Review Article
BibTex RIS Cite

Nanotechnology and its Versatile Applications in Medicine, Environment, Energy, Textiles, Food Industry

Year 2024, Issue: 1, 18 - 49, 31.12.2024

Abstract

Nanotechnology refers to technology that is applied at the nanoscale and has global applications. The unique physical and chemical properties of materials used in nanotechnology are used for applications that benefit society. Research in the world of technology and science in this regard is contributing to nanotechnology making great advances in various fields. The science of nanotechnology benefits fields such as chemistry, medicine, physics, biology and engineering and works with nanoscale materials. This review highlights the revolutionary work and remarkable innovations in the application of nanotechnology in fields as diverse as medicine, environment, energy, textiles and food. These innovations include vaccine development in medicine, tissue engineering, drug delivery systems, surgical applications, orthopedic implants and nerve tubulization. Sustainable agriculture, carbon footprinting, smart sensors, biodegradable materials are frequently used in environmental applications. In addition, the role of nanomaterials in the capture, storage and functional use of energy is very important. In addition to these applications, there are also nanotechnological studies in the textile and food industry. At the beginning of these studies, nanomaterials used in the textile industry give fabrics properties such as waterproof, antibacterial, antistatic, self-cleaning and wrinkle resistance. Nanomaterials used in the food industry are revolutionizing these sectors with active, smart, enhanced and bio-based packaging solutions. As nanotechnology continues to evolve, it holds the potential to transform every aspect of our lives, driving innovation and progress across industries and shaping a sustainable, interconnected future.

