Review
BibTex RIS Cite

Advancing Sustainability Through Tire Recycling Innovations

Year 2025, Volume: 9 Issue: 3, 325 - 342, 30.09.2025
https://doi.org/10.30939/ijastech..1655579

Abstract

This review examines the critical challenge of tire waste management, focusing on advance-ments in recycling technologies, their environmental impacts, and their contributions to sustainability. Tire waste has become a growing global concern because of the enormous volume generated each year and the long-lasting nature of rubber materials, which makes safe disposal extremely difficult. The paper provides a comprehensive analysis of current recycling methods, such as mechanical grinding, pyrolysis, and devulcanization, while highlighting their limita-tions in terms of energy consumption, operational costs, and material recovery efficiency. These traditional processes, though widely used, often struggle to balance environmental bene-fits with economic feasibility, which limits their large-scale application. Additionally, emerging innovations, including advanced material separation techniques, chemical processing routes, and integration into circular economy frameworks, are discussed for their potential to improve recycling yields and reduce environmental footprints. Such technologies represent a significant shift toward more sustainable practices, aiming to maximize material recovery and minimize waste. The review explores key metrics, such as greenhouse gas emissions, resource conserva-tion, and economic feasibility, to evaluate the effectiveness of various recycling technologies. By presenting comparative insights, the work highlights how different approaches can complement each other when adopted in a broader waste management system. By integrating insights from materials science, environmental engineering, and economic analysis, this work under-scores the importance of innovative strategies in tire recycling. The findings emphasize the need for continued research and policy support to overcome technical and market challenges, promote sustainable waste management practices, and establish a robust circular economy for end-of-life tires.

