Review Article
BibTex RIS Cite

Overview of Nanobiotechnology: Nanotechnological Perspectives and Development of Nano Solutions in the Fight Against Cancer

Year 2024, Issue: 1, 50 - 87, 31.12.2024

Abstract

Nanobiotechnology science; It is a branch of science that deals with the nanoscale structures of biological systems, formed by the combination of biotechnology and nanotechnology main branches of science. Nanobiotechnology science causes structural changes in biological systems by interacting with nanoscale materials and living molecules. Therefore, nanobiotechnology science has a great place in cancer treatment. With nanobiotechnology, more effective, efficient and safe treatment methods are developed through nano-sized materials used in cancer diagnosis and treatment. In this field, highly functional materials such as nanoparticles, nanocapsules and nanotubes are used. Nanoparticles, due to their size and surface properties, communicate with the signals of cancer cells and facilitate the delivery of the drug only to cancer cells. The role of nanobiotechnology in cancer treatment is based on the development of cancer cell targeted therapies. In addition, with the advantages offered by nanoscale materials, personalised treatment strategies can be applied in cancer treatment. Personalised cancer treatment allows the development of treatment regimens tailored to the genetic profile and biological structure of patients. Within the scope of this review, studies on what kind of perspectives and what kind of solutions can be brought in the fight against cancer from a general perspective of nanobiotechnology are mentioned. In this context, it is predicted that nanobiotechnology will play an important role in future cancer treatment and research in this field may contribute to the development of more specific and effective treatments.

References

  • J. Chen et al., “Advances in nanobiotechnology-propelled multidrug resistance circumvention of cancer,” pubs.rsc.org, Accessed: Dec. 01, 2024.
  • S. Malik, K. Muhammad, and Y. Waheed, “Emerging Applications of Nanotechnology in Healthcare and Medicine,” Molecules, vol. 28, no. 18, p. 6624, Sep. 2023, doi: 10.3390/molecules28186624.
  • S. Sun, Q. Yang, D. Jiang, and Y. Zhang, “Nanobiotechnology augmented cancer stem cell guided management of cancer: liquid-biopsy, imaging, and treatment,” J Nanobiotechnology, vol. 22, no. 1, Dec. 2024, doi: 10.1186/S12951-024-02432-5.
  • S. Lakhal and M. J. A. Wood, “Exosome nanotechnology: An emerging paradigm shift in drug delivery: Exploitation of exosome nanovesicles for systemic in vivo delivery of RNAi heralds new horizons for drug delivery across biological barriers,” BioEssays, vol. 33, no. 10, pp. 737–741, Oct. 2011, doi: 10.1002/BIES.201100076.
  • R. Nagraik, A. Sharma, D. Kumar, S. Mukherjee, F. Sen, and A. P. Kumar, “Amalgamation of biosensors and nanotechnology in disease diagnosis: Mini-review,” Sensors International, vol. 2, Jan. 2021, doi: 10.1016/J.SINTL.2021.100089.
  • M. Ferrari, “Cancer nanotechnology: opportunities and challenges,” Nat Rev Cancer, vol. 5, no. 3, pp. 161–171, Mar. 2005, doi: 10.1038/nrc1566.
  • B. Bhushan, Ed., Springer Handbook of Nanotechnology. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. doi: 10.1007/978-3-662-54357-3.
  • L. S. Arias, J. P. Pessan, A. P. M. Vieira, T. M. T. De Lima, A. C. B. Delbem, and D. R. Monteiro, “Iron oxide nanoparticles for biomedical applications: A perspective on synthesis, drugs, antimicrobial activity, and toxicity,” Antibiotics, vol. 7, no. 2, Jun. 2018, doi: 10.3390/ANTIBIOTICS7020046.
  • J. Panyam and V. Labhasetwar, “Sustained cytoplasmic delivery of drugs with intracellular receptors using biodegradable nanoparticles.,” Mol Pharm, vol. 1, no. 1, pp. 77–84, 2004, doi: 10.1021/MP034002C.
  • W. T. Al-Jamal and K. Kostarelos, “Liposome-nanoparticle hybrids for multimodal diagnostic and therapeutic applications,” Nanomedicine, vol. 2, no. 1, pp. 85–98, Feb. 2007, doi: 10.2217/17435889.2.1.85.
  • Q. A. Pankhurst, J. Connolly, S. K. Jones, and J. Dobson, “Applications of magnetic nanoparticles in biomedicine,” J Phys D Appl Phys, vol. 36, no. 13, pp. R167–R181, Jul. 2003, doi: 10.1088/0022-3727/36/13/201.
  • C. Fitzmaurice et al., “The Global Burden of Cancer 2013,” JAMA Oncol, vol. 1, no. 4, pp. 505–527, Jul. 2015, doi: 10.1001/JAMAONCOL.2015.0735.
  • Journal of Scientific Reports-C » Makale » Nanotechnology In Medical Applications: Recent Developments In Devices And Materials.” Accessed: Dec. 01, 2024.
  • C. Niemeyer and C. Mirkin, “Nanobiotechnology: concepts, applications and perspectives,” 2004, Accessed: Dec. 01, 2024.
  • M. Fakruddin, Z. Hossain, and H. Afroz, “Prospects and applications of nanobiotechnology: A medical perspective,” J Nanobiotechnology, vol. 10, Jul. 2012, doi: 10.1186/1477-3155-10-31.
  • S. Günbatar, A. Aygun, Y. Karataş, M. Gülcan, and F. Şen, “Carbon-nanotube-based rhodium nanoparticles as highly-active catalyst for hydrolytic dehydrogenation of dimethylamineborane at room temperature,” J Colloid Interface Sci, vol. 530, pp. 321–327, Nov. 2018, doi: 10.1016/J.JCIS.2018.06.100.
  • T. G. Drummond, M. G. Hill, and J. K. Barton, “Electrochemical DNA sensors,” Nat Biotechnol, vol. 21, no. 10, pp. 1192–1199, Oct. 2003, doi: 10.1038/nbt873.
  • J. K. Vasir and V. Labhasetwar, “Targeted drug delivery in cancer therapy,” Technol Cancer Res Treat, vol. 4, no. 4, pp. 363–374, 2005, doi: 10.1177/153303460500400405.