References

  • Gökçay B, Arda B: Nanotechnology, nanomedicine: Ethical aspects, Revista Romana de Bioetica13(3): 423-432, 2015 .
  • S. Bayda, M. Adeel, T. Tuccinardi, M. Cordani, and F. Rizzolio, “The History of Nanoscience and Nanotechnology: From Chemical–Physical Applications to Nanomedicine,” Molecules, vol. 25, no. 1, p. 112, Dec. 2019, doi: 10.3390/molecules25010112.
  • M. Nasrollahzadeh, S. M. Sajadi, M. Sajjadi, and Z. Issaabadi, “An Introduction to Nanotechnology,” 2019, pp. 1–27.
  • H. Goksu, M. Bekmezci, V. Erduran, and F. Şen, “Bimetallic nanomaterials for direct alcohol fuel cells,” Nanomater. Direct Alcohol Fuel Cells, pp. 145–156, Jan. 2021, doi: 10.1016/B978-0-12-821713-9.00017-2.
  • I. Meydan, H. Seckin, H. Burhan, T. Gür, B. Tanhaei, and F. Sen, “Arum italicum mediated silver nanoparticles: Synthesis and investigation of some biochemical parameters,” Environ. Res., vol. 204, p. 112347, Mar. 2022, doi: 10.1016/J.ENVRES.2021.112347.
  • K. Nesrin et al., “Biogenic silver nanoparticles synthesized from Rhododendron ponticum and their antibacterial, antibiofilm and cytotoxic activities,” J. Pharm. Biomed. Anal., vol. 179, 2020, doi: 10.1016/j.jpba.2019.112993.
  • İ. M. Alkaç, B. Çerçi, C. Timuralp, and F. Şen, “Nanomaterials and their classification,” in Nanomaterials for Direct Alcohol Fuel Cells, Elsevier, 2021, pp. 17–33.
  • G. N. G. Saritha, T. Anju, and A. Kumar, “Nanotechnology - Big impact: How nanotechnology is changing the future of agriculture?,” J. Agric. Food Res., vol. 10, p. 100457, Dec. 2022, doi: 10.1016/j.jafr.2022.100457.
  • M. Alenazi, “Nanotechnology in Drugs Delivery,” IJARCCE, vol. 5, no. 5, pp. 1052–1054, May 2016, doi: 10.17148/IJARCCE.2016.55255.
  • Z. Ozturk, F. Sen, S. Sen, and G. Gokagac, “The preparation and characterization of nano-sized Pt-Pd/C catalysts and comparison of their superior catalytic activities for methanol and ethanol oxidation,” J. Mater. Sci., vol. 47, no. 23, pp. 8134–8144, Dec. 2012, doi: 10.1007/s10853-012-6709-3.
  • N. Korkmaz et al., “Biogenic silver nanoparticles synthesized via Mimusops elengi fruit extract, a study on antibiofilm, antibacterial, and anticancer activities,” J. Drug Deliv. Sci. Technol., vol. 59, p. 101864, Oct. 2020, doi: 10.1016/j.jddst.2020.101864.
  • B. Şen, A. Aygün, A. Şavk, S. Akocak, and F. Şen, “Bimetallic Palladium–iridium Alloy Nanoparticles as Highly Efficient and Stable Catalyst for The Hydrogen Evolution Reaction,” Int. J. Hydrogen Energy, vol. 43, no. 44, pp. 20183–20191, Nov. 2018, doi: 10.1016/j.ijhydene.2018.07.081.
  • B. Şen, A. Aygün, T. O. Okyay, A. Şavk, R. Kartop, and F. Şen, “Monodisperse palladium nanoparticles assembled on graphene oxide with the high catalytic activity and reusability in the dehydrogenation of dimethylamine-borane,” Int. J. Hydrogen Energy, vol. 43, no. 44, pp. 20176–20182, Nov. 2018, doi: 10.1016/j.ijhydene.2018.03.175.
  • E. Erken, Y. Yildiz, B. Kilbaş, and F. Şen, “Synthesis and characterization of nearly monodisperse Pt nanoparticles for C1 to C3 alcohol oxidation and dehydrogenation of dimethylamine-borane (DMAB),” J. Nanosci. Nanotechnol., vol. 16, no. 6, pp. 5944–5950, Jun. 2016, doi: 10.1166/jnn.2016.11683.
  • B. Demirkan et al., “Palladium supported on polypyrrole/reduced graphene oxide nanoparticles for simultaneous biosensing application of ascorbic acid, dopamine, and uric acid,” Sci. Rep., vol. 10, no. 1, pp. 1–10, Dec. 2020, doi: 10.1038/s41598-020-59935-y.
  • B. Demirkan et al., “Composites of Bimetallic Platinum-Cobalt Alloy Nanoparticles and Reduced Graphene Oxide for Electrochemical Determination of Ascorbic Acid, Dopamine, and Uric Acid,” Sci. Rep., vol. 9, no. 1, Dec. 2019, doi: 10.1038/s41598-019-48802-0.
  • S. Ertan, F. Şen, S. Şen, and G. Gökağaç, “Platinum nanocatalysts prepared with different surfactants for C1–C3 alcohol oxidations and their surface morphologies by AFM,” J. Nanoparticle Res., vol. 14, no. 6, p. 922, Jun. 2012, doi: 10.1007/s11051-012-0922-5.
  • F. Şen and G. Gökaǧaç, “Improving Catalytic Efficiency in the Methanol Oxidation Reaction by Inserting Ru in Face-Centered Cubic Pt Nanoparticles Prepared by a New Surfactant, tert-Octanethiol,” Energy and Fuels, vol. 22, no. 3, pp. 1858–1864, May 2008, doi: 10.1021/EF700575T.
  • F. Şen and G. Gökağaç, “Pt nanoparticles synthesized with new surfactants: Improvement in C 1-C3 alcohol oxidation catalytic activity,” J. Appl. Electrochem., vol. 44, no. 1, pp. 199–207, Jan. 2014, doi: 10.1007/s10800-013-0631-5.
  • F. Gulbagca, A. Aygün, M. Gülcan, S. Ozdemir, S. Gonca, and F. Şen, “Green synthesis of palladium nanoparticles: Preparation, characterization, and investigation of antioxidant, antimicrobial, anticancer, and DNA cleavage activities,” Appl. Organomet. Chem., vol. 35, no. 8, p. e6272, Aug. 2021, doi: 10.1002/AOC.6272.
  • F. Şen, G. Gökağaç, and S. Şen, “High performance Pt nanoparticles prepared by new surfactants for C1 to C3 alcohol oxidation reactions,” J. Nanoparticle Res., vol. 15, no. 10, p. 1979, Oct. 2013, doi: 10.1007/s11051-013-1979-5.
  • B. Sen, B. Demirkan, A. Şavk, S. Karahan Gülbay, and F. Sen, “Trimetallic PdRuNi nanocomposites decorated on graphene oxide: A superior catalyst for the hydrogen evolution reaction,” Int. J. Hydrogen Energy, vol. 43, no. 38, pp. 17984–17992, Sep. 2018, doi: 10.1016/j.ijhydene.2018.07.122.
  • N. Lolak, E. Kuyuldar, H. Burhan, H. Goksu, S. Akocak, and F. Sen, “Composites of Palladium–Nickel Alloy Nanoparticles and Graphene Oxide for the Knoevenagel Condensation of Aldehydes with Malononitrile,” ACS Omega, vol. 4, no. 4, pp. 6848–6853, Apr. 2019, doi: 10.1021/acsomega.9b00485.
  • F. Sen, A. A. Boghossian, S. Sen, Z. W. Ulissi, J. Zhang, and M. S. Strano, “Observation of Oscillatory Surface Reactions of Riboflavin, Trolox, and Singlet Oxygen Using Single Carbon Nanotube Fluorescence Spectroscopy,” 2012, doi: 10.1021/NN303716N.
  • R. Ayranci et al., “Enhanced optical and electrical properties of PEDOT via nanostructured carbon materials: A comparative investigation,” Nano-Structures and Nano-Objects, vol. 11, pp. 13–19, Jul. 2017, doi: 10.1016/j.nanoso.2017.05.008.
  • M. B. Askari, P. Salarizadeh, A. Di Bartolomeo, and F. Şen, “Enhanced electrochemical performance of MnNi 2 O 4 /rGO nanocomposite as pseudocapacitor electrode material and methanol electro-oxidation catalyst,” Nanotechnology, vol. 32, no. 32, p. 325707, Aug. 2021, doi: 10.1088/1361-6528/abfded.
  • S. Günbatar, A. Aygun, Y. Karataş, M. Gülcan, and F. Şen, “Carbon-nanotube-based rhodium nanoparticles as highly-active catalyst for hydrolytic dehydrogenation of dimethylamineborane at room temperature,” J. Colloid Interface Sci., vol. 530, pp. 321–327, Nov. 2018, doi: 10.1016/j.jcis.2018.06.100.
  • R. Ayranci, G. Başkaya, M. Güzel, S. Bozkurt, F. Şen, and M. Ak, “Carbon Based Nanomaterials for High Performance Optoelectrochemical Systems,” ChemistrySelect, vol. 2, no. 4, pp. 1548–1555, Feb. 2017, doi: 10.1002/SLCT.201601632.
  • R. N. E. Tiri, F. Gulbagca, A. Aygun, A. Cherif, and F. Sen, “Biosynthesis of Ag–Pt bimetallic nanoparticles using propolis extract: Antibacterial effects and catalytic activity on NaBH4 hydrolysis,” Environ. Res., vol. 206, p. 112622, Apr. 2022, doi: 10.1016/J.ENVRES.2021.112622.
  • P. Taslimi et al., “Pyrazole[3,4-d]pyridazine derivatives: Molecular docking and explore of acetylcholinesterase and carbonic anhydrase enzymes inhibitors as anticholinergics potentials,” Bioorg. Chem., vol. 92, p. 103213, Nov. 2019, doi: 10.1016/j.bioorg.2019.103213.
  • F. A. Unal, S. Ok, M. Unal, S. Topal, K. Cellat, and F. Şen, “Synthesis, characterization, and application of transition metals (Ni, Zr, and Fe) doped TiO2 photoelectrodes for dye-sensitized solar cells,” J. Mol. Liq., vol. 299, p. 112177, Feb. 2020, doi: 10.1016/j.molliq.2019.112177.
  • H. Goksu, Y. Yildiz, B. Çelik, M. Yazici, B. Kilbas, and F. Sen, “Eco-friendly hydrogenation of aromatic aldehyde compounds by tandem dehydrogenation of dimethylamine-borane in the presence of a reduced graphene oxide furnished platinum nanocatalyst,” Catal. Sci. Technol., vol. 6, no. 7, pp. 2318–2324, Apr. 2016, doi: 10.1039/c5cy01462j.
  • H. Göksu, Y. Yıldız, B. Çelik, M. Yazıcı, B. Kılbaş, and F. Şen, “Highly Efficient and Monodisperse Graphene Oxide Furnished Ru/Pd Nanoparticles for the Dehalogenation of Aryl Halides via Ammonia Borane,” ChemistrySelect, vol. 1, no. 5, pp. 953–958, Apr. 2016, doi: 10.1002/slct.201600207.
  • J. T. Abrahamson et al., “Excess thermopower and the theory of thermopower waves,” ACS Nano, vol. 7, no. 8, pp. 6533–6544, Aug. 2013, doi: 10.1021/NN402411K/SUPPL_FILE/NN402411K_SI_001.PDF.
  • A. P. Kaur et al., “Plant Prebiotics and Their Role in the Amelioration of Diseases,” Biomol. 2021, Vol. 11, Page 440, vol. 11, no. 3, p. 440, Mar. 2021, doi: 10.3390/BIOM11030440.
  • K. G. Reddy et al., “On global energy scenario, dye-sensitized solar cells and the promise of nanotechnology,” Phys. Chem. Chem. Phys., vol. 16, no. 15, p. 6838, 2014, doi: 10.1039/c3cp55448a.
  • A. GUNDOGDU et al., “BIOSENSORS: TYPES, APPLICATIONS, AND FUTURE ADVANTAGES,” J. Sci. Reports-A, no. 052, pp. 457–481, Mar. 2023, doi: 10.59313/jsr-a.1221899.
