Research Article
BibTex RIS Cite

Enhancing Radiator Cooling with CuO Nanofluid Microchannels

Year 2024, Volume: 8 Issue: 2, 201 - 211, 30.06.2024
https://doi.org/10.30939/ijastech..1399702

Abstract

The study explores in employing copper oxide (CuO) nanofluid as a cooling medium in the vehicle radiators. To simulate the heat transfer process, the microchannel is constructed using elec-tron discharge machining (EDM) and a computational fluid dynamics (CFD) modeling is em-ployed. UV-visible spectroscopy, scanning electron microscopy (SEM), and dynamic light scat-tering (DLS) are used to characterize the CuO nanofluid. CuO nanofluid surpasses water in the heat transfer capabilities, with a 40% improvement in thermal conductivity. The average size of CuO nanoparticles was determined via DLS to be 485.1 nm. The heat transfer coefficient of CuO nanofluid is 5366 W/m2K, which is 116% larger than that of water. The increased heat transfer capabilities of CuO nanofluid microchannel flow indicate to its potential as a viable replacement for conventional radiators in the automotive applications. Lower engine tempera-tures, increased fuel efficiency, and longer engine lifespan may result from improved cooling performance. Due of the small size of microchannels, more efficient and space-saving radiators for automobiles are conceivable. More research is needed to improve the microchannel design as well as to realize the practical benefits of CuO nanofluids in car cooling systems.