  • Q. Zhang et al., “Supermeres are functional extracellular nanoparticles replete with disease biomarkers and therapeutic targets,” Nat Cell Biol, vol. 23, no. 12, pp. 1240–1254, Dec. 2021, doi: 10.1038/s41556-021-00805-8.
  • J. Li, C. Sharkey, D. Huang, M. K.-C. and Molecular, and undefined 2015, “Nanobiotechnology for the therapeutic targeting of cancer cells in blood,” Springer, Accessed: Dec. 01, 2024.
  • B. Demirkan et al., “Askorbik asit, dopamin ve ürik asidin eş zamanlı biyosensör uygulaması için polipirol/indirgenmiş grafen oksit nanopartikülleri üzerinde desteklenen paladyum.”
  • N. Lolak, E. Kuyuldar, H. Burhan, H. Goksu, S. Akocak, and F. Sen, “Composites of Palladium-Nickel Alloy Nanoparticles and Graphene Oxide for the Knoevenagel Condensation of Aldehydes with Malononitrile,” ACS Omega, vol. 4, no. 4, pp. 6848–6853, Apr. 2019, doi: 10.1021/acsomega.9b00485.
  • K. J.-P. P. of C. Therapeutics and undefined 2009, “Application of nanobiotechnology in cancer therapeutics,” Springer, Accessed: Dec. 01, 2024.
  • K. K. Jain, “Application of nanobiotechnology in cancer therapeutics,” Pharmaceutical Perspectives of Cancer Therapeutics, pp. 245–268, 2009, doi: 10.1007/978-1-4419-0131-6_8.
  • N. Sanvicens and M. P. Marco, “Multifunctional nanoparticles – properties and prospects for their use in human medicine,” Trends Biotechnol, vol. 26, no. 8, pp. 425–433, Aug. 2008, doi: 10.1016/j.tibtech.2008.04.005.
  • P. Vader, E. A. Mol, G. Pasterkamp, and R. M. Schiffelers, “Extracellular vesicles for drug delivery,” Adv Drug Deliv Rev, vol. 106, pp. 148–156, Nov. 2016, doi: 10.1016/J.ADDR.2016.02.006.
  • G. S. Ginsburg, R. P. Konstance, J. S. Allsbrook, and K. A. Schulman, “Implications of pharmacogenomics for drug development and clinical practice,” Arch Intern Med, vol. 165, no. 20, pp. 2331–2336, Nov. 2005, doi: 10.1001/archinte.165.20.2331.
  • L. Zhang, F. Gu, J. Chan, A. Wang, R. Langer, and O. Farokhzad, “Nanoparticles in Medicine: Therapeutic Applications and Developments,” Clin Pharmacol Ther, vol. 83, no. 5, pp. 761–769, May 2008, doi: 10.1038/sj.clpt.6100400.
  • H. Yin, R. L. Kanasty, A. A. Eltoukhy, A. J. Vegas, J. R. Dorkin, and D. G. Anderson, “Non-viral vectors for gene-based therapy,” Nat Rev Genet, vol. 15, no. 8, pp. 541–555, 2014, doi: 10.1038/NRG3763.
  • T. J. Wickham, “Ligand-directed targeting of genes to the site of disease,” Nat Med, vol. 9, no. 1, pp. 135–139, Jan. 2003, doi: 10.1038/NM0103-135.
  • The ADA human gene therapy clinical protocol.,” Hum Gene Ther, vol. 1, no. 3, pp. 327–362, 1990, doi: 10.1089/HUM.1990.1.3-327.
  • R. P. Singh, “Prospects of Nanobiomaterials for Biosensing,” International Journal of Electrochemistry, vol. 2011, pp. 1–30, 2011, doi: 10.4061/2011/125487.
  • R. Duncan and R. Gaspar, “Nanomedicine(s) under the Microscope,” Mol Pharm, vol. 8, no. 6, pp. 2101–2141, Dec. 2011, doi: 10.1021/mp200394t.
  • A. Hughes, M. K.-: N. and Nanobiotechnology, and undefined 2012, “Nanobiotechnology for the capture and manipulation of circulating tumor cells,” Wiley Online Library, Accessed: Dec. 01, 2024.
  • S. Sun, Q. Yang, D. Jiang, Y. Z.-J. of Nanobiotechnology, and undefined 2024, “Nanobiotechnology augmented cancer stem cell guided management of cancer: liquid-biopsy, imaging, and treatment,” Springer, Accessed: Dec. 01, 2024.
  • A. Ağan, M. K.-U. A. Dergisi, and undefined 2020, “MELİTTİN VE KANSER TEDAVİSİ: NANOTEKNOLOJİK BAKIŞ AÇISI,” dergipark.org.tr, Accessed: Dec. 01, 2024.
  • Z. ÇIPLAK and F. SOYSAL, “Grafen oksit-gümüş-polianilin nanokompozitlerinin fototermal performanslarının incelenmesi Investigation of photothermal performances of graphene oxide,” jag.journalagent.com, Accessed: Dec. 01, 2024.
  • M. Rocha, N. Chaves, S. B.-B. cancer-F. biology to, and undefined 2017, “Nanobiotechnology for breast cancer treatment,” books.google.com, Accessed: Dec. 01, 2024.
  • R. Misra, S. Acharya, and S. K. Sahoo, “Cancer nanotechnology: Application of nanotechnology in cancer therapy,” Drug Discov Today, vol. 15, no. 19–20, pp. 842–850, Oct. 2010, doi: 10.1016/J.DRUDIS.2010.08.006.
  • V. Chaturvedi, A. Singh, … V. S.-C. drug, and undefined 2019, “Cancer nanotechnology: a new revolution for cancer diagnosis and therapy,” ingentaconnect.com, Accessed: Dec. 01, 2024.
  • C. Ayman, B. Getiren, … Z. C.-J. O., and undefined 2024, “Synthesis of NIR Responsive NGQDs-Fe3O4@ PPy Nanocomposite and Investigation of Its Photothermal Performance,” avesis.ankara.edu.tr, Accessed: Dec. 01, 2024.