  • W. Luo et al., “From 0D to 3D nanomaterial-based composite membranes for CO2 capture: Recent advances and perspectives,” J. Environ. Chem. Eng., vol. 11, no. 5, p. 110657, Oct. 2023, doi: 10.1016/j.jece.2023.110657.
  • I. Meydan et al., “Chitosan/PVA-supported silver nanoparticles for azo dyes removal: fabrication, characterization, and assessment of antioxidant activity,” Environ. Sci. Adv., vol. 3, no. 1, pp. 28–35, 2024, doi: 10.1039/D3VA00224A.
  • Q. Hu, Z. Fang, J. Ge, and H. Li, “Nanotechnology for cardiovascular diseases,” Innov., vol. 3, no. 2, p. 100214, Mar. 2022, doi: 10.1016/j.xinn.2022.100214.
  • X. Qu, P. J. J. Alvarez, and Q. Li, “Applications of nanotechnology in water and wastewater treatment,” Water Res., vol. 47, no. 12, pp. 3931–3946, Aug. 2013, doi: 10.1016/j.watres.2012.09.058.
  • Subhadra Rajpoot, “Impact of Nanotechnology on Environment – A Review,” Int. J. Mod. Trends Sci. Technol., vol. 7, no. 10, pp. 159–164, Dec. 2021, doi: 10.46501//IJMTST0710026.
  • W. X. New, J. E. Ogbezode, and P. Gani, “Nanoparticles in Soil Remediation: Challenges and Opportunities,” Ind. Domest. Waste Manag., vol. 3, no. 2, Dec. 2023, doi: 10.53623/idwm.v3i2.357.
  • N. K. Jawad and E. A. Hamooshy, “Nanotechnology and Environment Study,” Earthline J. Chem. Sci., pp. 249–260, Oct. 2021, doi: 10.34198/ejcs.6221.249260.
  • H. M. Fahmy et al., “Advances in nanotechnology and antibacterial properties of biodegradable food packaging materials,” RSC Adv., vol. 10, no. 35, pp. 20467–20484, 2020, doi: 10.1039/D0RA02922J.
  • Z. H. Mohammad, F. Ahmad, S. A. Ibrahim, and S. Zaidi, “Application of nanotechnology in different aspects of the food industry,” Discov. Food, vol. 2, no. 1, p. 12, Dec. 2022, doi: 10.1007/s44187-022-00013-9.
  • F. Abaszadeh, M. H. Ashoub, G. Khajouie, and M. Amiri, “Nanotechnology development in surgical applications: recent trends and developments,” Eur. J. Med. Res. 2023 281, vol. 28, no. 1, pp. 1–33, Nov. 2023, doi: 10.1186/S40001-023-01429-4.
  • S. Malik, K. Muhammad, and Y. Waheed, “Emerging Applications of Nanotechnology in Healthcare and Medicine,” Mol. 2023, Vol. 28, Page 6624, vol. 28, no. 18, p. 6624, Sep. 2023, doi: 10.3390/MOLECULES28186624.
  • A. K. Panda, “Nanotechnology in Vaccine Development,” Proc. Natl. Acad. Sci. India Sect. B - Biol. Sci., vol. 82, no. 1, pp. 13–27, Oct. 2012, doi: 10.1007/S40011-012-0073-6/METRICS.
  • B. G. Chung, L. Kang, and A. Khademhosseini, “Micro- and nanoscale technologies for tissue engineering and drug discovery applications,” Expert Opin. Drug Discov., vol. 2, no. 12, pp. 1653–1668, Dec. 2007, doi: 10.1517/17460441.2.12.1653.
  • C. Y. Xu, R. Inai, M. Kotaki, and S. Ramakrishna, “Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering,” Biomaterials, vol. 25, no. 5, pp. 877–886, Feb. 2004, doi: 10.1016/S0142-9612(03)00593-3.
  • F. Yang, R. Murugan, S. Wang, and S. Ramakrishna, “Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering,” Biomaterials, vol. 26, no. 15, pp. 2603–2610, May 2005, doi: 10.1016/J.BIOMATERIALS.2004.06.051.
  • J. Danie Kingsley, S. Ranjan, N. Dasgupta, and P. Saha, “Nanotechnology for tissue engineering: Need, techniques and applications,” J. Pharm. Res., vol. 7, no. 2, pp. 200–204, Feb. 2013, doi: 10.1016/J.JOPR.2013.02.021.
  • M. J. Dalby, G. E. Marshall, H. J. H. Johnstone, S. Affrossman, and M. O. Riehle, “Interactions of human blood and tissue cell types with 95-nm-high nanotopography,” IEEE Trans. Nanobioscience, vol. 1, no. 1, pp. 18–23, 2002, doi: 10.1109/TNB.2002.806933.
  • Y. W. Fan, Z. Sun, R. Wang, C. Abbott, and J. Moradian-Oldak, “Enamel inspired nanocomposite fabrication through amelogenin supramolecular assembly,” Biomaterials, vol. 28, no. 19, pp. 3034–3042, Jul. 2007, doi: 10.1016/J.BIOMATERIALS.2007.02.016.
  • A. Bistolfi et al., “Ultra-high molecular weight polyethylene (UHMWPE) for hip and knee arthroplasty: The present and the future,” J. Orthop., vol. 25, pp. 98–106, May 2021, doi: 10.1016/J.JOR.2021.04.004.
  • G. Serra et al., “Nanostructured severe plastic deformation processed titanium for orthodontic mini-implants,” Mater. Sci. Eng. C, vol. 33, no. 7, pp. 4197–4202, Oct. 2013, doi: 10.1016/J.MSEC.2013.06.012.
  • W. R. Smith, P. W. Hudson, B. A. Ponce, and S. R. Rajaram Manoharan, “Nanotechnology in orthopedics: A clinically oriented review,” BMC Musculoskelet. Disord., vol. 19, no. 1, pp. 1–10, Mar. 2018, doi: 10.1186/S12891-018-1990-1/FIGURES/6.
  • C. Cunha, S. Panseri, and S. Antonini, “Emerging nanotechnology approaches in tissue engineering for peripheral nerve regeneration,” Nanomedicine Nanotechnology, Biol. Med., vol. 7, no. 1, pp. 50–59, Feb. 2011, doi: 10.1016/J.NANO.2010.07.004.
  • H. Chopra et al., “Nanomaterials: A Promising Therapeutic Approach for Cardiovascular Diseases,” J. Nanomater., vol. 2022, no. 1, p. 4155729, Jan. 2022, doi: 10.1155/2022/4155729.
  • R. Hama, J. W. Reinhardt, A. Ulziibayar, T. Watanabe, J. Kelly, and T. Shinoka, “Recent Tissue Engineering Approaches to Mimicking the Extracellular Matrix Structure for Skin Regeneration,” Biomimetics 2023, Vol. 8, Page 130, vol. 8, no. 1, p. 130, Mar. 2023, doi: 10.3390/BIOMIMETICS8010130.
  • T. Alberti et al., “Nanotechnology: A Promising Tool Towards Wound Healing,” Curr. Pharm. Des., vol. 23, no. 24, Jun. 2017, doi: 10.2174/1381612823666170503152550.
  • R. Prasad, A. Bhattacharyya, and Q. D. Nguyen, “Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives,” Frontiers in Microbiology, vol. 8, no. JUN. 2017, doi: 10.3389/fmicb.2017.01014.
  • Nanotechnology and metal-organic frameworks for carbon capture,” Res. Outreach, no. 126, 2021, doi: 10.32907/ro-126-1894760360. T. Singh et al., “Emerging technologies for the development of wood products towards extended carbon storage and CO2 capture,” Carbon Capture Science and Technology, vol. 4. 2022, doi: 10.1016/j.ccst.2022.100057.
  • M. Alafeef, P. Moitra, and D. Pan, “Nano-enabled sensing approaches for pathogenic bacterial detection,” Biosensors and Bioelectronics, vol. 165. 2020, doi: 10.1016/j.bios.2020.112276.
  • V. P. Aswathi, S. Meera, C. G. A. Maria, and M. Nidhin, “Green synthesis of nanoparticles from biodegradable waste extracts and their applications: a critical review,” Nanotechnol. Environ. Eng., vol. 8, no. 2, pp. 377–397, Jun. 2023, doi: 10.1007/s41204-022-00276-8.
  • S. Srivastava, D. Verma, S. Thusoo, A. Kumar, V. P. Singh, and R. Kumar, “Nanomanufacturing for Energy Conversion and Storage Devices,” in Nanomanufacturing and Nanomaterials Design, Boca Raton: CRC Press, 2022, pp. 165–173.
  • E. Serrano, “Nanotechnology and the Environment,” Mater. Today - MATER TODAY, vol. 13, p. 55, May 2010, doi: 10.1016/S1369-7021(10)70089-4.
  • R. Ningthoujam, Y. D. Singh, P. J. Babu, A. Tirkey, S. Pradhan, and M. Sarma, “Nanocatalyst in remediating environmental pollutants,” Chem. Phys. Impact, vol. 4, p. 100064, Jun. 2022, doi: 10.1016/j.chphi.2022.100064.
  • M. M. Elwaheidi, “Waste Management Using Nanotechnology,” in Handbook of Research on Safe Disposal Methods of Municipal Solid Wastes for a Sustainable Environment, 2023, pp. 1–23.
  • V. D. Rajput et al., “Can Nanomaterials Improve the Soil Microbiome and Crop Productivity?,” Agriculture (Switzerland), vol. 13, no. 2. 2023, doi: 10.3390/agriculture13020231.
  • S. Tripathi et al., “Recent Advances and Perspectives of Nanomaterials in Agricultural Management and Associated Environmental Risk: A Review,” Nanomaterials, vol. 13, no. 10. 2023, doi: 10.3390/nano13101604.
  • S. Burmaoglu and S. Ozean, “Evolutionary evaluation of energy and nanotechnology relationship,” PICMET 2016 - Portl. Int. Conf. Manag. Eng. Technol. Technol. Manag. Soc. Innov. Proc., pp. 788–794, Jan. 2017, doi: 10.1109/PICMET.2016.7806536.
  • M. H. Ahmadi et al., “Renewable energy harvesting with the application of nanotechnology: A review,” Int. J. Energy Res., vol. 43, no. 4, pp. 1387–1410, Mar. 2019, doi: 10.1002/ER.4282.
  • A. K. Hussein, “Applications of nanotechnology in renewable energies—A comprehensive overview and understanding,” Renew. Sustain. Energy Rev., vol. 42, pp. 460–476, Feb. 2015, doi: 10.1016/J.RSER.2014.10.027.
  • D. Elcock, “Potential nanotechnology applications for reducing freshwater consumption at coal fired power plants : an early view.,” Sep. 2010, doi: 10.2172/1008285.
  • T. Zhao, M. Xu, X. Xiao, Y. Ma, Z. Li, and Z. L. Wang, “Recent progress in blue energy harvesting for powering distributed sensors in ocean,” Nano Energy, vol. 88, p. 106199, Oct. 2021, doi: 10.1016/J.NANOEN.2021.106199.
  • A. Awad, W. Ahmed, and M. Waleed, “Nanotechnology for energy storage,” Emerg. Nanotechnologies Renew. Energy, pp. 495–516, Jan. 2021, doi: 10.1016/B978-0-12-821346-9.00009-2.
  • J. Liu, P. Kopold, P. A. van Aken, J. Maier, and Y. Yu, “Energy Storage Materials from Nature through Nanotechnology: A Sustainable Route from Reed Plants to a Silicon Anode for Lithium-Ion Batteries,” Angew. Chemie, vol. 127, no. 33, pp. 9768–9772, Aug. 2015, doi: 10.1002/ANGE.201503150.
  • Bestem ESİ, “TürkTeksti̇Endüstri̇si̇ Geli̇şi̇mi̇,” 2017.
  • K. PATRA, “Application of nanotechnology in textile engineering: An overview,” J. Eng. Technol. Res., vol. 5, no. 5, pp. 104–111, Jun. 2013, doi: 10.5897/JETR2013.0309.