References

  • [1] He Z, Yan Y, Zhang Z. Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: A review. Energy. 2021 Feb 1; 216:119223. https://doi.org/10.1016/j.energy.2020.119223
  • [2]Smoyer JL, Norris PM. Brief historical perspective in thermal management and the shift toward management at the nanoscale. Heat Transfer Engineering. 2019 Feb 25; 40(3-4):269-82. https://doi.org/10.1080/01457632.2018.1426265
  • [3] Niemz MH, Niemz MH. Medical applications of lasers. Laser-tissue interactions: fundamentals and applications. 2019:153-249.
  • [4]Bhanvase B, Barai D. Nanofluids for Heat and Mass Transfer: Fundamentals, Sustainable Manufacturing and Applications. Aca-demic Press; 2021 Apr 29.
  • [5]Viskanta R. Thermal engineering challenges for the 21st centu-ry. energetika. 2013;59(4).
  • [6] Nwaigwe K, Okoronkwo CA, Ogueke NV, Anyanwu EE. Re-view of nocturnal cooling systems. International Journal of Energy for a Clean Environment. 2010;11(1-4). https://doi.org/10.1615/InterJEnerCleanEnv.2011003225
  • [7] Buzzichelli G, Anelli E. Present status and perspectives of European research in the field of advanced structural steels. ISIJ international. 2002 Dec 15;42(12):1354-63. https://doi.org/10.2355/isijinternational.42.1354
  • [8] National Academies of Sciences, Engineering, and Medicine. The future of atmospheric chemistry research: remembering yes-terday, understanding today,anticipating tomorrow. National Academies Press; 2016 Dec 29.
  • [9] Zhang Z, Cao B. Thermal smart materials with tunable thermal conductivity: Mechanisms, materials, and applications. Science China Physics, Mechanics & Astronomy. 2022 Nov; 65(11):117003. https://doi.org/10.1007/s11433-022-1925-2
  • [10] Ukueje WE, Abam FI, Obi A. A perspective review on ther-mal conductivity of hybrid nanofluids and their application in automobile radiator cooling. Journal of Nanotechnology. 2022 May 30; 2022. https://doi.org/10.1155/2022/2187932
  • [11] Krishna Y, Faizal M, Saidur R, Ng KC, Aslfattahi N. State-of-the-art heat transfer fluids for parabolic trough collector. Interna-tional Journal of Heat and Mass Transfer. 2020 May 1;152:119541. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119541
  • [12] Rubbi F, Habib K, Saidur R, Aslfattahi N, Yahya SM, Das L. Performance optimization of a hybrid PV/T solar system using Soybean oil/MXene nanofluids as A new class of heat transfer fluids. Solar Energy. 2020 Sep 15;208:124-38. https://doi.org/10.1016/j.solener.2020.07.060
  • [13] Li J, Yang L. Recent Development of Heat Sink and Related Design Methods. Energies. 2023 Oct 18;16(20):7133. https://doi.org/10.3390/en16207133
  • [14]Wang C, Yu X, Pan X, Qin J, Huang H. Thermodynamic optimization of the indirect precooled engine cycle using the method of cascade utilization of cold sources. Energy. 2022 Jan 1; 238:121769. https://doi.org/10.1016/j.energy.2021.121769
  • [15] Khan MZ, Younis MY, Akram N, Akbar B, Rajput UA, Bhut-ta RA, Uddin E, Jamil MA, Márquez FP, Zahid FB. Investigation of heat transfer in wavy and dual wavy micro-channel heat sink using alumina nanoparticles. Case Studies in Thermal Engineering. 2021 Dec 1;28:101515. https://doi.org/10.1016/j.csite.2021.101515
  • [16] Gao J, Hu Z, Yang Q, Liang X, Wu H. Fluid flow and heat transfer in microchannel heat sinks: Modelling review and recent progress. Thermal Science and Engineering Progress. 2022 Mar 1;29:101203. https://doi.org/10.1016/j.tsep.2022.101203
  • [17] Driss A, Maalej S, Chouat I, Zaghdoudi MC. Experimental Investigation on the Thermal Performance of a Heat Pipe-based Cooling System. Mathematical Modelling of Engineering Problems. 2019 Jun 1;6(2). https://doi.org/10.18280/mmep.060209
  • [18] Granado EQ, Pelenghi G, Hijlkema J, Anthoine J, Lestrade JY. A new System Design Tool for a Hybrid Rocket Engine Applica-tion. In73rd International Astronautical Congress (IAC 2022) 2022 Sep 18.
  • [19] Tuckerman DB, Pease RF. High-performance heat sinking for VLSI. IEEE Electron device letters. 1981 May;2(5):126-9. https://doi.org/10.1109/EDL.1981.25367
  • [20] Peng XF, Peterson GP. Forced convection heat transfer of single-phase binary mixtures through micro channels. Experi-mental Thermal and fluid science. 1996 Jan 1;12(1):98-104. https://doi.org/10.1016/0894-1777(95)00079-8
  • [21] Kawano K, Minakami K, Iwasaki H, Ishizuka M. Micro channel heat exchanger for cooling electrical equipment. In ASME International Mechanical Engineering Congress and Exposition 1998 Nov 15 (Vol. 26720, pp. 173-180). American Society of Mechanical Engineers. https://doi.org/10.1115/IMECE1998-0650
  • [22]Yin JM, Bullard CW, Hrnjak PS. Single-phase pressure drop measurements in a microchannel heat exchanger. Heat Transfer Engineering. 2002 Jul 1;23(4):3-12. https://doi.org/10.1080/01457630290090455