  • F. Soysal, Z. Ç.-A. K. Ü. F. Ve, and undefined 2023, “Grafen Oksit/Altın/Polianilin Nanokompozitlerinin Eş Zamanlı Çöktürme/Polimerizasyon Yöntemleriyle Sentezi ve Fototermal Performansı,” dergipark.org.tr, Accessed: Dec. 01, 2024.
  • B. Tuna, Y. Yavuz, G. Kuku, … A. M.-M. Ü., and undefined 2019, “Modifiye altın nanoparçacıkların fare hipokampal kesitlerindeki nöronal fonksiyonlar üzerine etkileri,” dergipark.org.tr, Accessed: Dec. 01, 2024
  • G. Arabacı, S. Ayan, F. Gündüz, Y. D.-A.-K. Dergisi, and undefined 2023, “Elektroeğrilmiş Nanofiber Yapıların Kanser Tedavisinde Kullanımı: Mevcut İlerlemeler ve Gelecek Persfektifler,” dergipark.org.tr, Accessed: Dec. 01, 2024.
  • E. Naumenko, I. Guryanov, and M. Gomzikova, “Drug Delivery Nano-Platforms for Advanced Cancer Therapy,” Sci Pharm, vol. 92, no. 2, p. 28, May 2024, doi: 10.3390/scipharm92020028.
  • E. Asadipour, M. Asgari, … P. M.-C. &, and undefined 2023, “Nano‐biotechnology and challenges of drug delivery system in cancer treatment pathway,” Wiley Online Library, Accessed: Dec. 01, 2024.
  • K. J.-T. in cancer research & treatment and undefined 2005, “Role of nanobiotechnology in developing personalized medicine for cancer,” journals.sagepub.com, Accessed: Dec. 01, 2024.
  • J. Li, C. C. Sharkey, D. Huang, and M. R. King, “Nanobiotechnology for the Therapeutic Targeting of Cancer Cells in Blood,” Cell Mol Bioeng, vol. 8, no. 1, pp. 137–150, Mar. 2015, doi: 10.1007/S12195-015-0381-Z.
  • D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit, and R. Langer, “Nanocarriers as an emerging platform for cancer therapy,” Nat Nanotechnol, vol. 2, no. 12, pp. 751–760, Dec. 2007, doi: 10.1038/nnano.2007.387.
  • S. M. Moghimi, A. C. Hunter, and J. C. Murray, “Nanomedicine: current status and future prospects,” The FASEB Journal, vol. 19, no. 3, pp. 311–330, Mar. 2005, doi: 10.1096/fj.04-2747rev.
  • Pinky, S. Gupta, V. Krishnakumar, Y. Sharma, A. K. Dinda, and S. Mohanty, “Mesenchymal Stem Cell Derived Exosomes: a Nano Platform for Therapeutics and Drug Delivery in Combating COVID-19,” Stem Cell Rev Rep, vol. 17, no. 1, pp. 33–43, Feb. 2021, doi: 10.1007/S12015-020-10002-Z.
  • S. Nie, Y. Xing, G. J. Kim, and J. W. Simons, “Nanotechnology applications in cancer,” Annu Rev Biomed Eng, vol. 9, pp. 257–288, 2007, doi: 10.1146/ANNUREV.BIOENG.9.060906.152025.
  • D. M. Smith, J. K. Simon, and J. R. Baker, “Applications of nanotechnology for immunology,” Nat Rev Immunol, vol. 13, no. 8, pp. 592–605, 2013, doi: 10.1038/NRI3488.
  • M. B. Askari, P. Salarizadeh, A. Di Bartolomeo, and F. Şen, “Enhanced electrochemical performance of MnNi2O4/rGO nanocomposite as pseudocapacitor electrode material and methanol electro-oxidation catalyst,” Nanotechnology, vol. 32, no. 32, Aug. 2021, doi: 10.1088/1361-6528/abfded.
  • A. Sivakami, R. Sarankumar, S. V.-B. Nanomaterials, and undefined 2021, “Introduction to nanobiotechnology: novel and smart applications,” Springer, Accessed: Dec. 01, 2024.
  • C. Mohanty, G. Arya, … R. V.-I. J. of, and undefined 2009, “Nanobiotechnology: application of nanotechnology in therapeutics and diagnosis,” Taylor & Francis, Accessed: Dec. 01, 2024.
  • K. J.-C. chemistry and undefined 2007, “Applications of nanobiotechnology in clinical diagnostics,” academic.oup.com, Accessed: Dec. 01, 2024
  • N. Alrushaid, F. A. Khan, E. A. Al-Suhaimi, and A. Elaissari, “Nanotechnology in Cancer Diagnosis and Treatment,” Mar. 01, 2023, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/pharmaceutics15031025.
  • N. Alrushaid, F. A. Khan, E. A. Al-Suhaimi, and A. Elaissari, “Nanotechnology in Cancer Diagnosis and Treatment,” Pharmaceutics, vol. 15, no. 3, p. 1025, Mar. 2023, doi: 10.3390/pharmaceutics15031025.
  • Y. Dutt, R. Pandey, M. Dutt, A. Gupta, A. V.-… of Nanobiotechnology, and undefined 2023, “Therapeutic applications of nanobiotechnology,” Springer, Accessed: Dec. 01, 2024.
  • A. Tewabe, A. Abate, M. Tamrie, A. Seyfu, and E. A. Siraj, “Targeted drug delivery — from magic bullet to nanomedicine: Principles, challenges, and future perspectives,” J Multidiscip Healthc, vol. 14, pp. 1711–1724, 2021, doi: 10.2147/JMDH.S313968.
  • S. Singhal, S. Nie, and M. D. Wang, “Nanotechnology applications in surgical oncology,” Annu Rev Med, vol. 61, pp. 359–373, Feb. 2010, doi: 10.1146/ANNUREV.MED.60.052907.094936.
  • J. K. Patel, A. Patel, and D. Bhatia, “Introduction to nanomaterials and nanotechnology,” Emerging Technologies for Nanoparticle Manufacturing, pp. 3–23, Jun. 2021, doi: 10.1007/978-3-030-50703-9_1.
  • A. Shoaib et al., “A Nanotechnology-Based Approach to Biosensor Application in Current Diabetes Management Practices,” Nanomaterials, vol. 13, no. 5, p. 867, Feb. 2023, doi: 10.3390/nano13050867.