References

  • [1] Lewandowski WM, Januszewicz K, Kosakowski W. Efficiency and proportions of waste tyre pyrolysis products depending on the reactor type—A review. J Anal Appl Pyrolysis 2019;140:25–53. https://doi.org/10.1016/j.jaap.2019.03.018.
  • [2] Simões CL, Simoes R, Carvalho J, Pontes AJ, Bernardo CA. The quest for a sustainable product: An environmental study of tyre recyclates. Mater Des 2013;52:196–206. https://doi.org/10.1016/j.matdes.2013.05.051.
  • [3] Bowles AJ, Wilson AL, Fowler GD. Synergistic benefits of recovered carbon black demineralisation for tyre recycling. Resour Conserv Recycl 2023;198:107124. https://doi.org/10.1016/j.resconrec.2023.107124.
  • [4] Van Beukering PJH, Janssen MA. Trade and recycling of used tyres in Western and Eastern Europe. Resour Conserv Recycl 2001;33:235–65. https://doi.org/10.1016/S0921-3449(01)00082-9.
  • [5] Gigli S, Landi D, Germani M. Cost-benefit analysis of a circular economy project: a study on a recycling system for end-of-life tyres. J Clean Prod 2019;229:680–94. https://doi.org/10.1016/j.jclepro.2019.03.223.
  • [6] Maga D, Aryan V, Blömer J. A comparative life cycle assessment of tyre recycling using pyrolysis compared to conventional end-of-life pathways. Resour Conserv Recycl 2023;199. https://doi.org/10.1016/j.resconrec.2023.107255.
  • [7] Bowles AJ, Fowler GD. Assessing the impacts of feedstock and process control on pyrolysis outputs for tyre recycling. Resour Conserv Recycl 2022;182:106277. https://doi.org/10.1016/j.resconrec.2022.106277.
  • [8] Loginov PA, Sidorenko DA, Orekhov AS, Levashov EA. A novel method for in situ TEM measurements of adhesion at the diamond–metal interface. Sci Rep 2021;11:1–10. https://doi.org/10.1038/s41598-021-89536-2.
  • [9] Lo Presti D. Recycled Tyre Rubber Modified Bitumens for road asphalt mixtures: A literature review. Constr Build Mater 2013;49:863–81. https://doi.org/10.1016/j.conbuildmat.2013.09.007.
  • [10] Záleská M, Pavlík Z, Čítek D, Jankovský O, Pavlíková M. Eco-friendly concrete with scrap-tyre-rubber-based aggregate – Properties and thermal stability. Constr Build Mater 2019;225:709–22. https://doi.org/10.1016/j.conbuildmat.2019.07.168.
  • [11] Flores Medina D, Carolina Hernández Martínez M, Flores Medina N, Hernández-Olivares F. Durability of rubberized concrete with recycled steel fibers from tyre recycling in aggresive enviroments. Constr Build Mater 2023;400. https://doi.org/10.1016/j.conbuildmat.2023.132619.
  • [12] Campbell-Johnston K, Calisto Friant M, Thapa K, Lakerveld D, Vermeulen WJV. How circular is your tyre: Experiences with extended producer responsibility from a circular economy perspective. J Clean Prod 2020;270:122042. https://doi.org/10.1016/j.jclepro.2020.122042.
  • [13] Xu X, Leng Z, Lan J, Wang W, Yu J, Bai Y, et al. Sustainable Practice in Pavement Engineering through Value-Added Collective Recycling of Waste Plastic and Waste Tyre Rubber. Engineering 2021;7:857–67. https://doi.org/10.1016/j.eng.2020.08.020.
  • [14] Poulose N, Selvakumar P, Philip JT, George J. Tribological, mechanical and thermal response of diamond micro-particles reinforced copper matrix composites fabricated by powder metallurgy. Mater Res Express 2023;10:015003. https://doi.org/10.1088/2053-1591/acb1a0.
  • [15] Poulose N, Selvakumar P. Enhancing wear resistance, hardness, and thermal conductivity of copper diamond composites through optimization strategies. J Mech Sci Technol 2024;38:1883–90. https://doi.org/10.1007/s12206-024-0321-8.
  • [16] Bowles AJ, Fowler GD, O’Sullivan C, Parker K. Sustainable rubber recycling from waste tyres by waterjet: A novel mechanistic and practical analysis. Sustain Mater Technol 2020;25:e00173. https://doi.org/10.1016/j.susmat.2020.e00173.
  • [17] Pei Y, Han B, Kumar D, Adams SD, Khoo SY, Norton M, et al. Mechanical processes for recycling of End-of-Life Tyres. Sustain Mater Technol 2024;41:e01050. https://doi.org/10.1016/j.susmat.2024.e01050.
  • [18] Valentini F, Pegoretti A. End-of-life options of tyres. A review. Adv Ind Eng Polym Res 2022;5:203–13. https://doi.org/10.1016/j.aiepr.2022.08.006.
  • [19] Poulose N, Selvakumar P, Philip JT, Ananthi A, Kavitha S. Study of the Mechanical Properties of the Copper Matrix Composites (CMCs): A Review. Mater Sci Forum 2022;1075:149–71. https://doi.org/10.4028/p-64wom0.
  • [20] Jahirul MI, Hossain FM, Rasul MG, Chowdhury AA. A review on the thermochemical recycling of waste tyres to oil for automobile engine application. Energies 2021;14:1–18. https://doi.org/10.3390/en14133837.
  • [21] Ferrão P, Ribeiro P, Silva P. A management system for end-of-life tyres: A Portuguese case study. Waste Manag 2008;28:604–14. https://doi.org/10.1016/j.wasman.2007.02.033.
  • [22] Winternitz K, Heggie M, Baird J. Extended producer responsibility for waste tyres in the EU: Lessons learnt from three case studies – Belgium, Italy and the Netherlands. Waste Manag 2019;89:386–96. https://doi.org/10.1016/j.wasman.2019.04.023.
  • [23] Neri E, Berti B, Passarini F, Vassura I, Giorgini L, Zattini G, et al. Application of LCA methodology in the assessment of a pyrolysis process for tyres recycling. Environ Eng Manag J 2018;17:2437–45. https://doi.org/10.30638/eemj.2018.242.