  • [23] Kim SJ. Methods for thermal optimization of microchannel heat sinks. Heat transfer engineering. 2004 Jan 1;25(1):37-49. https://doi.org/10.1080/01457630490248359
  • [24] Min JY, Jang SP, Kim SJ. Effect of tip clearance on the cool-ing performance of a microchannel heat sink. International Jour-nal of Heat and Mass Transfer. 2004 Feb 1;47(5):1099-103. https://doi.org/10.1016/j.ijheatmasstransfer.2003.08.020
  • [25] Xu JL, Gan YH, Zhang DC, Li XH. Microscale heat transfer enhancement using thermal boundary layer redeveloping concept. International Journal of Heat and Mass Transfer. 2005 Apr 1;48(9): 1662-74. https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.008
  • [26] Lee PS, Garimella SV. Thermally developing flow and heat transfer in rectangular microchannels of different aspect ratios. International journal of heat and mass transfer.2006 Aug 1;49(17-18):3060-7. https://doi.org/10.1016/j.ijheatmasstransfer.2006.02.011
  • [27] Wang XD, An B, Xu JL. Optimal geometric structure for nanofluid-cooled microchannel heat sink under various constraint conditions. Energy conversion and management. 2013 Jan 1;65:528-38. https://doi.org/10.1016/j.enconman.2012.08.018
  • [28] Dixit P, Lin N, Miao J, Wong WK, Choon TK. Silicon nano-pillars based 3D stacked microchannel heat sinks concept for en-hanced heatdissipation applications in MEMS packaging. Sensors and Actuators A: Physical. 2008 Feb 15;141(2):685-94. https://doi.org/10.1016/j.sna.2007.09.006
  • [29] Eastman JA, Choi SU, Li S, Yu W, Thompson LJ. Anoma-lously increased effective thermal conductivities of ethylene gly-col-based nanofluids containing copper nanoparticles. Applied physics letters. 2001 Feb 5;78(6):718-20. https://doi.org/10.1063/1.1341218
  • [30] Chein R, Chen J. Numerical study of the inlet/outlet arrange-ment effect on microchannel heat sink performance. International Journal of Thermal Sciences. 2009 Aug 1;48(8):1627-38. https://doi.org/10.1016/j.ijthermalsci.2008.12.019
  • [31] Gunnasegaran P, Mohammed H, Shuaib NH. Pressure drop and friction factor for different shapes of microchannels. In2009 3rd International Conference on Energy and Environment (ICEE) 2009 Dec 7 (pp. 418-426). IEEE.
  • [32]Wang XQ, Mujumdar AS. Heat transfer characteristics of nanofluids: a review. International journal of thermal sciences. 2007 Jan 1; 46(1): 1-9. http://dx.doi.org/10.1016/j.ijthermalsci.2006.06.010
  • [33]Timofeeva EV, Routbort JL, Singh D. Particle shape effects on thermophysical properties of alumina nanofluids. Journal of applied physics. 2009 Jul 1;106(1). https://doi.org/10.1063/1.3155999
  • [34]Nguyen CT, Desgranges F, Galanis N, Roy G, Maré T, Bou-cher S, Mintsa HA. Viscosity data for Al2O3–water nanofluid—hysteresis: is heat transfer enhancement using nanofluids relia-ble.International journal of thermal sciences. 2008 Feb 1; 47(2):103-11. https://doi.org/10.1016/j.ijthermalsci.2007.01.033
  • [35]Duangthongsuk W, Wongwises S. Measurement of tempera-ture- dependent thermal conductivity and viscosity of TiO2-water nanofluids. Experimental thermal and fluid science. 2009 Apr 1; 33(4):706-14. https://doi.org/10.1016/j.expthermflusci.2009.01.005
  • [36] Putra N, Roetzel W, Das SK. Natural convection of nano-fluids. Heat and mass transfer. 2003 Sep;39(8-9):775-84. https://doi.org/10.1007/s00231-002-0382-z
  • [37] Ho CJ, Wei LC, Li ZW. An experimental investigation of forced convective cooling performance of a microchannel heat sink withAl2O3/water nanofluid. Applied Thermal Engineering. 2010 Feb 1; 30(2-3):96-103. https://doi.org/10.1016/j.applthermaleng.2009.07.003
  • [38] Xie H, Lee H, Youn W, Choi M. Nanofluids containing mul-tiwalled carbon nanotubes and their enhanced thermal conductivi-ties. Journal of Applied physics. 2003 Oct 15; 94(8): 4967-71. https://doi.org/10.1063/1.1613374
  • [39] Akhiani AR, Mehrali M, Tahan Latibari S, Mehrali M, Mahlia TM, Sadeghinezhad E, Metselaar HS. One-step preparation of form-stable phase change material through self-assembly of fatty acid and graphene. The Journal of Physical Chemistry C. 2015 Oct 8; 119 (40):22787-96. https://doi.org/10.1021/acs.jpcc.5b06089
  • [40] Chon CH, Kihm KD, Lee SP, Choi SU. Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Applied Physics Let-ters. 2005 Oct 10; 87(15). https://doi.org/10.1063/1.2093936
  • [41]Ghadimi A, Saidur R, Metselaar HS. A review of nanofluid stability properties and characterization in stationary condi-tions.International journal of heat and mass transfer. 2011 Aug 1; 54(17-18):4051-68. https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.014
Year 2024, Volume: 8 Issue: 2, 201 - 211, 30.06.2024
https://doi.org/10.30939/ijastech..1399702