  • C. Compton, “Getting to personalized cancer medicine: Taking out the garbage,” Cancer, vol. 110, no. 8, pp. 1641–1643, Oct. 2007, doi: 10.1002/cncr.22966.
  • C. Mohanty, G. Arya, R. S. Verma, and S. K. Sahoo, “Nanobiotechnology: Application of nanotechnology in therapeutics and diagnosis,” Int J Green Nanotechnol Biomed, vol. 1, no. 1, 2009, doi: 10.1080/19430850902908522.
  • E. Guttman-Yassky et al., “Broad defects in epidermal cornification in atopic dermatitis identified through genomic analysis,” Journal of Allergy and Clinical Immunology, vol. 124, no. 6, 2009, doi: 10.1016/J.JACI.2009.09.031.
  • G. A. Silva, “Introduction to nanotechnology and its applications to medicine,” Surg Neurol, vol. 61, no. 3, pp. 216–220, 2004, doi: 10.1016/J.SURNEU.2003.09.036.
  • A. N. Lukashev and A. A. Zamyatnin, “Viral vectors for gene therapy: Current state and clinical perspectives,” Biochemistry (Moscow), vol. 81, no. 7, pp. 700–708, Jul. 2016, doi: 10.1134/S0006297916070063.
  • T. D. Richmond, “The current status and future potential of personalized diagnostics: Streamlining a customized process,” Biotechnol Annu Rev, vol. 14, pp. 411–422, 2008, doi: 10.1016/S1387-2656(08)00015-X.
  • E. Savchenko and S. Bunimovich-Mendrazitsky, “Investigation toward the economic feasibility of personalized medicine for healthcare service providers: the case of bladder cancer.,” Front Med (Lausanne), vol. 11, p. 1388685, 2024, doi: 10.3389/fmed.2024.1388685.
  • J. E. Hulla, S. C. Sahu, and A. W. Hayes, “Nanotechnology: History and future,” Hum Exp Toxicol, vol. 34, no. 12, pp. 1318–1321, Dec. 2015, doi: 10.1177/0960327115603588.
  • L. J. Lesko, “Personalized medicine: Elusive dream or imminent reality?,” Clin Pharmacol Ther, vol. 81, no. 6, pp. 807–816, Jun. 2007, doi: 10.1038/sj.clpt.6100204.
  • Personalized medicine - PubMed.” Accessed: Dec. 01, 2024.
  • T. Yadavalli and D. Shukla, “Role of metal and metal oxide nanoparticles as diagnostic and therapeutic tools for highly prevalent viral infections,” Nanomedicine, vol. 13, no. 1, pp. 219–230, Jan. 2017, doi: 10.1016/J.NANO.2016.08.016.
  • H. Ghaffari et al., “Inhibition of H1N1 influenza virus infection by zinc oxide nanoparticles: Another emerging application of nanomedicine,” J Biomed Sci, vol. 26, no. 1, Sep. 2019, doi: 10.1186/S12929-019-0563-4.
  • S. Basu, P. Biswas, M. Anto, N. Singh, and K. Mukherjee, “Nanomaterial-enabled drug transport systems: a comprehensive exploration of current developments and future avenues in therapeutic delivery.,” 3 Biotech, vol. 14, no. 12, p. 289, Dec. 2024, doi: 10.1007/s13205-024-04135-y.
  • M. Vincent, I. De Lázaro, and K. Kostarelos, “Graphene materials as 2D non-viral gene transfer vector platforms,” Gene Ther, vol. 24, no. 3, pp. 123–132, Mar. 2017, doi: 10.1038/GT.2016.79.
  • Y. Zhou, S. Peng, H. Wang, X. Cai, and Q. Wang, “Review of Personalized Medicine and Pharmacogenomics of Anti-Cancer Compounds and Natural Products,” Genes (Basel), vol. 15, no. 4, Apr. 2024, doi: 10.3390/genes15040468.
  • A. S.-R. Pang et al., “Nanoparticles as Drug Delivery Systems for the Targeted Treatment of Atherosclerosis,” Molecules, vol. 29, no. 12, p. 2873, Jun. 2024, doi: 10.3390/molecules29122873.
  • Y. Abo-zeid and G. R. Williams, “The potential anti-infective applications of metal oxide nanoparticles: A systematic review,” Wiley Interdiscip Rev Nanomed Nanobiotechnol, vol. 12, no. 2, Mar. 2020, doi: 10.1002/WNAN.1592. J. E. Kipp, “The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs,” Int J Pharm, vol. 284, no. 1–2, pp. 109–122, Oct. 2004, doi: 10.1016/J.IJPHARM.2004.07.019.
  • Y. Cheng, Z. Xu, M. Ma, and T. Xu, “Dendrimers as drug carriers: Applications in different routes of drug administration,” J Pharm Sci, vol. 97, no. 1, pp. 123–143, 2008, doi: 10.1002/JPS.21079.
  • E. Asadipour, M. Asgari, P. Mousavi, T. Piri-Gharaghie, G. Ghajari, and A. Mirzaie, “Nano-Biotechnology and Challenges of Drug Delivery System in Cancer Treatment Pathway: Review Article,” Chem Biodivers, vol. 20, no. 6, Jun. 2023, doi: 10.1002/CBDV.202201072.
  • Z. W. Tay et al., “Magnetic Particle Imaging: An Emerging Modality with Prospects in Diagnosis, Targeting and Therapy of Cancer,” Cancers (Basel), vol. 13, no. 21, p. 5285, Oct. 2021, doi: 10.3390/cancers13215285.
  • A. K. Gupta and M. Gupta, “Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications,” Biomaterials, vol. 26, no. 18, pp. 3995–4021, Jun. 2005, doi: 10.1016/j.biomaterials.2004.10.012.
  • B. Şahin, E. Demir, A. Aygün, H. Gündüz, and F. Şen, “Investigation of the effect of pomegranate extract and monodisperse silver nanoparticle combination on MCF-7 cell line,” J Biotechnol, vol. 260, pp. 79–83, Oct. 2017, doi: 10.1016/J.JBIOTEC.2017.09.012.
  • N. Barkalina, C. Charalambous, C. Jones, and K. Coward, “Nanotechnology in reproductive medicine: Emerging applications of nanomaterials,” Nanomedicine, vol. 10, no. 5, pp. e921–e938, 2014, doi: 10.1016/J.NANO.2014.01.001.
