in PEM fuel cells. Journal of New Mate-rials for Electrochemical Systems 2000;3.
  • [21] Tingelöf T, Hedström L, Holmström N, Alvfors P, Lindbergh G. International Journal of Hydrogen Energy 2008;33:2064–72. https://doi.org/10.1016/j.ijhydene.2008.02.002.
  • [22] De Becdelièvre AM, de Becdelièvre J, Clavilier J. J. Electro-anal. Chem 1990; 294:97–110.
  • [23] Kim J-D, Park Y-I, Kobayashi K, Nagai M. J. of Power Sources 2001;127.
  • [24] Urian RC, Gullá AF, Mukerjee S. J. of Electroanalytical Chemistry 2003;554–555:307–24. https://doi.org/10.1016/S0022-0728(03)00241-9.
  • [25] Wee JH, Lee KY. J. of Power Sources 2006;157:128–35. https://doi.org/10.1016/j.jpowsour.2005.08.010.
  • [26] Murthy M, Esayian M, Lee W, van Zee JW. J.of The Electro-chemical Society 2003;150:A29. https://doi.org/10.1149/1.1522383.
  • [27] Kawatsu S. Canada Patent,CA 2214769A1. 5,925,476, 1999.
  • [28] Springer TE, Rockward T, Zawodzinski TA, Gottesfeld S. J. of The Electrochemical Society 2001;148:11–23.
  • [29] Carrette LPL, Friedrich KA, Huber M, Stimming U. Physical Chemistry Chemical Physics 2001;3:320–4. https://doi.org/10.1039/b005843m.
  • [30] Baschuk JJ, Li X. International Journal of Energy Research 2003;27:1095–116. https://doi.org/10.1002/er.934.
  • [31] Zamel N, Li X. International Journal of Hydrogen Energy 2008;33:1335–44. https://doi.org/10.1016/j.ijhydene.2007.12.060.
  • [32] James McBreen, Sanjeev Mukerjee, S. Srinivasan. Electro-chemical Society, Pennington, New Jersey. vol. 1. 1997.
  • [33] Baschuk JJ, Li X. International Journal of Energy Research 2003;27:1095–116. https://doi.org/10.1002/er.934.
  • [34] Shah AA, Sui PC, Kim GS, Ye S. J. of Power Sources 2007;166:1–21. https://doi.org/10.1016/j.jpowsour.2007.01.020.
  • [35] Delgado S, Lagarteira T, Mendes A. Air bleeding strategies to increase the efficiency of proton exchange membrane fuel cell stationary applications fuelled with CO ppm-levels. Int J Electrochem Sci 2020; 15:613–27.https://doi.org/10.20964/2020.01.58.
  • [36] Luo Y, Jiao K. Progress in Energy and Combustion Science 2018;64:29–61. https://doi.org/10.1016/j.pecs.2017.10.003.
  • [37] Amamou AA, Kelouwani S, Boulon L, Agbossou K. IEEE Access 2016;4:4989–5002. https://doi.org/10.1109/access.2016.2597058.
There are 37 citations in total.

Details

Primary Language English
Subjects Hybrid and Electric Vehicles and Powertrains, Automotive Engineering (Other)
Journal Section Articles
Authors

Fatima Haıdar 0000-0003-4805-844X

Divyesh Arora 0009-0001-1472-3432

Adrien Soloy 0000-0003-4582-6335

Thomas Bartoli 0000-0002-9460-9639

Publication Date March 31, 2024
Submission Date November 10, 2023
Acceptance Date February 20, 2024
Published in Issue Year 2024 Volume: 8 Issue: 1

Cite

APA Haıdar, F., Arora, D., Soloy, A., Bartoli, T. (2024). Study of Proton-Exchange Membrane Fuel Cell Degradation and its Counter Strategies: Flooding/drying, Cold Start and Carbon Monoxide Poisoning. International Journal of Automotive Science And Technology, 8(1), 96-109. https://doi.org/10.30939/ijastech..1389241
AMA Haıdar F, Arora D, Soloy A, Bartoli T. Study of Proton-Exchange Membrane Fuel Cell Degradation and its Counter Strategies: Flooding/drying, Cold Start and Carbon Monoxide Poisoning. IJASTECH. March 2024;8(1):96-109. doi:10.30939/ijastech.1389241
Chicago Haıdar, Fatima, Divyesh Arora, Adrien Soloy, and Thomas Bartoli. “Study of Proton-Exchange Membrane Fuel Cell Degradation and Its Counter Strategies: Flooding/Drying, Cold Start and Carbon Monoxide Poisoning”. International Journal of Automotive Science And Technology 8, no. 1 (March 2024): 96-109. https://doi.org/10.30939/ijastech. 1389241.
EndNote Haıdar F, Arora D, Soloy A, Bartoli T (March 1, 2024) Study of Proton-Exchange Membrane Fuel Cell Degradation and its Counter Strategies: Flooding/drying, Cold Start and Carbon Monoxide Poisoning. International Journal of Automotive Science And Technology 8 1 96–109.
IEEE F. Haıdar, D. Arora, A. Soloy, and T. Bartoli, “Study of Proton-Exchange Membrane Fuel Cell Degradation and its Counter Strategies: Flooding/drying, Cold Start and Carbon Monoxide Poisoning”, IJASTECH, vol. 8, no. 1, pp. 96–109, 2024, doi: 10.30939/ijastech..1389241.
ISNAD Haıdar, Fatima et al. “Study of Proton-Exchange Membrane Fuel Cell Degradation and Its Counter Strategies: Flooding/Drying, Cold Start and Carbon Monoxide Poisoning”. International Journal of Automotive Science And Technology 8/1 (March 2024), 96-109. https://doi.org/10.30939/ijastech. 1389241.
JAMA Haıdar F, Arora D, Soloy A, Bartoli T. Study of Proton-Exchange Membrane Fuel Cell Degradation and its Counter Strategies: Flooding/drying, Cold Start and Carbon Monoxide Poisoning. IJASTECH. 2024;8:96–109.
MLA Haıdar, Fatima et al. “Study of Proton-Exchange Membrane Fuel Cell Degradation and Its Counter Strategies: Flooding/Drying, Cold Start and Carbon Monoxide Poisoning”. International Journal of Automotive Science And Technology, vol. 8, no. 1, 2024, pp. 96-109, doi:10.30939/ijastech. 1389241.
Vancouver Haıdar F, Arora D, Soloy A, Bartoli T. Study of Proton-Exchange Membrane Fuel Cell Degradation and its Counter Strategies: Flooding/drying, Cold Start and Carbon Monoxide Poisoning. IJASTECH. 2024;8(1):96-109.


International Journal of Automotive Science and Technology (IJASTECH) is published by Society of Automotive Engineers Turkey

by.png