Abstract

References

  • [1] He Z, Yan Y, Zhang Z. Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: A review. Energy. 2021 Feb 1; 216:119223. https://doi.org/10.1016/j.energy.2020.119223
  • [2]Smoyer JL, Norris PM. Brief historical perspective in thermal management and the shift toward management at the nanoscale. Heat Transfer Engineering. 2019 Feb 25; 40(3-4):269-82. https://doi.org/10.1080/01457632.2018.1426265
  • [3] Niemz MH, Niemz MH. Medical applications of lasers. Laser-tissue interactions: fundamentals and applications. 2019:153-249.
  • [4]Bhanvase B, Barai D. Nanofluids for Heat and Mass Transfer: Fundamentals, Sustainable Manufacturing and Applications. Aca-demic Press; 2021 Apr 29.
  • [5]Viskanta R. Thermal engineering challenges for the 21st centu-ry. energetika. 2013;59(4).
  • [6] Nwaigwe K, Okoronkwo CA, Ogueke NV, Anyanwu EE. Re-view of nocturnal cooling systems. International Journal of Energy for a Clean Environment. 2010;11(1-4). https://doi.org/10.1615/InterJEnerCleanEnv.2011003225
  • [7] Buzzichelli G, Anelli E. Present status and perspectives of European research in the field of advanced structural steels. ISIJ international. 2002 Dec 15;42(12):1354-63. https://doi.org/10.2355/isijinternational.42.1354
  • [8] National Academies of Sciences, Engineering, and Medicine. The future of atmospheric chemistry research: remembering yes-terday, understanding today,anticipating tomorrow. National Academies Press; 2016 Dec 29.
  • [9] Zhang Z, Cao B. Thermal smart materials with tunable thermal conductivity: Mechanisms, materials, and applications. Science China Physics, Mechanics & Astronomy. 2022 Nov; 65(11):117003. https://doi.org/10.1007/s11433-022-1925-2
  • [10] Ukueje WE, Abam FI, Obi A. A perspective review on ther-mal conductivity of hybrid nanofluids and their application in automobile radiator cooling. Journal of Nanotechnology. 2022 May 30; 2022. https://doi.org/10.1155/2022/2187932
  • [11] Krishna Y, Faizal M, Saidur R, Ng KC, Aslfattahi N. State-of-the-art heat transfer fluids for parabolic trough collector. Interna-tional Journal of Heat and Mass Transfer. 2020 May 1;152:119541. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119541
  • [12] Rubbi F, Habib K, Saidur R, Aslfattahi N, Yahya SM, Das L. Performance optimization of a hybrid PV/T solar system using Soybean oil/MXene nanofluids as A new class of heat transfer fluids. Solar Energy. 2020 Sep 15;208:124-38. https://doi.org/10.1016/j.solener.2020.07.060
  • [13] Li J, Yang L. Recent Development of Heat Sink and Related Design Methods. Energies. 2023 Oct 18;16(20):7133. https://doi.org/10.3390/en16207133
  • [14]Wang C, Yu X, Pan X, Qin J, Huang H. Thermodynamic optimization of the indirect precooled engine cycle using the method of cascade utilization of cold sources. Energy. 2022 Jan 1; 238:121769. https://doi.org/10.1016/j.energy.2021.121769
  • [15] Khan MZ, Younis MY, Akram N, Akbar B, Rajput UA, Bhut-ta RA, Uddin E, Jamil MA, Márquez FP, Zahid FB. Investigation of heat transfer in wavy and dual wavy micro-channel heat sink using alumina nanoparticles. Case Studies in Thermal Engineering. 2021 Dec 1;28:101515. https://doi.org/10.1016/j.csite.2021.101515
  • [16] Gao J, Hu Z, Yang Q, Liang X, Wu H. Fluid flow and heat transfer in microchannel heat sinks: Modelling review and recent progress. Thermal Science and Engineering Progress. 2022 Mar 1;29:101203. https://doi.org/10.1016/j.tsep.2022.101203
  • [17] Driss A, Maalej S, Chouat I, Zaghdoudi MC. Experimental Investigation on the Thermal Performance of a Heat Pipe-based Cooling System. Mathematical Modelling of Engineering Problems. 2019 Jun 1;6(2). https://doi.org/10.18280/mmep.060209
  • [18] Granado EQ, Pelenghi G, Hijlkema J, Anthoine J, Lestrade JY. A new System Design Tool for a Hybrid Rocket Engine Applica-tion. In73rd International Astronautical Congress (IAC 2022) 2022 Sep 18.
  • [19] Tuckerman DB, Pease RF. High-performance heat sinking for VLSI. IEEE Electron device letters. 1981 May;2(5):126-9. https://doi.org/10.1109/EDL.1981.25367
  • [20] Peng XF, Peterson GP. Forced convection heat transfer of single-phase binary mixtures through micro channels. Experi-mental Thermal and fluid science. 1996 Jan 1;12(1):98-104. https://doi.org/10.1016/0894-1777(95)00079-8
  • [21] Kawano K, Minakami K, Iwasaki H, Ishizuka M. Micro channel heat exchanger for cooling electrical equipment. In ASME International Mechanical Engineering Congress and Exposition 1998 Nov 15 (Vol. 26720, pp. 173-180). American Society of Mechanical Engineers. https://doi.org/10.1115/IMECE1998-0650
  • [22]Yin JM, Bullard CW, Hrnjak PS. Single-phase pressure drop measurements in a microchannel heat exchanger. Heat Transfer Engineering. 2002 Jul 1;23(4):3-12. https://doi.org/10.1080/01457630290090455