  • D. Mundekkad and W. C. Cho, “Nanoparticles in Clinical Translation for Cancer Therapy,” Int J Mol Sci, vol. 23, no. 3, p. 1685, Feb. 2022, doi: 10.3390/ijms23031685.
  • S. Rafiei, S. E. Rezatofighi, M. R. Ardakani, and S. Rastegarzadeh, “Gold Nanoparticles Impair Foot-and-Mouth Disease Virus Replication,” IEEE Trans Nanobioscience, vol. 15, no. 1, pp. 34–40, Jan. 2016, doi: 10.1109/TNB.2015.2508718.
  • R. Kumar et al., “Iron oxide nanoparticles based antiviral activity of H1N1 influenza A virus,” Journal of Infection and Chemotherapy, vol. 25, no. 5, pp. 325–329, May 2019, doi: 10.1016/J.JIAC.2018.12.006.
  • K. Murugan et al., “Magnetic nanoparticles are highly toxic to chloroquine-resistant Plasmodium falciparum, dengue virus (DEN-2), and their mosquito vectors,” Parasitol Res, vol. 116, no. 2, pp. 495–502, Feb. 2017, doi: 10.1007/S00436-016-5310-0.
  • F. Sanchez and K. Sobolev, “Nanotechnology in concrete - A review,” Constr Build Mater, vol. 24, no. 11, pp. 2060–2071, 2010, doi: 10.1016/J.CONBUILDMAT.2010.03.014.
  • A. Sirelkhatim et al., “Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism,” Nanomicro Lett, vol. 7, no. 3, pp. 219–242, Apr. 2015, doi: 10.1007/S40820-015-0040-X.
  • Z. Ozturk, F. Sen, S. Sen, and G. Gokagac, “The preparation and characterization of nano-sized Pt-Pd/C catalysts and comparison of their superior catalytic activities for methanol and ethanol oxidation,” J Mater Sci, vol. 47, no. 23, pp. 8134–8144, 2012, doi: 10.1007/s10853-012-6709-3.
  • Z. Çıplak, F. S.-P. Ü. M. Bilimleri, and undefined 2024, “Grafen oksit-gümüş-polianilin nanokompozitlerinin fototermal performanslarının incelenmesi,” dergipark.org.tr, Accessed: Dec. 01, 2024.
  • Pascucci et al., “Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: A new approach for drug delivery,” Journal of Controlled Release, vol. 192, pp. 262–270, Oct. 2014, doi: 10.1016/J.JCONREL.2014.07.042.
  • E. J. Bunggulawa et al., “Recent advancements in the use of exosomes as drug delivery systems 06 Biological Sciences 0601 Biochemistry and Cell Biology,” J Nanobiotechnology, vol. 16, no. 1, Oct. 2018, doi: 10.1186/S12951-018-0403-9.
  • M. M. A. Elsayed, O. Y. Abdallah, V. F. Naggar, and N. M. Khalafallah, “Lipid vesicles for skin delivery of drugs: Reviewing three decades of research,” Int J Pharm, vol. 332, no. 1–2, pp. 1–16, Mar. 2007, doi: 10.1016/J.IJPHARM.2006.12.005.
  • A. Slominski, D. J. Tobin, S. Shibahara, and J. Wortsman, “Melanin pigmentation in mammalian skin and its hormonal regulation,” Physiol Rev, vol. 84, no. 4, pp. 1155–1228, Oct. 2004, doi: 10.1152/PHYSREV.00044.2003.
  • A. Akbari and J. Rezaie, “Potential therapeutic application of mesenchymal stem cell-derived exosomes in SARS-CoV-2 pneumonia,” Stem Cell Res Ther, vol. 11, no. 1, Aug. 2020, doi: 10.1186/S13287-020-01866-6.
  • S. Ertan, F. Şen, S. Şen, and G. Gökağaç, “Platinum nanocatalysts prepared with different surfactants for C1-C3 alcohol oxidations and their surface morphologies by AFM,” Journal of Nanoparticle Research, vol. 14, no. 6, Jun. 2012, doi: 10.1007/S11051-012-0922-5/FIGURES/8.
  • P. Taslimi et al., “Pyrazole[3,4-d]pyridazine derivatives: Molecular docking and explore of acetylcholinesterase and carbonic anhydrase enzymes inhibitors as anticholinergics potentials,” Bioorg Chem, vol. 92, p. 103213, Nov. 2019, doi: 10.1016/J.BIOORG.2019.103213.
  • K. Arikan, H. Burhan, R. Bayat, and F. Sen, “Glucose nano biosensor with non-enzymatic excellent sensitivity prepared with nickel–cobalt nanocomposites on f-MWCNT,” Chemosphere, vol. 291, Mar. 2022, doi: 10.1016/J.CHEMOSPHERE.2021.132720.
  • A. Şavk, H. Aydın, K. Cellat, and F. Şen, “A novel high performance non-enzymatic electrochemical glucose biosensor based on activated carbon-supported Pt-Ni nanocomposite,” J Mol Liq, vol. 300, Feb. 2020, doi: 10.1016/J.MOLLIQ.2019.112355.
  • K. K. Jain, “Role of nanobiotechnology in developing personalized medicine for cancer,” Technol Cancer Res Treat, vol. 4, no. 6, pp. 645–650, 2005, doi: 10.1177/153303460500400608.
  • A. Sivakami, R. Sarankumar, and S. Vinodha, “Introduction to nanobiotechnology: Novel and smart applications,” Bio-manufactured Nanomaterials: Perspectives and Promotion, pp. 1–22, Jun. 2021, doi: 10.1007/978-3-030-67223-2_1.
  • S. Hossen, M. K. Hossain, M. K. Basher, M. N. H. Mia, M. T. Rahman, and M. J. Uddin, “Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review,” J Adv Res, vol. 15, pp. 1–18, Jan. 2019, doi: 10.1016/J.JARE.2018.06.005.
  • A. W. Thomson and P. A. Knolle, “Antigen-presenting cell function in the tolerogenic liver environment,” Nat Rev Immunol, vol. 10, no. 11, pp. 753–766, Nov. 2010, doi: 10.1038/nri2858.