  • [24] Poulose N, Selvakumar P. Assessment of corrosion resistance and reliability of Cu/diamond composite materials in aquatic environment. J Mech Sci Technol 2024;38:2439–46. https://doi.org/10.1007/s12206-024-0422-4.
  • [25] Impact E, Tyre L, Tyre S, Pollution W, Waste S, Disposal T, et al. Environmental impact of end of life tyre (elt) or scrap tyre waste pollution and the need for sustainable waste tyre disposal and transformation mechanism in nigeria 1 2018:60–70.
  • [26] Bartl A, Hackl A, Mihalyi B, Wistuba M, Marini I. Recycling of fibre materials. Process Saf Environ Prot 2005;83:351–8. https://doi.org/10.1205/psep.04392.
  • [27] Labaki M, Jeguirim M. Thermochemical conversion of waste tyres—a review. Environ Sci Pollut Res 2017;24:9962–92. https://doi.org/10.1007/s11356-016-7780-0.
  • [28] Bignozzi MC, Sandrolini F. Tyre rubber waste recycling in self-compacting concrete. Cem Concr Res 2006;36:735–9. https://doi.org/10.1016/j.cemconres.2005.12.011.
  • [29] Holst O, Stenberg B, Christiansson M. Biotechnological possibilities for waste tyre-rubber treatment. Biodegradation, vol. 9, 1998, p. 301–10. https://doi.org/10.1023/a:1008337708006.
  • [30] Curry R, Powell J, Gribble N, Waite S. A streamlined life-cycle assessment and decision tool for used tyres recycling. Proc Inst Civ Eng Waste Resour Manag 2011;164:227–37. https://doi.org/10.1680/warm.2011.164.4.227.
  • [31] Uvarova I, Atstaja D, Korpa V, Avena L, Erdmanis M. End-of-life tyre recycling: Going beyond to new circular business models in Latvia. Eng. Rural Dev., vol. 19, 2020, p. 1680–91. https://doi.org/10.22616/ERDev.2020.19.TF435.
  • [32] Lee SY, Hu J, Lim MK. Maximising the circular economy and sustainability outcomes: An end-of-life tyre recycling outlets selection model. Int J Prod Econ 2021;232:107965. https://doi.org/10.1016/j.ijpe.2020.107965.
  • [33] Khezri M, Mamkhezri J, Heshmati A. Exploring non-linear causal nexus between economic growth and energy consumption across various R&D regimes: Cross-country evidence from a PSTR model. Energy Econ 2024;133:107519. https://doi.org/10.1016/j.eneco.2024.107519.
  • [34] Roy P, Shimizu N, Shiina T, Kimura T. Energy consumption and cost analysis of local parboiling processes. J Food Eng 2006;76:646–55. https://doi.org/10.1016/j.jfoodeng.2005.06.034.
  • [35] Rowhani A, Rainey TJ. Scrap tyre management pathways and their use as a fuel - A review. Energies 2016;9:1–26. https://doi.org/10.3390/en9110888.
  • [36] Guglielmotti A, Lucignano C, Quadrini F. Production of rubber pads by tyre recycling. Int J Mater Eng Innov 2009;1:91–106. https://doi.org/10.1504/IJMATEI.2009.024029.
  • [37] Gugliemotti A, Lucignano C, Quadrini F. Production of rubber parts by tyre recycling without using virgin materials. Plast Rubber Compos 2012;41:40–6. https://doi.org/10.1179/1743289811Y.0000000010.
  • [38] Isayev AI. Recycling of natural and synthetic isoprene rubbers. 2014. https://doi.org/10.1533/9780857096913.3.395.
  • [39] Isayev AI. Recycling of Rubbers. Sci Technol Rubber 2005:663–701. https://doi.org/10.1016/B978-012464786-2/50018-3.
  • [40] Jenkins RR, Martinez SA, Palmer K, Podolsky MJ. The determinants of household recycling: A material-specific analysis of recycling program features and unit pricing. J Environ Econ Manage 2003;45:294–318. https://doi.org/10.1016/S0095-0696(02)00054-2.
  • [41] Huang W. Sustainable management of different systems for recycling end-of-life tyres in China. Waste Manag Res 2021;39:966–74. https://doi.org/10.1177/0734242X20976976.
  • [42] Duflou JR, Wegener K, Tekkaya AE, Hauschild M, Bleicher F, Yan J, et al. Efficiently preserving material resources in manufacturing: Industrial symbiosis revisited. CIRP Ann 2024;73:695–721. https://doi.org/10.1016/j.cirp.2024.05.006.
  • [43] Karger-Kocsis J, Mészáros L, Bárány T. Ground tyre rubber (GTR) in thermoplastics, thermosets, and rubbers. J Mater Sci 2013;48:1–38. https://doi.org/10.1007/s10853-012-6564-2.
  • [44] Mastral AM, Murillo R, Callen MS, Garcia T. Optimisation of scrap automotive tyres recycling into valuable liquid fuels. Resour. Conserv. Recycl., vol. 29, 2000, p. 263–72. https://doi.org/10.1016/S0921-3449(00)00051-3.
  • [45] Petrella A, Di Mundo R, De Gisi S, Todaro F, Labianca C, Notarnicola M. Environmentally sustainable cement composites based on end-of-life tyre rubber and recycled waste porous glass. Materials (Basel) 2019;12:11–7. https://doi.org/10.3390/ma12203289.
  • [46] Worrell E. Recycling metals. Encycl Energy 2004;5:245–52.
  • [47] Bobrowicz J, Michalik A, Chyli F. Steel Fibres. Materials (Basel) 2022;15:1–21.
  • [48] Álvarez M, Santos P, Lopes P, Abrantes D, Ferrández D. Performance Characterisation of a New Plaster Composite Lightened with End-of-Life Tyres’ Recycled Materials for False Ceiling Plates. Materials (Basel) 2022;15. https://doi.org/10.3390/ma15165660.
  • [49] Oikonomou N, Mavridou S. The use of waste tyre rubber in civil engineering works. Sustain. Constr. Mater., 2009, p. 213–38. https://doi.org/10.1533/9781845695842.213.