  • [23] Kim SJ. Methods for thermal optimization of microchannel heat sinks. Heat transfer engineering. 2004 Jan 1;25(1):37-49. https://doi.org/10.1080/01457630490248359
  • [24] Min JY, Jang SP, Kim SJ. Effect of tip clearance on the cool-ing performance of a microchannel heat sink. International Jour-nal of Heat and Mass Transfer. 2004 Feb 1;47(5):1099-103. https://doi.org/10.1016/j.ijheatmasstransfer.2003.08.020
  • [25] Xu JL, Gan YH, Zhang DC, Li XH. Microscale heat transfer enhancement using thermal boundary layer redeveloping concept. International Journal of Heat and Mass Transfer. 2005 Apr 1;48(9): 1662-74. https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.008
  • [26] Lee PS, Garimella SV. Thermally developing flow and heat transfer in rectangular microchannels of different aspect ratios. International journal of heat and mass transfer.2006 Aug 1;49(17-18):3060-7. https://doi.org/10.1016/j.ijheatmasstransfer.2006.02.011
  • [27] Wang XD, An B, Xu JL. Optimal geometric structure for nanofluid-cooled microchannel heat sink under various constraint conditions. Energy conversion and management. 2013 Jan 1;65:528-38. https://doi.org/10.1016/j.enconman.2012.08.018
  • [28] Dixit P, Lin N, Miao J, Wong WK, Choon TK. Silicon nano-pillars based 3D stacked microchannel heat sinks concept for en-hanced heatdissipation applications in MEMS packaging. Sensors and Actuators A: Physical. 2008 Feb 15;141(2):685-94. https://doi.org/10.1016/j.sna.2007.09.006
  • [29] Eastman JA, Choi SU, Li S, Yu W, Thompson LJ. Anoma-lously increased effective thermal conductivities of ethylene gly-col-based nanofluids containing copper nanoparticles. Applied physics letters. 2001 Feb 5;78(6):718-20. https://doi.org/10.1063/1.1341218
  • [30] Chein R, Chen J. Numerical study of the inlet/outlet arrange-ment effect on microchannel heat sink performance. International Journal of Thermal Sciences. 2009 Aug 1;48(8):1627-38. https://doi.org/10.1016/j.ijthermalsci.2008.12.019
  • [31] Gunnasegaran P, Mohammed H, Shuaib NH. Pressure drop and friction factor for different shapes of microchannels. In2009 3rd International Conference on Energy and Environment (ICEE) 2009 Dec 7 (pp. 418-426). IEEE.
  • [32]Wang XQ, Mujumdar AS. Heat transfer characteristics of nanofluids: a review. International journal of thermal sciences. 2007 Jan 1; 46(1): 1-9. http://dx.doi.org/10.1016/j.ijthermalsci.2006.06.010
  • [33]Timofeeva EV, Routbort JL, Singh D. Particle shape effects on thermophysical properties of alumina nanofluids. Journal of applied physics. 2009 Jul 1;106(1). https://doi.org/10.1063/1.3155999
  • [34]Nguyen CT, Desgranges F, Galanis N, Roy G, Maré T, Bou-cher S, Mintsa HA. Viscosity data for Al2O3–water nanofluid—hysteresis: is heat transfer enhancement using nanofluids relia-ble.International journal of thermal sciences. 2008 Feb 1; 47(2):103-11. https://doi.org/10.1016/j.ijthermalsci.2007.01.033
  • [35]Duangthongsuk W, Wongwises S. Measurement of tempera-ture- dependent thermal conductivity and viscosity of TiO2-water nanofluids. Experimental thermal and fluid science. 2009 Apr 1; 33(4):706-14. https://doi.org/10.1016/j.expthermflusci.2009.01.005
  • [36] Putra N, Roetzel W, Das SK. Natural convection of nano-fluids. Heat and mass transfer. 2003 Sep;39(8-9):775-84. https://doi.org/10.1007/s00231-002-0382-z
  • [37] Ho CJ, Wei LC, Li ZW. An experimental investigation of forced convective cooling performance of a microchannel heat sink withAl2O3/water nanofluid. Applied Thermal Engineering. 2010 Feb 1; 30(2-3):96-103. https://doi.org/10.1016/j.applthermaleng.2009.07.003
  • [38] Xie H, Lee H, Youn W, Choi M. Nanofluids containing mul-tiwalled carbon nanotubes and their enhanced thermal conductivi-ties. Journal of Applied physics. 2003 Oct 15; 94(8): 4967-71. https://doi.org/10.1063/1.1613374
  • [39] Akhiani AR, Mehrali M, Tahan Latibari S, Mehrali M, Mahlia TM, Sadeghinezhad E, Metselaar HS. One-step preparation of form-stable phase change material through self-assembly of fatty acid and graphene. The Journal of Physical Chemistry C. 2015 Oct 8; 119 (40):22787-96. https://doi.org/10.1021/acs.jpcc.5b06089
  • [40] Chon CH, Kihm KD, Lee SP, Choi SU. Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Applied Physics Let-ters. 2005 Oct 10; 87(15). https://doi.org/10.1063/1.2093936
  • [41]Ghadimi A, Saidur R, Metselaar HS. A review of nanofluid stability properties and characterization in stationary condi-tions.International journal of heat and mass transfer. 2011 Aug 1; 54(17-18):4051-68. https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.014
There are 41 citations in total.