  • J. Silvestre, N. Silvestre, and J. De Brito, “Review on concrete nanotechnology,” European Journal of Environmental and Civil Engineering, vol. 20, no. 4, pp. 455–485, Apr. 2016, doi: 10.1080/19648189.2015.1042070.

Overview of Nanobiotechnology: Nanotechnological Perspectives and Development of Nano Solutions in the Fight Against Cancer

Year 2024, Issue: 1, 50 - 87, 31.12.2024

Abstract

Nanobiotechnology science; It is a branch of science that deals with the nanoscale structures of biological systems, formed by the combination of biotechnology and nanotechnology main branches of science. Nanobiotechnology science causes structural changes in biological systems by interacting with nanoscale materials and living molecules. Therefore, nanobiotechnology science has a great place in cancer treatment. With nanobiotechnology, more effective, efficient and safe treatment methods are developed through nano-sized materials used in cancer diagnosis and treatment. In this field, highly functional materials such as nanoparticles, nanocapsules and nanotubes are used. Nanoparticles, due to their size and surface properties, communicate with the signals of cancer cells and facilitate the delivery of the drug only to cancer cells. The role of nanobiotechnology in cancer treatment is based on the development of cancer cell targeted therapies. In addition, with the advantages offered by nanoscale materials, personalised treatment strategies can be applied in cancer treatment. Personalised cancer treatment allows the development of treatment regimens tailored to the genetic profile and biological structure of patients. Within the scope of this review, studies on what kind of perspectives and what kind of solutions can be brought in the fight against cancer from a general perspective of nanobiotechnology are mentioned. In this context, it is predicted that nanobiotechnology will play an important role in future cancer treatment and research in this field may contribute to the development of more specific and effective treatments.

References

  • J. Chen et al., “Advances in nanobiotechnology-propelled multidrug resistance circumvention of cancer,” pubs.rsc.org, Accessed: Dec. 01, 2024.
  • S. Malik, K. Muhammad, and Y. Waheed, “Emerging Applications of Nanotechnology in Healthcare and Medicine,” Molecules, vol. 28, no. 18, p. 6624, Sep. 2023, doi: 10.3390/molecules28186624.
  • S. Sun, Q. Yang, D. Jiang, and Y. Zhang, “Nanobiotechnology augmented cancer stem cell guided management of cancer: liquid-biopsy, imaging, and treatment,” J Nanobiotechnology, vol. 22, no. 1, Dec. 2024, doi: 10.1186/S12951-024-02432-5.
  • S. Lakhal and M. J. A. Wood, “Exosome nanotechnology: An emerging paradigm shift in drug delivery: Exploitation of exosome nanovesicles for systemic in vivo delivery of RNAi heralds new horizons for drug delivery across biological barriers,” BioEssays, vol. 33, no. 10, pp. 737–741, Oct. 2011, doi: 10.1002/BIES.201100076.
  • R. Nagraik, A. Sharma, D. Kumar, S. Mukherjee, F. Sen, and A. P. Kumar, “Amalgamation of biosensors and nanotechnology in disease diagnosis: Mini-review,” Sensors International, vol. 2, Jan. 2021, doi: 10.1016/J.SINTL.2021.100089.
  • M. Ferrari, “Cancer nanotechnology: opportunities and challenges,” Nat Rev Cancer, vol. 5, no. 3, pp. 161–171, Mar. 2005, doi: 10.1038/nrc1566.
  • B. Bhushan, Ed., Springer Handbook of Nanotechnology. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. doi: 10.1007/978-3-662-54357-3.
  • L. S. Arias, J. P. Pessan, A. P. M. Vieira, T. M. T. De Lima, A. C. B. Delbem, and D. R. Monteiro, “Iron oxide nanoparticles for biomedical applications: A perspective on synthesis, drugs, antimicrobial activity, and toxicity,” Antibiotics, vol. 7, no. 2, Jun. 2018, doi: 10.3390/ANTIBIOTICS7020046.
  • J. Panyam and V. Labhasetwar, “Sustained cytoplasmic delivery of drugs with intracellular receptors using biodegradable nanoparticles.,” Mol Pharm, vol. 1, no. 1, pp. 77–84, 2004, doi: 10.1021/MP034002C.
  • W. T. Al-Jamal and K. Kostarelos, “Liposome-nanoparticle hybrids for multimodal diagnostic and therapeutic applications,” Nanomedicine, vol. 2, no. 1, pp. 85–98, Feb. 2007, doi: 10.2217/17435889.2.1.85.
  • Q. A. Pankhurst, J. Connolly, S. K. Jones, and J. Dobson, “Applications of magnetic nanoparticles in biomedicine,” J Phys D Appl Phys, vol. 36, no. 13, pp. R167–R181, Jul. 2003, doi: 10.1088/0022-3727/36/13/201.
  • C. Fitzmaurice et al., “The Global Burden of Cancer 2013,” JAMA Oncol, vol. 1, no. 4, pp. 505–527, Jul. 2015, doi: 10.1001/JAMAONCOL.2015.0735.
  • Journal of Scientific Reports-C » Makale » Nanotechnology In Medical Applications: Recent Developments In Devices And Materials.” Accessed: Dec. 01, 2024.
  • C. Niemeyer and C. Mirkin, “Nanobiotechnology: concepts, applications and perspectives,” 2004, Accessed: Dec. 01, 2024.
  • M. Fakruddin, Z. Hossain, and H. Afroz, “Prospects and applications of nanobiotechnology: A medical perspective,” J Nanobiotechnology, vol. 10, Jul. 2012, doi: 10.1186/1477-3155-10-31.
  • S. Günbatar, A. Aygun, Y. Karataş, M. Gülcan, and F. Şen, “Carbon-nanotube-based rhodium nanoparticles as highly-active catalyst for hydrolytic dehydrogenation of dimethylamineborane at room temperature,” J Colloid Interface Sci, vol. 530, pp. 321–327, Nov. 2018, doi: 10.1016/J.JCIS.2018.06.100.
  • T. G. Drummond, M. G. Hill, and J. K. Barton, “Electrochemical DNA sensors,” Nat Biotechnol, vol. 21, no. 10, pp. 1192–1199, Oct. 2003, doi: 10.1038/nbt873.