  • International Journal of Advanced Multidisciplinary Research Novel Applications of Nanotechnology in Modification of Textile Fabrics Properties And Apparel (Review).” .
  • R. D. et al. . Radhika Damuluri et al., “Review Studies on Application of Nanotechnology in Textiles,” Int. J. Text. Fash. Technol., vol. 7, no. 6, pp. 1–4, 2017, doi: 10.24247/ijtftdec20171.
  • M. RATIU, FASCICLE OF TEXTILES, LEATHERWORK, vol. XVI, no. 2. 2015.
  • A. K. Yetisen et al., “Nanotechnology in Textiles,” ACS Nano, vol. 10, no. 3, pp. 3042–3068, 2016, doi: 10.1021/acsnano.5b08176.
  • A. Salman, F. A. Metwally, M. Elbisi, and G. A. M. Emara, “Applications of nanotechnology and advancements in smart wearable textiles: An overview,” Egypt. J. Chem., vol. 63, no. 6, pp. 2177–2184, 2020, doi: 10.21608/ejchem.2019.18223.2112.
  • N. Tarafder, “Applications of nanotechnology for textile products: a review,” Nanoscale Reports, vol. 1, no. 3, pp. 15–22, Nov. 2018, doi: 10.26524/nr1832.
  • J. Jeevanandam et al., “Green approaches for the synthesis of metal and metal oxide nanoparticles using microbial and plant extracts,” Nanoscale, vol. 14, no. 7, pp. 2534–2571, Feb. 2022, doi: 10.1039/D1NR08144F.
  • A. K. M. A. Hosne Asif and M. Z. Hasan, “Application of Nanotechnology in Modern Textiles: A Review,” Int. J. Curr. Eng. Technol., vol. 8, no. 02, pp. 227–231, 2018, doi: 10.14741/ijcet/v.8.2.5.
  • R. E. Gorga, “Nanotechnology in textiles,” Text. World, vol. 160, no. 6, pp. 95–101, 2010.
  • Nasif Chowdhury and Subrata Chandra Das, “Application of Nanotechnology in Textiles: A Review,” Sci. Res. J., vol. 43, no. 5, pp. 44–49, 2015.
  • Y. W. H. Wong, C. W. M. Yuen, M. Y. S. Leung, S. K. A. Ku, and H. L. I. Lam, “SELECTED APPLICATIONS OF NANOTECHNOLOGY IN TEXTILES,” 2006. Accessed: Aug. 02, 2020. [Online]. Available: http://www.autexrj.org/No1-2006/0191.pdf.
  • E. İ. Cansiz and S. Kirmusaoğlu, “Antibacterial Properties of Nano Silver in Nanotechnology,” Haliç Üniversitesi Fen Bilim. Derg., vol. 1, pp. 119–130, 2018.
  • D. E. K. Ilacak, Y. A. L. Malzemeler, L. Tezi, and T. A. Dal, “Bu tez çalışması Sanayi ve Ticaret Bakanlığı tarafından San-Tez Programı kapsamında desteklenmiştir. Proje kodu: 00088.STZ.2007-1,” Finishing, 2009.
  • Z. E. L. S. Enst and A. Dali, “T.c marmara üni̇versi̇tesi̇ güzel sanatlar ensti̇tüsü grafi̇k anasanat dali,” p. 2004, 2009.
  • F. Zhang and J. Yang, “Application of Nano-ZnO on Antistatic Finishing to the Polyester Fabric,” Mod. Appl. Sci., vol. 3, no. 1, Dec. 2008, doi: 10.5539/MAS.V3N1P89.
  • L. Dall’Acqua, C. Tonin, R. Peila, F. Ferrero, and M. Catellani, “Performances and properties of intrinsic conductive cellulose–polypyrrole textiles,” Synth. Met., vol. 146, no. 2, pp. 213–221, Oct. 2004, doi: 10.1016/J.SYNTHMET.2004.07.005.
  • L. Özyüzer, “Miknatissal SaçtirmSi̇stemi̇İle Metal KaplanaPoli̇propi̇leLi̇fleri̇Anti̇stati̇k Ve Anti̇bakteri̇yeÖzelli̇kleri̇ * Antistatic and Antibacterial Properties of Metal Coated Polypropylene Fibers By Magnetron Sputtering,” Tekstil, pp. 1–5.
  • Y. Hasegawa, M. Shikida, D. Ogura, Y. Suzuki, and K. Sato, “Fabrication of a wearable fabric tactile sensor produced by artificial hollow fiber,” J. Micromechanics Microengineering, vol. 18, no. 8, p. 085014, Jul. 2008, doi: 10.1088/0960-1317/18/8/085014.
  • Z. H. Mahmoud and E. Kianfar, “Application of Nano Technology in the Self-Cleaning Finishing of Textiles : A Review,” vol. 6, no. 1, pp. 1–13, 2024.
  • E. M. El-Khatib, “Antimicrobial and Self-cleaning Textiles using Nanotechnology,” Res. J. Text. Appar., vol. 16, no. 3, pp. 156–174, 2012, doi: 10.1108/RJTA-16-03-2012-B016.
  • M. Joshi and A. Bhattacharyya, “Nanotechnology – a new route to high-performance functional textiles,” Text. Prog., vol. 43, no. 3, pp. 155–233, Sep. 2011, doi: 10.1080/00405167.2011.570027.
  • S. R. Prasad, V. B. Kumbhar, and N. R. Prasad, “Applications of Nanotechnology in Textile: A Review,” ES Food Agrofor., vol. 15, pp. 1–9, 2024, doi: 10.30919/esfaf1019.
  • A. Singh and M. Gahlot, “Self Cleaning Textiles : The Textiles that Clean themselves,” no. January, 2015.
  • S. R. Saad, N. Mahmed, M. M. A. B. Abdullah, and A. V. Sandu, “Self-Cleaning Technology in Fabric: A Review,” IOP Conf. Ser. Mater. Sci. Eng., vol. 133, no. 1, 2016, doi: 10.1088/1757-899X/133/1/012028.
  • C. Y. Hsu et al., “Nano titanium oxide (nano-TiO2): A review of synthesis methods, properties, and applications,” Case Stud. Chem. Environ. Eng., vol. 9, p. 100626, Jun. 2024, doi: 10.1016/J.CSCEE.2024.100626.
  • R. Mahmud and F. Nabi, “Application of Nanotechnology in the field of Textile,” IOSR J. Polym. Text. Eng., vol. 04, no. 01, pp. 01–06, 2017, doi: 10.9790/019x-0401010106.
  • Y. Bulu, H. Eraslan, and D. Barca, “TÜRK GIDA SEKTÖRÜNÜN ULUSLARARASI REKABETÇLK DÜZEYNN ANALZ,” 2007.
  • X. He, H. Deng, and H. min Hwang, “The current application of nanotechnology in food and agriculture,” J. Food Drug Anal., vol. 27, no. 1, pp. 1–21, Jan. 2019, doi: 10.1016/J.JFDA.2018.12.002.
  • A. Thirumalai, K. Harini, P. Pallavi, P. Gowtham, K. Girigoswami, and A. Girigoswami, “Nanotechnology driven improvement of smart food packaging,” Mater. Res. Innov., vol. 27, no. 4, pp. 223–232, Jun. 2023, doi: 10.1080/14328917.2022.2114667.
  • D. Enescu, M. A. Cerqueira, P. Fucinos, and L. M. Pastrana, “Recent advances and challenges on applications of nanotechnology in food packaging. A literature review,” Food Chem. Toxicol., vol. 134, p. 110814, Dec. 2019, doi: 10.1016/J.FCT.2019.110814.
  • S. S. Rout and K. C. Pradhan, “A review on antimicrobial nano-based edible packaging: Sustainable applications and emerging trends in food industry,” Food Control, vol. 163, p. 110470, Sep. 2024, doi: 10.1016/J.FOODCONT.2024.110470.
  • L. Vermeiren, F. Devlieghere, M. Van Beest, N. De Kruijf, and J. Debevere, “Developments in the active packaging of foods,” Trends Food Sci. Technol., vol. 10, no. 3, pp. 77–86, Mar. 1999, doi: 10.1016/S0924-2244(99)00032-1.
  • J. H. Han, C. H. L. Ho, and E. T. Rodrigues, “Intelligent packaging,” Innov. Food Packag., pp. 138–155, Jan. 2005, doi: 10.1016/B978-012311632-1/50041-3.
  • J. Wyrwa and A. Barska, “Innovations in the food packaging market: active packaging,” Eur. Food Res. Technol., vol. 243, no. 10, pp. 1681–1692, Oct. 2017, doi: 10.1007/S00217-017-2878-2/TABLES/2.
  • U. Siripatrawan and P. Kaewklin, “Fabrication and characterization of chitosan-titanium dioxide nanocomposite film as ethylene scavenging and antimicrobial active food packaging,” Food Hydrocoll., vol. 84, pp. 125–134, Nov. 2018, doi: 10.1016/J.FOODHYD.2018.04.049.
  • H. Nasution, H. Harahap, E. Julianti, A. Safitri, and M. Jaafar, “Smart Packaging Based on Polylactic Acid: Effect of Antibacterial and Antioxidant Agents from Natural Extract on Physical-Mechanical Properties, Colony Reduction, and Perishable Food Shelf Life,” Sep. 2023, doi: 10.20944/PREPRINTS202309.1692.V1.
  • M. Ghaani, C. A. Cozzolino, G. Castelli, and S. Farris, “An overview of the intelligent packaging technologies in the food sector,” Trends Food Sci. Technol., vol. 51, pp. 1–11, May 2016, doi: 10.1016/J.TIFS.2016.02.008.
  • S. Barage et al., “Nanomaterial in Food Packaging: A Comprehensive Review,” J. Nanomater., vol. 2022, no. 1, p. 6053922, Jan. 2022, doi: 10.1155/2022/6053922.
  • N. Chausali, J. Saxena, and R. Prasad, “Recent trends in nanotechnology applications of bio-based packaging,” J. Agric. Food Res., vol. 7, p. 100257, Mar. 2022, doi: 10.1016/J.JAFR.2021.100257.
  • C. L. Reichert et al., “Bio-Based Packaging: Materials, Modifications, Industrial Applications and Sustainability,” Polym. 2020, Vol. 12, Page 1558, vol. 12, no. 7, p. 1558, Jul. 2020, doi: 10.3390/POLYM12071558.
  • A. Ashfaq, N. Khursheed, S. Fatima, Z. Anjum, and K. Younis, “Application of nanotechnology in food packaging: Pros and Cons,” J. Agric. Food Res., vol. 7, p. 100270, Mar. 2022, doi: 10.1016/J.JAFR.2022.100270.
  • R. Zhu, M. Desroches, B. Yoon, and T. M. Swager, “Wireless oxygen sensors enabled by Fe(II)-polymer wrapped carbon nanotubes,” ACS Sensors, vol. 2, no. 7, pp. 1044–1050, Jul. 2017, doi: 10.1021/ACSSENSORS.7B00327/SUPPL_FILE/SE7B00327_SI_001.PDF.
  • A. K. Biswal and P. K. Misra, “Biosynthesis and characterization of silver nanoparticles for prospective application in food packaging and biomedical fields,” Mater. Chem. Phys., vol. 250, p. 123014, Aug. 2020, doi: 10.1016/J.MATCHEMPHYS.2020.123014.
  • P. Chaudhary, F. Fatima, and A. Kumar, “Relevance of Nanomaterials in Food Packaging and its Advanced Future Prospects,” J. Inorg. Organomet. Polym. Mater., vol. 30, no. 12, pp. 5180–5192, Dec. 2020, doi: 10.1007/S10904-020-01674-8/TABLES/2.
  • M. Primožič, Ž. Knez, and M. Leitgeb, “(Bio)Nanotechnology in Food Science—Food Packaging,” Nanomater. 2021, Vol. 11, Page 292, vol. 11, no. 2, p. 292, Jan. 2021, doi: 10.3390/NANO11020292.
  • H. Bahadar, F. Maqbool, K. Niaz, and M. Abdollahi, “Toxicity of Nanoparticles and an Overview of Current Experimental Models,” Iran. Biomed. J., vol. 20, no. 1, p. 1, Jan. 2016, doi: 10.7508/IBJ.2016.01.001.
  • C. V. Garcia, G. H. Shin, and J. T. Kim, “Metal oxide-based nanocomposites in food packaging: Applications, migration, and regulations,” Trends Food Sci. Technol., vol. 82, pp. 21–31, Dec. 2018, doi: 10.1016/J.TIFS.2018.09.021.