Details

Primary Language English
Subjects Heat Transfer in Automotive
Journal Section Articles
Authors

Shalom Akhai 0000-0002-7533-457X

Amandeep Wadhwa 0000-0002-7480-9254

Publication Date June 30, 2024
Submission Date December 3, 2023
Acceptance Date February 11, 2024
Published in Issue Year 2024 Volume: 8 Issue: 2

Cite

APA Akhai, S., & Wadhwa, A. (2024). Enhancing Radiator Cooling with CuO Nanofluid Microchannels. International Journal of Automotive Science And Technology, 8(2), 201-211. https://doi.org/10.30939/ijastech..1399702
AMA Akhai S, Wadhwa A. Enhancing Radiator Cooling with CuO Nanofluid Microchannels. IJASTECH. June 2024;8(2):201-211. doi:10.30939/ijastech.1399702
Chicago Akhai, Shalom, and Amandeep Wadhwa. “Enhancing Radiator Cooling With CuO Nanofluid Microchannels”. International Journal of Automotive Science And Technology 8, no. 2 (June 2024): 201-11. https://doi.org/10.30939/ijastech. 1399702.
EndNote Akhai S, Wadhwa A (June 1, 2024) Enhancing Radiator Cooling with CuO Nanofluid Microchannels. International Journal of Automotive Science And Technology 8 2 201–211.
IEEE S. Akhai and A. Wadhwa, “Enhancing Radiator Cooling with CuO Nanofluid Microchannels”, IJASTECH, vol. 8, no. 2, pp. 201–211, 2024, doi: 10.30939/ijastech..1399702.
ISNAD Akhai, Shalom - Wadhwa, Amandeep. “Enhancing Radiator Cooling With CuO Nanofluid Microchannels”. International Journal of Automotive Science And Technology 8/2 (June 2024), 201-211. https://doi.org/10.30939/ijastech. 1399702.
JAMA Akhai S, Wadhwa A. Enhancing Radiator Cooling with CuO Nanofluid Microchannels. IJASTECH. 2024;8:201–211.
MLA Akhai, Shalom and Amandeep Wadhwa. “Enhancing Radiator Cooling With CuO Nanofluid Microchannels”. International Journal of Automotive Science And Technology, vol. 8, no. 2, 2024, pp. 201-1, doi:10.30939/ijastech. 1399702.
Vancouver Akhai S, Wadhwa A. Enhancing Radiator Cooling with CuO Nanofluid Microchannels. IJASTECH. 2024;8(2):201-1.


International Journal of Automotive Science and Technology (IJASTECH) is published by Society of Automotive Engineers Turkey

by.png