  • J. K. Vasir and V. Labhasetwar, “Targeted drug delivery in cancer therapy,” Technol Cancer Res Treat, vol. 4, no. 4, pp. 363–374, 2005, doi: 10.1177/153303460500400405.
  • Q. Zhang et al., “Supermeres are functional extracellular nanoparticles replete with disease biomarkers and therapeutic targets,” Nat Cell Biol, vol. 23, no. 12, pp. 1240–1254, Dec. 2021, doi: 10.1038/s41556-021-00805-8.
  • J. Li, C. Sharkey, D. Huang, M. K.-C. and Molecular, and undefined 2015, “Nanobiotechnology for the therapeutic targeting of cancer cells in blood,” Springer, Accessed: Dec. 01, 2024.
  • B. Demirkan et al., “Askorbik asit, dopamin ve ürik asidin eş zamanlı biyosensör uygulaması için polipirol/indirgenmiş grafen oksit nanopartikülleri üzerinde desteklenen paladyum.”
  • N. Lolak, E. Kuyuldar, H. Burhan, H. Goksu, S. Akocak, and F. Sen, “Composites of Palladium-Nickel Alloy Nanoparticles and Graphene Oxide for the Knoevenagel Condensation of Aldehydes with Malononitrile,” ACS Omega, vol. 4, no. 4, pp. 6848–6853, Apr. 2019, doi: 10.1021/acsomega.9b00485.
  • K. J.-P. P. of C. Therapeutics and undefined 2009, “Application of nanobiotechnology in cancer therapeutics,” Springer, Accessed: Dec. 01, 2024.
  • K. K. Jain, “Application of nanobiotechnology in cancer therapeutics,” Pharmaceutical Perspectives of Cancer Therapeutics, pp. 245–268, 2009, doi: 10.1007/978-1-4419-0131-6_8.
  • N. Sanvicens and M. P. Marco, “Multifunctional nanoparticles – properties and prospects for their use in human medicine,” Trends Biotechnol, vol. 26, no. 8, pp. 425–433, Aug. 2008, doi: 10.1016/j.tibtech.2008.04.005.
  • P. Vader, E. A. Mol, G. Pasterkamp, and R. M. Schiffelers, “Extracellular vesicles for drug delivery,” Adv Drug Deliv Rev, vol. 106, pp. 148–156, Nov. 2016, doi: 10.1016/J.ADDR.2016.02.006.
  • G. S. Ginsburg, R. P. Konstance, J. S. Allsbrook, and K. A. Schulman, “Implications of pharmacogenomics for drug development and clinical practice,” Arch Intern Med, vol. 165, no. 20, pp. 2331–2336, Nov. 2005, doi: 10.1001/archinte.165.20.2331.
  • L. Zhang, F. Gu, J. Chan, A. Wang, R. Langer, and O. Farokhzad, “Nanoparticles in Medicine: Therapeutic Applications and Developments,” Clin Pharmacol Ther, vol. 83, no. 5, pp. 761–769, May 2008, doi: 10.1038/sj.clpt.6100400.
  • H. Yin, R. L. Kanasty, A. A. Eltoukhy, A. J. Vegas, J. R. Dorkin, and D. G. Anderson, “Non-viral vectors for gene-based therapy,” Nat Rev Genet, vol. 15, no. 8, pp. 541–555, 2014, doi: 10.1038/NRG3763.
  • T. J. Wickham, “Ligand-directed targeting of genes to the site of disease,” Nat Med, vol. 9, no. 1, pp. 135–139, Jan. 2003, doi: 10.1038/NM0103-135.
  • The ADA human gene therapy clinical protocol.,” Hum Gene Ther, vol. 1, no. 3, pp. 327–362, 1990, doi: 10.1089/HUM.1990.1.3-327.
  • R. P. Singh, “Prospects of Nanobiomaterials for Biosensing,” International Journal of Electrochemistry, vol. 2011, pp. 1–30, 2011, doi: 10.4061/2011/125487.
  • R. Duncan and R. Gaspar, “Nanomedicine(s) under the Microscope,” Mol Pharm, vol. 8, no. 6, pp. 2101–2141, Dec. 2011, doi: 10.1021/mp200394t.
  • A. Hughes, M. K.-: N. and Nanobiotechnology, and undefined 2012, “Nanobiotechnology for the capture and manipulation of circulating tumor cells,” Wiley Online Library, Accessed: Dec. 01, 2024.
  • S. Sun, Q. Yang, D. Jiang, Y. Z.-J. of Nanobiotechnology, and undefined 2024, “Nanobiotechnology augmented cancer stem cell guided management of cancer: liquid-biopsy, imaging, and treatment,” Springer, Accessed: Dec. 01, 2024.
  • A. Ağan, M. K.-U. A. Dergisi, and undefined 2020, “MELİTTİN VE KANSER TEDAVİSİ: NANOTEKNOLOJİK BAKIŞ AÇISI,” dergipark.org.tr, Accessed: Dec. 01, 2024.
  • Z. ÇIPLAK and F. SOYSAL, “Grafen oksit-gümüş-polianilin nanokompozitlerinin fototermal performanslarının incelenmesi Investigation of photothermal performances of graphene oxide,” jag.journalagent.com, Accessed: Dec. 01, 2024.
  • M. Rocha, N. Chaves, S. B.-B. cancer-F. biology to, and undefined 2017, “Nanobiotechnology for breast cancer treatment,” books.google.com, Accessed: Dec. 01, 2024.
  • R. Misra, S. Acharya, and S. K. Sahoo, “Cancer nanotechnology: Application of nanotechnology in cancer therapy,” Drug Discov Today, vol. 15, no. 19–20, pp. 842–850, Oct. 2010, doi: 10.1016/J.DRUDIS.2010.08.006.
  • V. Chaturvedi, A. Singh, … V. S.-C. drug, and undefined 2019, “Cancer nanotechnology: a new revolution for cancer diagnosis and therapy,” ingentaconnect.com, Accessed: Dec. 01, 2024.
  • C. Ayman, B. Getiren, … Z. C.-J. O., and undefined 2024, “Synthesis of NIR Responsive NGQDs-Fe3O4@ PPy Nanocomposite and Investigation of Its Photothermal Performance,” avesis.ankara.edu.tr, Accessed: Dec. 01, 2024.