Nanotechnology and its Versatile Applications in Medicine, Environment, Energy, Textiles, Food Industry

Year 2024, Issue: 1, 18 - 49, 31.12.2024

Abstract

Nanotechnology refers to technology that is applied at the nanoscale and has global applications. The unique physical and chemical properties of materials used in nanotechnology are used for applications that benefit society. Research in the world of technology and science in this regard is contributing to nanotechnology making great advances in various fields. The science of nanotechnology benefits fields such as chemistry, medicine, physics, biology and engineering and works with nanoscale materials. This review highlights the revolutionary work and remarkable innovations in the application of nanotechnology in fields as diverse as medicine, environment, energy, textiles and food. These innovations include vaccine development in medicine, tissue engineering, drug delivery systems, surgical applications, orthopedic implants and nerve tubulization. Sustainable agriculture, carbon footprinting, smart sensors, biodegradable materials are frequently used in environmental applications. In addition, the role of nanomaterials in the capture, storage and functional use of energy is very important. In addition to these applications, there are also nanotechnological studies in the textile and food industry. At the beginning of these studies, nanomaterials used in the textile industry give fabrics properties such as waterproof, antibacterial, antistatic, self-cleaning and wrinkle resistance. Nanomaterials used in the food industry are revolutionizing these sectors with active, smart, enhanced and bio-based packaging solutions. As nanotechnology continues to evolve, it holds the potential to transform every aspect of our lives, driving innovation and progress across industries and shaping a sustainable, interconnected future.