  • [50] Fernández-Ruiz R, Friedrich KEJ, Redrejo MJ, Pérez-Aparicio R, Saiz-Rodríguez L. Quantification of recycled rubber content of end-of-life tyres in asphalt bitumen by total-reflection X-ray fluorescence spectrometry. Spectrochim Acta - Part B At Spectrosc 2020;166:105803. https://doi.org/10.1016/j.sab.2020.105803.
  • [51] Anderson J. The environmental benefits of water recycling and reuse. Water Sci Technol Water Supply 2003;3:1–10. https://doi.org/10.2166/ws.2003.0041.
  • [52] Lamberti FM, Román-Ramírez LA, Wood J. Recycling of Bioplastics: Routes and Benefits. J Polym Environ 2020;28:2551–71. https://doi.org/10.1007/s10924-020-01795-8.
  • [53] Pilakoutas K, Neocleous K, Tlemat H. Reuse of tyre steel fibres as concrete reinforcement. Proc Inst Civ Eng Eng Sustain 2004;157:131–8. https://doi.org/10.1680/ensu.2004.157.3.131.
  • [54] Quadrini F, Bellisario D, Santo L, Hren I. Direct moulding of rubber granules and powders from tyre recycling. Appl. Mech. Mater., vol. 371, 2013, p. 315–9. https://doi.org/10.4028/www.scientific.net/AMM.371.315.
  • [55] Rosendorfová M, Vybochová I, Beukering P. Waste management and recycling of tyres in Europe. Inst Environ Stud 1998:1–113.
  • [56] Mohajerani A, Burnett L, Smith J V, Markovski S, Rodwell G. Resources , Conservation & Recycling Recycling waste rubber tyres in construction materials and associated environmental considerations : A review. Resour Conserv Recycl 2020;155:104679. https://doi.org/10.1016/j.resconrec.2020.104679.
  • [57] Xiao Z, Pramanik A, Basak AK, Prakash C, Shankar S. Material recovery and recycling of waste tyres-A review. Clean Mater 2022;5:100115. https://doi.org/10.1016/j.clema.2022.100115.
  • [58] Ferdous W, Manalo A, Siddique R, Mendis P, Zhuge Y, Wong HS, et al. Resources , Conservation & Recycling Recycling of landfill wastes ( tyres , plastics and glass ) in construction – A review on global waste generation , performance , application and future opportunities. Resour Conserv Recycl 2021;173:105745. https://doi.org/10.1016/j.resconrec.2021.105745.
  • [59] Archibong FN, Sanusi OM, Médéric P, Aït Hocine N. An overview on the recycling of waste ground tyre rubbers in thermoplastic matrices: Effect of added fillers. Resour Conserv Recycl 2021;175. https://doi.org/10.1016/j.resconrec.2021.105894.
  • [60] Sienkiewicz M, Kucinska-Lipka J, Janik H, Balas A. Progress in used tyres management in the European Union: A review. Waste Manag 2012;32:1742–51. https://doi.org/10.1016/j.wasman.2012.05.010.
  • [61] Sienkiewicz M, Janik H, Borzędowska-Labuda K, Kucińska-Lipka J. Environmentally friendly polymer-rubber composites obtained from waste tyres: A review. J Clean Prod 2017;147:560–71. https://doi.org/10.1016/j.jclepro.2017.01.121.
  • [62] Sebola MR, Mativenga PT, Pretorius J. A Benchmark Study of Waste Tyre Recycling in South Africa to European Union Practice. Procedia CIRP, vol. 69, The Author(s); 2018, p. 950–5. https://doi.org/10.1016/j.procir.2017.11.137.
  • [63] Torretta V, Rada EC, Ragazzi M, Trulli E, Istrate IA, Cioca LI. Treatment and disposal of tyres: Two EU approaches. A review. Waste Manag 2015;45:152–60. https://doi.org/10.1016/j.wasman.2015.04.018.
  • [64] Dobrotă D, Dobrotă G, Dobrescu T. Improvement of waste tyre recycling technology based on a new tyre markings. J Clean Prod 2020;260. https://doi.org/10.1016/j.jclepro.2020.121141.
  • [65] Vinodh S, Jayakrishna K. Application of Hybrid MCDM Approach for Selecting the Best Tyre Recycling Process, 2013, p. 103–23. https://doi.org/10.1007/978-3-642-33792-5_5.
  • [66] Wu B, Zhou MH. Recycling of waste tyre rubber into oil absorbent. Waste Manag 2009;29:355–9. https://doi.org/10.1016/j.wasman.2008.03.002.
  • [67] Müller M. Mechanical properties of composite material reinforced with textile waste from the process of tyres recycling. Res Agric Eng 2016;62:99–105. https://doi.org/10.17221/32/2015-RAE.
  • [68] Sugira JC, Ninteretse J de D, Nshimiyimana M, Niyogakiza P. Comparative Analysis of Road Safety Performance In Sub-Saharan African Countries Using Road Safety Performance Index. Eng Perspect 2025;5:90–9. https://doi.org/10.29228/eng.pers.77134.
  • [69] Nassar M, Polat K, Koçlu Y, Topaç MM. Design and Optimisation of a Double Wishbone Independent Suspension System for an L6 Electric Vehicle: A Response Surface Methodology Based Design Application. Eng Perspect 2025;5:21–30. https://doi.org/10.29228/eng.pers.79569.
  • [70] Biçer SG, Katmer MC. Study on the Flexible Dynamic Analysis of the Wheel Loader Under Working Conditions and Comparison with Static FEA Results. Eng Perspect 2023;3:57–62. https://doi.org/10.29228/eng.pers.72736.
  • [71] Özer S, Arslan A, Doğan B, Tuncer E, Arslan Ö. Eco-Friendly Nano-Additives: Energy, Exergy, and Environmental Impacts in Motor Vehicle Emission Control. Int J Automot Sci Technol 2025;9:121–35. https://doi.org/10.30939/ijastech..1605832.
  • [72] Kuyu YÇ. Trajectory Tracking Control Using Evolutionary Approaches for Autonomous Driving. Int J Automot Sci Technol 2024;8:110–7. https://doi.org/10.30939/ijastech..1354082..
  • [73] Bilir C, Cetişli B, Kizil N, Karaduman İ, Çavuş Z, Sabuncu E. Acoustic Performance of Natural Fiber Felts for the Automotive Industry. Int J Automot Sci Technol 2025;9:1–11. https://doi.org/10.30939/ijastech..1500314..
There are 73 citations in total.

Details

Primary Language English
Subjects Automotive Engineering Materials
Journal Section Articles
Authors

Nixon Poulose 0000-0003-0930-2593

Publication Date September 30, 2025
Submission Date March 11, 2025
Acceptance Date May 27, 2025
Published in Issue Year 2025 Volume: 9 Issue: 3

Cite

APA Poulose, N. (2025). Advancing Sustainability Through Tire Recycling Innovations. International Journal of Automotive Science And Technology, 9(3), 325-342. https://doi.org/10.30939/ijastech..1655579
AMA Poulose N. Advancing Sustainability Through Tire Recycling Innovations. IJASTECH. September 2025;9(3):325-342. doi:10.30939/ijastech.1655579
Chicago Poulose, Nixon. “Advancing Sustainability Through Tire Recycling Innovations”. International Journal of Automotive Science And Technology 9, no. 3 (September 2025): 325-42. https://doi.org/10.30939/ijastech. 1655579.
EndNote Poulose N (September 1, 2025) Advancing Sustainability Through Tire Recycling Innovations. International Journal of Automotive Science And Technology 9 3 325–342.
IEEE N. Poulose, “Advancing Sustainability Through Tire Recycling Innovations”, IJASTECH, vol. 9, no. 3, pp. 325–342, 2025, doi: 10.30939/ijastech..1655579.
ISNAD Poulose, Nixon. “Advancing Sustainability Through Tire Recycling Innovations”. International Journal of Automotive Science And Technology 9/3 (September2025), 325-342. https://doi.org/10.30939/ijastech. 1655579.
JAMA Poulose N. Advancing Sustainability Through Tire Recycling Innovations. IJASTECH. 2025;9:325–342.
MLA Poulose, Nixon. “Advancing Sustainability Through Tire Recycling Innovations”. International Journal of Automotive Science And Technology, vol. 9, no. 3, 2025, pp. 325-42, doi:10.30939/ijastech. 1655579.
Vancouver Poulose N. Advancing Sustainability Through Tire Recycling Innovations. IJASTECH. 2025;9(3):325-42.


International Journal of Automotive Science and Technology (IJASTECH) is published by Society of Automotive Engineers Turkey

by.png