References

  • Gökçay B, Arda B: Nanotechnology, nanomedicine: Ethical aspects, Revista Romana de Bioetica13(3): 423-432, 2015 .
  • S. Bayda, M. Adeel, T. Tuccinardi, M. Cordani, and F. Rizzolio, “The History of Nanoscience and Nanotechnology: From Chemical–Physical Applications to Nanomedicine,” Molecules, vol. 25, no. 1, p. 112, Dec. 2019, doi: 10.3390/molecules25010112.
  • M. Nasrollahzadeh, S. M. Sajadi, M. Sajjadi, and Z. Issaabadi, “An Introduction to Nanotechnology,” 2019, pp. 1–27.
  • H. Goksu, M. Bekmezci, V. Erduran, and F. Şen, “Bimetallic nanomaterials for direct alcohol fuel cells,” Nanomater. Direct Alcohol Fuel Cells, pp. 145–156, Jan. 2021, doi: 10.1016/B978-0-12-821713-9.00017-2.
  • I. Meydan, H. Seckin, H. Burhan, T. Gür, B. Tanhaei, and F. Sen, “Arum italicum mediated silver nanoparticles: Synthesis and investigation of some biochemical parameters,” Environ. Res., vol. 204, p. 112347, Mar. 2022, doi: 10.1016/J.ENVRES.2021.112347.
  • K. Nesrin et al., “Biogenic silver nanoparticles synthesized from Rhododendron ponticum and their antibacterial, antibiofilm and cytotoxic activities,” J. Pharm. Biomed. Anal., vol. 179, 2020, doi: 10.1016/j.jpba.2019.112993.
  • İ. M. Alkaç, B. Çerçi, C. Timuralp, and F. Şen, “Nanomaterials and their classification,” in Nanomaterials for Direct Alcohol Fuel Cells, Elsevier, 2021, pp. 17–33.
  • G. N. G. Saritha, T. Anju, and A. Kumar, “Nanotechnology - Big impact: How nanotechnology is changing the future of agriculture?,” J. Agric. Food Res., vol. 10, p. 100457, Dec. 2022, doi: 10.1016/j.jafr.2022.100457.
  • M. Alenazi, “Nanotechnology in Drugs Delivery,” IJARCCE, vol. 5, no. 5, pp. 1052–1054, May 2016, doi: 10.17148/IJARCCE.2016.55255.
  • Z. Ozturk, F. Sen, S. Sen, and G. Gokagac, “The preparation and characterization of nano-sized Pt-Pd/C catalysts and comparison of their superior catalytic activities for methanol and ethanol oxidation,” J. Mater. Sci., vol. 47, no. 23, pp. 8134–8144, Dec. 2012, doi: 10.1007/s10853-012-6709-3.
  • N. Korkmaz et al., “Biogenic silver nanoparticles synthesized via Mimusops elengi fruit extract, a study on antibiofilm, antibacterial, and anticancer activities,” J. Drug Deliv. Sci. Technol., vol. 59, p. 101864, Oct. 2020, doi: 10.1016/j.jddst.2020.101864.
  • B. Şen, A. Aygün, A. Şavk, S. Akocak, and F. Şen, “Bimetallic Palladium–iridium Alloy Nanoparticles as Highly Efficient and Stable Catalyst for The Hydrogen Evolution Reaction,” Int. J. Hydrogen Energy, vol. 43, no. 44, pp. 20183–20191, Nov. 2018, doi: 10.1016/j.ijhydene.2018.07.081.
  • B. Şen, A. Aygün, T. O. Okyay, A. Şavk, R. Kartop, and F. Şen, “Monodisperse palladium nanoparticles assembled on graphene oxide with the high catalytic activity and reusability in the dehydrogenation of dimethylamine-borane,” Int. J. Hydrogen Energy, vol. 43, no. 44, pp. 20176–20182, Nov. 2018, doi: 10.1016/j.ijhydene.2018.03.175.
  • E. Erken, Y. Yildiz, B. Kilbaş, and F. Şen, “Synthesis and characterization of nearly monodisperse Pt nanoparticles for C1 to C3 alcohol oxidation and dehydrogenation of dimethylamine-borane (DMAB),” J. Nanosci. Nanotechnol., vol. 16, no. 6, pp. 5944–5950, Jun. 2016, doi: 10.1166/jnn.2016.11683.
  • B. Demirkan et al., “Palladium supported on polypyrrole/reduced graphene oxide nanoparticles for simultaneous biosensing application of ascorbic acid, dopamine, and uric acid,” Sci. Rep., vol. 10, no. 1, pp. 1–10, Dec. 2020, doi: 10.1038/s41598-020-59935-y.
  • B. Demirkan et al., “Composites of Bimetallic Platinum-Cobalt Alloy Nanoparticles and Reduced Graphene Oxide for Electrochemical Determination of Ascorbic Acid, Dopamine, and Uric Acid,” Sci. Rep., vol. 9, no. 1, Dec. 2019, doi: 10.1038/s41598-019-48802-0.
  • S. Ertan, F. Şen, S. Şen, and G. Gökağaç, “Platinum nanocatalysts prepared with different surfactants for C1–C3 alcohol oxidations and their surface morphologies by AFM,” J. Nanoparticle Res., vol. 14, no. 6, p. 922, Jun. 2012, doi: 10.1007/s11051-012-0922-5.
  • F. Şen and G. Gökaǧaç, “Improving Catalytic Efficiency in the Methanol Oxidation Reaction by Inserting Ru in Face-Centered Cubic Pt Nanoparticles Prepared by a New Surfactant, tert-Octanethiol,” Energy and Fuels, vol. 22, no. 3, pp. 1858–1864, May 2008, doi: 10.1021/EF700575T.
  • F. Şen and G. Gökağaç, “Pt nanoparticles synthesized with new surfactants: Improvement in C 1-C3 alcohol oxidation catalytic activity,” J. Appl. Electrochem., vol. 44, no. 1, pp. 199–207, Jan. 2014, doi: 10.1007/s10800-013-0631-5.
  • F. Gulbagca, A. Aygün, M. Gülcan, S. Ozdemir, S. Gonca, and F. Şen, “Green synthesis of palladium nanoparticles: Preparation, characterization, and investigation of antioxidant, antimicrobial, anticancer, and DNA cleavage activities,” Appl. Organomet. Chem., vol. 35, no. 8, p. e6272, Aug. 2021, doi: 10.1002/AOC.6272.
  • F. Şen, G. Gökağaç, and S. Şen, “High performance Pt nanoparticles prepared by new surfactants for C1 to C3 alcohol oxidation reactions,” J. Nanoparticle Res., vol. 15, no. 10, p. 1979, Oct. 2013, doi: 10.1007/s11051-013-1979-5.
  • B. Sen, B. Demirkan, A. Şavk, S. Karahan Gülbay, and F. Sen, “Trimetallic PdRuNi nanocomposites decorated on graphene oxide: A superior catalyst for the hydrogen evolution reaction,” Int. J. Hydrogen Energy, vol. 43, no. 38, pp. 17984–17992, Sep. 2018, doi: 10.1016/j.ijhydene.2018.07.122.
  • N. Lolak, E. Kuyuldar, H. Burhan, H. Goksu, S. Akocak, and F. Sen, “Composites of Palladium–Nickel Alloy Nanoparticles and Graphene Oxide for the Knoevenagel Condensation of Aldehydes with Malononitrile,” ACS Omega, vol. 4, no. 4, pp. 6848–6853, Apr. 2019, doi: 10.1021/acsomega.9b00485.
  • F. Sen, A. A. Boghossian, S. Sen, Z. W. Ulissi, J. Zhang, and M. S. Strano, “Observation of Oscillatory Surface Reactions of Riboflavin, Trolox, and Singlet Oxygen Using Single Carbon Nanotube Fluorescence Spectroscopy,” 2012, doi: 10.1021/NN303716N.
  • R. Ayranci et al., “Enhanced optical and electrical properties of PEDOT via nanostructured carbon materials: A comparative investigation,” Nano-Structures and Nano-Objects, vol. 11, pp. 13–19, Jul. 2017, doi: 10.1016/j.nanoso.2017.05.008.
  • M. B. Askari, P. Salarizadeh, A. Di Bartolomeo, and F. Şen, “Enhanced electrochemical performance of MnNi 2 O 4 /rGO nanocomposite as pseudocapacitor electrode material and methanol electro-oxidation catalyst,” Nanotechnology, vol. 32, no. 32, p. 325707, Aug. 2021, doi: 10.1088/1361-6528/abfded.
  • S. Günbatar, A. Aygun, Y. Karataş, M. Gülcan, and F. Şen, “Carbon-nanotube-based rhodium nanoparticles as highly-active catalyst for hydrolytic dehydrogenation of dimethylamineborane at room temperature,” J. Colloid Interface Sci., vol. 530, pp. 321–327, Nov. 2018, doi: 10.1016/j.jcis.2018.06.100.
  • R. Ayranci, G. Başkaya, M. Güzel, S. Bozkurt, F. Şen, and M. Ak, “Carbon Based Nanomaterials for High Performance Optoelectrochemical Systems,” ChemistrySelect, vol. 2, no. 4, pp. 1548–1555, Feb. 2017, doi: 10.1002/SLCT.201601632.
  • R. N. E. Tiri, F. Gulbagca, A. Aygun, A. Cherif, and F. Sen, “Biosynthesis of Ag–Pt bimetallic nanoparticles using propolis extract: Antibacterial effects and catalytic activity on NaBH4 hydrolysis,” Environ. Res., vol. 206, p. 112622, Apr. 2022, doi: 10.1016/J.ENVRES.2021.112622.
  • P. Taslimi et al., “Pyrazole[3,4-d]pyridazine derivatives: Molecular docking and explore of acetylcholinesterase and carbonic anhydrase enzymes inhibitors as anticholinergics potentials,” Bioorg. Chem., vol. 92, p. 103213, Nov. 2019, doi: 10.1016/j.bioorg.2019.103213.
  • F. A. Unal, S. Ok, M. Unal, S. Topal, K. Cellat, and F. Şen, “Synthesis, characterization, and application of transition metals (Ni, Zr, and Fe) doped TiO2 photoelectrodes for dye-sensitized solar cells,” J. Mol. Liq., vol. 299, p. 112177, Feb. 2020, doi: 10.1016/j.molliq.2019.112177.
  • H. Goksu, Y. Yildiz, B. Çelik, M. Yazici, B. Kilbas, and F. Sen, “Eco-friendly hydrogenation of aromatic aldehyde compounds by tandem dehydrogenation of dimethylamine-borane in the presence of a reduced graphene oxide furnished platinum nanocatalyst,” Catal. Sci. Technol., vol. 6, no. 7, pp. 2318–2324, Apr. 2016, doi: 10.1039/c5cy01462j.
  • H. Göksu, Y. Yıldız, B. Çelik, M. Yazıcı, B. Kılbaş, and F. Şen, “Highly Efficient and Monodisperse Graphene Oxide Furnished Ru/Pd Nanoparticles for the Dehalogenation of Aryl Halides via Ammonia Borane,” ChemistrySelect, vol. 1, no. 5, pp. 953–958, Apr. 2016, doi: 10.1002/slct.201600207.
  • J. T. Abrahamson et al., “Excess thermopower and the theory of thermopower waves,” ACS Nano, vol. 7, no. 8, pp. 6533–6544, Aug. 2013, doi: 10.1021/NN402411K/SUPPL_FILE/NN402411K_SI_001.PDF.
  • A. P. Kaur et al., “Plant Prebiotics and Their Role in the Amelioration of Diseases,” Biomol. 2021, Vol. 11, Page 440, vol. 11, no. 3, p. 440, Mar. 2021, doi: 10.3390/BIOM11030440.
  • K. G. Reddy et al., “On global energy scenario, dye-sensitized solar cells and the promise of nanotechnology,” Phys. Chem. Chem. Phys., vol. 16, no. 15, p. 6838, 2014, doi: 10.1039/c3cp55448a.
  • A. GUNDOGDU et al., “BIOSENSORS: TYPES, APPLICATIONS, AND FUTURE ADVANTAGES,” J. Sci. Reports-A, no. 052, pp. 457–481, Mar. 2023, doi: 10.59313/jsr-a.1221899.
  • W. Luo et al., “From 0D to 3D nanomaterial-based composite membranes for CO2 capture: Recent advances and perspectives,” J. Environ. Chem. Eng., vol. 11, no. 5, p. 110657, Oct. 2023, doi: 10.1016/j.jece.2023.110657.
  • I. Meydan et al., “Chitosan/PVA-supported silver nanoparticles for azo dyes removal: fabrication, characterization, and assessment of antioxidant activity,” Environ. Sci. Adv., vol. 3, no. 1, pp. 28–35, 2024, doi: 10.1039/D3VA00224A.
  • Q. Hu, Z. Fang, J. Ge, and H. Li, “Nanotechnology for cardiovascular diseases,” Innov., vol. 3, no. 2, p. 100214, Mar. 2022, doi: 10.1016/j.xinn.2022.100214.
  • X. Qu, P. J. J. Alvarez, and Q. Li, “Applications of nanotechnology in water and wastewater treatment,” Water Res., vol. 47, no. 12, pp. 3931–3946, Aug. 2013, doi: 10.1016/j.watres.2012.09.058.
  • Subhadra Rajpoot, “Impact of Nanotechnology on Environment – A Review,” Int. J. Mod. Trends Sci. Technol., vol. 7, no. 10, pp. 159–164, Dec. 2021, doi: 10.46501//IJMTST0710026.
  • W. X. New, J. E. Ogbezode, and P. Gani, “Nanoparticles in Soil Remediation: Challenges and Opportunities,” Ind. Domest. Waste Manag., vol. 3, no. 2, Dec. 2023, doi: 10.53623/idwm.v3i2.357.
  • N. K. Jawad and E. A. Hamooshy, “Nanotechnology and Environment Study,” Earthline J. Chem. Sci., pp. 249–260, Oct. 2021, doi: 10.34198/ejcs.6221.249260.
  • H. M. Fahmy et al., “Advances in nanotechnology and antibacterial properties of biodegradable food packaging materials,” RSC Adv., vol. 10, no. 35, pp. 20467–20484, 2020, doi: 10.1039/D0RA02922J.
  • Z. H. Mohammad, F. Ahmad, S. A. Ibrahim, and S. Zaidi, “Application of nanotechnology in different aspects of the food industry,” Discov. Food, vol. 2, no. 1, p. 12, Dec. 2022, doi: 10.1007/s44187-022-00013-9.
  • F. Abaszadeh, M. H. Ashoub, G. Khajouie, and M. Amiri, “Nanotechnology development in surgical applications: recent trends and developments,” Eur. J. Med. Res. 2023 281, vol. 28, no. 1, pp. 1–33, Nov. 2023, doi: 10.1186/S40001-023-01429-4.
  • S. Malik, K. Muhammad, and Y. Waheed, “Emerging Applications of Nanotechnology in Healthcare and Medicine,” Mol. 2023, Vol. 28, Page 6624, vol. 28, no. 18, p. 6624, Sep. 2023, doi: 10.3390/MOLECULES28186624.
  • A. K. Panda, “Nanotechnology in Vaccine Development,” Proc. Natl. Acad. Sci. India Sect. B - Biol. Sci., vol. 82, no. 1, pp. 13–27, Oct. 2012, doi: 10.1007/S40011-012-0073-6/METRICS.
  • B. G. Chung, L. Kang, and A. Khademhosseini, “Micro- and nanoscale technologies for tissue engineering and drug discovery applications,” Expert Opin. Drug Discov., vol. 2, no. 12, pp. 1653–1668, Dec. 2007, doi: 10.1517/17460441.2.12.1653.
  • C. Y. Xu, R. Inai, M. Kotaki, and S. Ramakrishna, “Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering,” Biomaterials, vol. 25, no. 5, pp. 877–886, Feb. 2004, doi: 10.1016/S0142-9612(03)00593-3.
  • F. Yang, R. Murugan, S. Wang, and S. Ramakrishna, “Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering,” Biomaterials, vol. 26, no. 15, pp. 2603–2610, May 2005, doi: 10.1016/J.BIOMATERIALS.2004.06.051.
  • J. Danie Kingsley, S. Ranjan, N. Dasgupta, and P. Saha, “Nanotechnology for tissue engineering: Need, techniques and applications,” J. Pharm. Res., vol. 7, no. 2, pp. 200–204, Feb. 2013, doi: 10.1016/J.JOPR.2013.02.021.
  • M. J. Dalby, G. E. Marshall, H. J. H. Johnstone, S. Affrossman, and M. O. Riehle, “Interactions of human blood and tissue cell types with 95-nm-high nanotopography,” IEEE Trans. Nanobioscience, vol. 1, no. 1, pp. 18–23, 2002, doi: 10.1109/TNB.2002.806933.
  • Y. W. Fan, Z. Sun, R. Wang, C. Abbott, and J. Moradian-Oldak, “Enamel inspired nanocomposite fabrication through amelogenin supramolecular assembly,” Biomaterials, vol. 28, no. 19, pp. 3034–3042, Jul. 2007, doi: 10.1016/J.BIOMATERIALS.2007.02.016.
  • A. Bistolfi et al., “Ultra-high molecular weight polyethylene (UHMWPE) for hip and knee arthroplasty: The present and the future,” J. Orthop., vol. 25, pp. 98–106, May 2021, doi: 10.1016/J.JOR.2021.04.004.
  • G. Serra et al., “Nanostructured severe plastic deformation processed titanium for orthodontic mini-implants,” Mater. Sci. Eng. C, vol. 33, no. 7, pp. 4197–4202, Oct. 2013, doi: 10.1016/J.MSEC.2013.06.012.
  • W. R. Smith, P. W. Hudson, B. A. Ponce, and S. R. Rajaram Manoharan, “Nanotechnology in orthopedics: A clinically oriented review,” BMC Musculoskelet. Disord., vol. 19, no. 1, pp. 1–10, Mar. 2018, doi: 10.1186/S12891-018-1990-1/FIGURES/6.
  • C. Cunha, S. Panseri, and S. Antonini, “Emerging nanotechnology approaches in tissue engineering for peripheral nerve regeneration,” Nanomedicine Nanotechnology, Biol. Med., vol. 7, no. 1, pp. 50–59, Feb. 2011, doi: 10.1016/J.NANO.2010.07.004.
  • H. Chopra et al., “Nanomaterials: A Promising Therapeutic Approach for Cardiovascular Diseases,” J. Nanomater., vol. 2022, no. 1, p. 4155729, Jan. 2022, doi: 10.1155/2022/4155729.
  • R. Hama, J. W. Reinhardt, A. Ulziibayar, T. Watanabe, J. Kelly, and T. Shinoka, “Recent Tissue Engineering Approaches to Mimicking the Extracellular Matrix Structure for Skin Regeneration,” Biomimetics 2023, Vol. 8, Page 130, vol. 8, no. 1, p. 130, Mar. 2023, doi: 10.3390/BIOMIMETICS8010130.
  • T. Alberti et al., “Nanotechnology: A Promising Tool Towards Wound Healing,” Curr. Pharm. Des., vol. 23, no. 24, Jun. 2017, doi: 10.2174/1381612823666170503152550.
  • R. Prasad, A. Bhattacharyya, and Q. D. Nguyen, “Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives,” Frontiers in Microbiology, vol. 8, no. JUN. 2017, doi: 10.3389/fmicb.2017.01014.
  • Nanotechnology and metal-organic frameworks for carbon capture,” Res. Outreach, no. 126, 2021, doi: 10.32907/ro-126-1894760360. T. Singh et al., “Emerging technologies for the development of wood products towards extended carbon storage and CO2 capture,” Carbon Capture Science and Technology, vol. 4. 2022, doi: 10.1016/j.ccst.2022.100057.
  • M. Alafeef, P. Moitra, and D. Pan, “Nano-enabled sensing approaches for pathogenic bacterial detection,” Biosensors and Bioelectronics, vol. 165. 2020, doi: 10.1016/j.bios.2020.112276.
  • V. P. Aswathi, S. Meera, C. G. A. Maria, and M. Nidhin, “Green synthesis of nanoparticles from biodegradable waste extracts and their applications: a critical review,” Nanotechnol. Environ. Eng., vol. 8, no. 2, pp. 377–397, Jun. 2023, doi: 10.1007/s41204-022-00276-8.
  • S. Srivastava, D. Verma, S. Thusoo, A. Kumar, V. P. Singh, and R. Kumar, “Nanomanufacturing for Energy Conversion and Storage Devices,” in Nanomanufacturing and Nanomaterials Design, Boca Raton: CRC Press, 2022, pp. 165–173.
  • E. Serrano, “Nanotechnology and the Environment,” Mater. Today - MATER TODAY, vol. 13, p. 55, May 2010, doi: 10.1016/S1369-7021(10)70089-4.
  • R. Ningthoujam, Y. D. Singh, P. J. Babu, A. Tirkey, S. Pradhan, and M. Sarma, “Nanocatalyst in remediating environmental pollutants,” Chem. Phys. Impact, vol. 4, p. 100064, Jun. 2022, doi: 10.1016/j.chphi.2022.100064.
  • M. M. Elwaheidi, “Waste Management Using Nanotechnology,” in Handbook of Research on Safe Disposal Methods of Municipal Solid Wastes for a Sustainable Environment, 2023, pp. 1–23.
  • V. D. Rajput et al., “Can Nanomaterials Improve the Soil Microbiome and Crop Productivity?,” Agriculture (Switzerland), vol. 13, no. 2. 2023, doi: 10.3390/agriculture13020231.
  • S. Tripathi et al., “Recent Advances and Perspectives of Nanomaterials in Agricultural Management and Associated Environmental Risk: A Review,” Nanomaterials, vol. 13, no. 10. 2023, doi: 10.3390/nano13101604.
  • S. Burmaoglu and S. Ozean, “Evolutionary evaluation of energy and nanotechnology relationship,” PICMET 2016 - Portl. Int. Conf. Manag. Eng. Technol. Technol. Manag. Soc. Innov. Proc., pp. 788–794, Jan. 2017, doi: 10.1109/PICMET.2016.7806536.
  • M. H. Ahmadi et al., “Renewable energy harvesting with the application of nanotechnology: A review,” Int. J. Energy Res., vol. 43, no. 4, pp. 1387–1410, Mar. 2019, doi: 10.1002/ER.4282.
  • A. K. Hussein, “Applications of nanotechnology in renewable energies—A comprehensive overview and understanding,” Renew. Sustain. Energy Rev., vol. 42, pp. 460–476, Feb. 2015, doi: 10.1016/J.RSER.2014.10.027.
  • D. Elcock, “Potential nanotechnology applications for reducing freshwater consumption at coal fired power plants : an early view.,” Sep. 2010, doi: 10.2172/1008285.
  • T. Zhao, M. Xu, X. Xiao, Y. Ma, Z. Li, and Z. L. Wang, “Recent progress in blue energy harvesting for powering distributed sensors in ocean,” Nano Energy, vol. 88, p. 106199, Oct. 2021, doi: 10.1016/J.NANOEN.2021.106199.
  • A. Awad, W. Ahmed, and M. Waleed, “Nanotechnology for energy storage,” Emerg. Nanotechnologies Renew. Energy, pp. 495–516, Jan. 2021, doi: 10.1016/B978-0-12-821346-9.00009-2.
  • J. Liu, P. Kopold, P. A. van Aken, J. Maier, and Y. Yu, “Energy Storage Materials from Nature through Nanotechnology: A Sustainable Route from Reed Plants to a Silicon Anode for Lithium-Ion Batteries,” Angew. Chemie, vol. 127, no. 33, pp. 9768–9772, Aug. 2015, doi: 10.1002/ANGE.201503150.
  • Bestem ESİ, “TürkTeksti̇Endüstri̇si̇ Geli̇şi̇mi̇,” 2017.
  • K. PATRA, “Application of nanotechnology in textile engineering: An overview,” J. Eng. Technol. Res., vol. 5, no. 5, pp. 104–111, Jun. 2013, doi: 10.5897/JETR2013.0309.
  • International Journal of Advanced Multidisciplinary Research Novel Applications of Nanotechnology in Modification of Textile Fabrics Properties And Apparel (Review).” .
  • R. D. et al. . Radhika Damuluri et al., “Review Studies on Application of Nanotechnology in Textiles,” Int. J. Text. Fash. Technol., vol. 7, no. 6, pp. 1–4, 2017, doi: 10.24247/ijtftdec20171.
  • M. RATIU, FASCICLE OF TEXTILES, LEATHERWORK, vol. XVI, no. 2. 2015.
  • A. K. Yetisen et al., “Nanotechnology in Textiles,” ACS Nano, vol. 10, no. 3, pp. 3042–3068, 2016, doi: 10.1021/acsnano.5b08176.
  • A. Salman, F. A. Metwally, M. Elbisi, and G. A. M. Emara, “Applications of nanotechnology and advancements in smart wearable textiles: An overview,” Egypt. J. Chem., vol. 63, no. 6, pp. 2177–2184, 2020, doi: 10.21608/ejchem.2019.18223.2112.
  • N. Tarafder, “Applications of nanotechnology for textile products: a review,” Nanoscale Reports, vol. 1, no. 3, pp. 15–22, Nov. 2018, doi: 10.26524/nr1832.
  • J. Jeevanandam et al., “Green approaches for the synthesis of metal and metal oxide nanoparticles using microbial and plant extracts,” Nanoscale, vol. 14, no. 7, pp. 2534–2571, Feb. 2022, doi: 10.1039/D1NR08144F.
  • A. K. M. A. Hosne Asif and M. Z. Hasan, “Application of Nanotechnology in Modern Textiles: A Review,” Int. J. Curr. Eng. Technol., vol. 8, no. 02, pp. 227–231, 2018, doi: 10.14741/ijcet/v.8.2.5.
  • R. E. Gorga, “Nanotechnology in textiles,” Text. World, vol. 160, no. 6, pp. 95–101, 2010.
  • Nasif Chowdhury and Subrata Chandra Das, “Application of Nanotechnology in Textiles: A Review,” Sci. Res. J., vol. 43, no. 5, pp. 44–49, 2015.
  • Y. W. H. Wong, C. W. M. Yuen, M. Y. S. Leung, S. K. A. Ku, and H. L. I. Lam, “SELECTED APPLICATIONS OF NANOTECHNOLOGY IN TEXTILES,” 2006. Accessed: Aug. 02, 2020. [Online]. Available: http://www.autexrj.org/No1-2006/0191.pdf.
  • E. İ. Cansiz and S. Kirmusaoğlu, “Antibacterial Properties of Nano Silver in Nanotechnology,” Haliç Üniversitesi Fen Bilim. Derg., vol. 1, pp. 119–130, 2018.
  • D. E. K. Ilacak, Y. A. L. Malzemeler, L. Tezi, and T. A. Dal, “Bu tez çalışması Sanayi ve Ticaret Bakanlığı tarafından San-Tez Programı kapsamında desteklenmiştir. Proje kodu: 00088.STZ.2007-1,” Finishing, 2009.
  • Z. E. L. S. Enst and A. Dali, “T.c marmara üni̇versi̇tesi̇ güzel sanatlar ensti̇tüsü grafi̇k anasanat dali,” p. 2004, 2009.
  • F. Zhang and J. Yang, “Application of Nano-ZnO on Antistatic Finishing to the Polyester Fabric,” Mod. Appl. Sci., vol. 3, no. 1, Dec. 2008, doi: 10.5539/MAS.V3N1P89.
  • L. Dall’Acqua, C. Tonin, R. Peila, F. Ferrero, and M. Catellani, “Performances and properties of intrinsic conductive cellulose–polypyrrole textiles,” Synth. Met., vol. 146, no. 2, pp. 213–221, Oct. 2004, doi: 10.1016/J.SYNTHMET.2004.07.005.
  • L. Özyüzer, “Miknatissal SaçtirmSi̇stemi̇İle Metal KaplanaPoli̇propi̇leLi̇fleri̇Anti̇stati̇k Ve Anti̇bakteri̇yeÖzelli̇kleri̇ * Antistatic and Antibacterial Properties of Metal Coated Polypropylene Fibers By Magnetron Sputtering,” Tekstil, pp. 1–5.
  • Y. Hasegawa, M. Shikida, D. Ogura, Y. Suzuki, and K. Sato, “Fabrication of a wearable fabric tactile sensor produced by artificial hollow fiber,” J. Micromechanics Microengineering, vol. 18, no. 8, p. 085014, Jul. 2008, doi: 10.1088/0960-1317/18/8/085014.
  • Z. H. Mahmoud and E. Kianfar, “Application of Nano Technology in the Self-Cleaning Finishing of Textiles : A Review,” vol. 6, no. 1, pp. 1–13, 2024.
  • E. M. El-Khatib, “Antimicrobial and Self-cleaning Textiles using Nanotechnology,” Res. J. Text. Appar., vol. 16, no. 3, pp. 156–174, 2012, doi: 10.1108/RJTA-16-03-2012-B016.
  • M. Joshi and A. Bhattacharyya, “Nanotechnology – a new route to high-performance functional textiles,” Text. Prog., vol. 43, no. 3, pp. 155–233, Sep. 2011, doi: 10.1080/00405167.2011.570027.
  • S. R. Prasad, V. B. Kumbhar, and N. R. Prasad, “Applications of Nanotechnology in Textile: A Review,” ES Food Agrofor., vol. 15, pp. 1–9, 2024, doi: 10.30919/esfaf1019.
  • A. Singh and M. Gahlot, “Self Cleaning Textiles : The Textiles that Clean themselves,” no. January, 2015.
  • S. R. Saad, N. Mahmed, M. M. A. B. Abdullah, and A. V. Sandu, “Self-Cleaning Technology in Fabric: A Review,” IOP Conf. Ser. Mater. Sci. Eng., vol. 133, no. 1, 2016, doi: 10.1088/1757-899X/133/1/012028.
  • C. Y. Hsu et al., “Nano titanium oxide (nano-TiO2): A review of synthesis methods, properties, and applications,” Case Stud. Chem. Environ. Eng., vol. 9, p. 100626, Jun. 2024, doi: 10.1016/J.CSCEE.2024.100626.
  • R. Mahmud and F. Nabi, “Application of Nanotechnology in the field of Textile,” IOSR J. Polym. Text. Eng., vol. 04, no. 01, pp. 01–06, 2017, doi: 10.9790/019x-0401010106.
  • Y. Bulu, H. Eraslan, and D. Barca, “TÜRK GIDA SEKTÖRÜNÜN ULUSLARARASI REKABETÇLK DÜZEYNN ANALZ,” 2007.
  • X. He, H. Deng, and H. min Hwang, “The current application of nanotechnology in food and agriculture,” J. Food Drug Anal., vol. 27, no. 1, pp. 1–21, Jan. 2019, doi: 10.1016/J.JFDA.2018.12.002.
  • A. Thirumalai, K. Harini, P. Pallavi, P. Gowtham, K. Girigoswami, and A. Girigoswami, “Nanotechnology driven improvement of smart food packaging,” Mater. Res. Innov., vol. 27, no. 4, pp. 223–232, Jun. 2023, doi: 10.1080/14328917.2022.2114667.
  • D. Enescu, M. A. Cerqueira, P. Fucinos, and L. M. Pastrana, “Recent advances and challenges on applications of nanotechnology in food packaging. A literature review,” Food Chem. Toxicol., vol. 134, p. 110814, Dec. 2019, doi: 10.1016/J.FCT.2019.110814.
  • S. S. Rout and K. C. Pradhan, “A review on antimicrobial nano-based edible packaging: Sustainable applications and emerging trends in food industry,” Food Control, vol. 163, p. 110470, Sep. 2024, doi: 10.1016/J.FOODCONT.2024.110470.
  • L. Vermeiren, F. Devlieghere, M. Van Beest, N. De Kruijf, and J. Debevere, “Developments in the active packaging of foods,” Trends Food Sci. Technol., vol. 10, no. 3, pp. 77–86, Mar. 1999, doi: 10.1016/S0924-2244(99)00032-1.
  • J. H. Han, C. H. L. Ho, and E. T. Rodrigues, “Intelligent packaging,” Innov. Food Packag., pp. 138–155, Jan. 2005, doi: 10.1016/B978-012311632-1/50041-3.
  • J. Wyrwa and A. Barska, “Innovations in the food packaging market: active packaging,” Eur. Food Res. Technol., vol. 243, no. 10, pp. 1681–1692, Oct. 2017, doi: 10.1007/S00217-017-2878-2/TABLES/2.
  • U. Siripatrawan and P. Kaewklin, “Fabrication and characterization of chitosan-titanium dioxide nanocomposite film as ethylene scavenging and antimicrobial active food packaging,” Food Hydrocoll., vol. 84, pp. 125–134, Nov. 2018, doi: 10.1016/J.FOODHYD.2018.04.049.
  • H. Nasution, H. Harahap, E. Julianti, A. Safitri, and M. Jaafar, “Smart Packaging Based on Polylactic Acid: Effect of Antibacterial and Antioxidant Agents from Natural Extract on Physical-Mechanical Properties, Colony Reduction, and Perishable Food Shelf Life,” Sep. 2023, doi: 10.20944/PREPRINTS202309.1692.V1.
  • M. Ghaani, C. A. Cozzolino, G. Castelli, and S. Farris, “An overview of the intelligent packaging technologies in the food sector,” Trends Food Sci. Technol., vol. 51, pp. 1–11, May 2016, doi: 10.1016/J.TIFS.2016.02.008.
  • S. Barage et al., “Nanomaterial in Food Packaging: A Comprehensive Review,” J. Nanomater., vol. 2022, no. 1, p. 6053922, Jan. 2022, doi: 10.1155/2022/6053922.
  • N. Chausali, J. Saxena, and R. Prasad, “Recent trends in nanotechnology applications of bio-based packaging,” J. Agric. Food Res., vol. 7, p. 100257, Mar. 2022, doi: 10.1016/J.JAFR.2021.100257.
  • C. L. Reichert et al., “Bio-Based Packaging: Materials, Modifications, Industrial Applications and Sustainability,” Polym. 2020, Vol. 12, Page 1558, vol. 12, no. 7, p. 1558, Jul. 2020, doi: 10.3390/POLYM12071558.
  • A. Ashfaq, N. Khursheed, S. Fatima, Z. Anjum, and K. Younis, “Application of nanotechnology in food packaging: Pros and Cons,” J. Agric. Food Res., vol. 7, p. 100270, Mar. 2022, doi: 10.1016/J.JAFR.2022.100270.
  • R. Zhu, M. Desroches, B. Yoon, and T. M. Swager, “Wireless oxygen sensors enabled by Fe(II)-polymer wrapped carbon nanotubes,” ACS Sensors, vol. 2, no. 7, pp. 1044–1050, Jul. 2017, doi: 10.1021/ACSSENSORS.7B00327/SUPPL_FILE/SE7B00327_SI_001.PDF.
  • A. K. Biswal and P. K. Misra, “Biosynthesis and characterization of silver nanoparticles for prospective application in food packaging and biomedical fields,” Mater. Chem. Phys., vol. 250, p. 123014, Aug. 2020, doi: 10.1016/J.MATCHEMPHYS.2020.123014.
  • P. Chaudhary, F. Fatima, and A. Kumar, “Relevance of Nanomaterials in Food Packaging and its Advanced Future Prospects,” J. Inorg. Organomet. Polym. Mater., vol. 30, no. 12, pp. 5180–5192, Dec. 2020, doi: 10.1007/S10904-020-01674-8/TABLES/2.
  • M. Primožič, Ž. Knez, and M. Leitgeb, “(Bio)Nanotechnology in Food Science—Food Packaging,” Nanomater. 2021, Vol. 11, Page 292, vol. 11, no. 2, p. 292, Jan. 2021, doi: 10.3390/NANO11020292.
  • H. Bahadar, F. Maqbool, K. Niaz, and M. Abdollahi, “Toxicity of Nanoparticles and an Overview of Current Experimental Models,” Iran. Biomed. J., vol. 20, no. 1, p. 1, Jan. 2016, doi: 10.7508/IBJ.2016.01.001.
  • C. V. Garcia, G. H. Shin, and J. T. Kim, “Metal oxide-based nanocomposites in food packaging: Applications, migration, and regulations,” Trends Food Sci. Technol., vol. 82, pp. 21–31, Dec. 2018, doi: 10.1016/J.TIFS.2018.09.021.
There are 128 citations in total.

Details

Primary Language English
Subjects Nanomaterials, Nanotechnology (Other)
Journal Section Reviews
Authors

Fatma Nur Maran 0009-0005-0691-5185

İrem Türk 0009-0004-2630-9855

Bilge Akkoyun 0009-0000-0858-5590

Marawan Talaat Fawzy Meligy 0009-0008-3986-4099

Enda Lubiçeva 0009-0006-1109-4577

Damla İkballı 0009-0005-5206-8810

Ebru Halvacı 0009-0003-2343-0046

Fatih Şen

Publication Date December 31, 2024
Submission Date December 9, 2024
Acceptance Date December 30, 2024
Published in Issue Year 2024 Issue: 1

Cite

APA Maran, F. N., Türk, İ., Akkoyun, B., Meligy, M. T. F., et al. (2024). Nanotechnology and its Versatile Applications in Medicine, Environment, Energy, Textiles, Food Industry. International Journal of Boron Science and Nanotechnology(1), 18-49.