  • F. Soysal, Z. Ç.-A. K. Ü. F. Ve, and undefined 2023, “Grafen Oksit/Altın/Polianilin Nanokompozitlerinin Eş Zamanlı Çöktürme/Polimerizasyon Yöntemleriyle Sentezi ve Fototermal Performansı,” dergipark.org.tr, Accessed: Dec. 01, 2024.
  • B. Tuna, Y. Yavuz, G. Kuku, … A. M.-M. Ü., and undefined 2019, “Modifiye altın nanoparçacıkların fare hipokampal kesitlerindeki nöronal fonksiyonlar üzerine etkileri,” dergipark.org.tr, Accessed: Dec. 01, 2024
  • G. Arabacı, S. Ayan, F. Gündüz, Y. D.-A.-K. Dergisi, and undefined 2023, “Elektroeğrilmiş Nanofiber Yapıların Kanser Tedavisinde Kullanımı: Mevcut İlerlemeler ve Gelecek Persfektifler,” dergipark.org.tr, Accessed: Dec. 01, 2024.
  • E. Naumenko, I. Guryanov, and M. Gomzikova, “Drug Delivery Nano-Platforms for Advanced Cancer Therapy,” Sci Pharm, vol. 92, no. 2, p. 28, May 2024, doi: 10.3390/scipharm92020028.
  • E. Asadipour, M. Asgari, … P. M.-C. &, and undefined 2023, “Nano‐biotechnology and challenges of drug delivery system in cancer treatment pathway,” Wiley Online Library, Accessed: Dec. 01, 2024.
  • K. J.-T. in cancer research & treatment and undefined 2005, “Role of nanobiotechnology in developing personalized medicine for cancer,” journals.sagepub.com, Accessed: Dec. 01, 2024.
  • J. Li, C. C. Sharkey, D. Huang, and M. R. King, “Nanobiotechnology for the Therapeutic Targeting of Cancer Cells in Blood,” Cell Mol Bioeng, vol. 8, no. 1, pp. 137–150, Mar. 2015, doi: 10.1007/S12195-015-0381-Z.
  • D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit, and R. Langer, “Nanocarriers as an emerging platform for cancer therapy,” Nat Nanotechnol, vol. 2, no. 12, pp. 751–760, Dec. 2007, doi: 10.1038/nnano.2007.387.
  • S. M. Moghimi, A. C. Hunter, and J. C. Murray, “Nanomedicine: current status and future prospects,” The FASEB Journal, vol. 19, no. 3, pp. 311–330, Mar. 2005, doi: 10.1096/fj.04-2747rev.
  • Pinky, S. Gupta, V. Krishnakumar, Y. Sharma, A. K. Dinda, and S. Mohanty, “Mesenchymal Stem Cell Derived Exosomes: a Nano Platform for Therapeutics and Drug Delivery in Combating COVID-19,” Stem Cell Rev Rep, vol. 17, no. 1, pp. 33–43, Feb. 2021, doi: 10.1007/S12015-020-10002-Z.
  • S. Nie, Y. Xing, G. J. Kim, and J. W. Simons, “Nanotechnology applications in cancer,” Annu Rev Biomed Eng, vol. 9, pp. 257–288, 2007, doi: 10.1146/ANNUREV.BIOENG.9.060906.152025.
  • D. M. Smith, J. K. Simon, and J. R. Baker, “Applications of nanotechnology for immunology,” Nat Rev Immunol, vol. 13, no. 8, pp. 592–605, 2013, doi: 10.1038/NRI3488.
  • M. B. Askari, P. Salarizadeh, A. Di Bartolomeo, and F. Şen, “Enhanced electrochemical performance of MnNi2O4/rGO nanocomposite as pseudocapacitor electrode material and methanol electro-oxidation catalyst,” Nanotechnology, vol. 32, no. 32, Aug. 2021, doi: 10.1088/1361-6528/abfded.
  • A. Sivakami, R. Sarankumar, S. V.-B. Nanomaterials, and undefined 2021, “Introduction to nanobiotechnology: novel and smart applications,” Springer, Accessed: Dec. 01, 2024.
  • C. Mohanty, G. Arya, … R. V.-I. J. of, and undefined 2009, “Nanobiotechnology: application of nanotechnology in therapeutics and diagnosis,” Taylor & Francis, Accessed: Dec. 01, 2024.
  • K. J.-C. chemistry and undefined 2007, “Applications of nanobiotechnology in clinical diagnostics,” academic.oup.com, Accessed: Dec. 01, 2024
  • N. Alrushaid, F. A. Khan, E. A. Al-Suhaimi, and A. Elaissari, “Nanotechnology in Cancer Diagnosis and Treatment,” Mar. 01, 2023, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/pharmaceutics15031025.
  • N. Alrushaid, F. A. Khan, E. A. Al-Suhaimi, and A. Elaissari, “Nanotechnology in Cancer Diagnosis and Treatment,” Pharmaceutics, vol. 15, no. 3, p. 1025, Mar. 2023, doi: 10.3390/pharmaceutics15031025.
  • Y. Dutt, R. Pandey, M. Dutt, A. Gupta, A. V.-… of Nanobiotechnology, and undefined 2023, “Therapeutic applications of nanobiotechnology,” Springer, Accessed: Dec. 01, 2024.
  • A. Tewabe, A. Abate, M. Tamrie, A. Seyfu, and E. A. Siraj, “Targeted drug delivery — from magic bullet to nanomedicine: Principles, challenges, and future perspectives,” J Multidiscip Healthc, vol. 14, pp. 1711–1724, 2021, doi: 10.2147/JMDH.S313968.
  • S. Singhal, S. Nie, and M. D. Wang, “Nanotechnology applications in surgical oncology,” Annu Rev Med, vol. 61, pp. 359–373, Feb. 2010, doi: 10.1146/ANNUREV.MED.60.052907.094936.
  • J. K. Patel, A. Patel, and D. Bhatia, “Introduction to nanomaterials and nanotechnology,” Emerging Technologies for Nanoparticle Manufacturing, pp. 3–23, Jun. 2021, doi: 10.1007/978-3-030-50703-9_1.
  • A. Shoaib et al., “A Nanotechnology-Based Approach to Biosensor Application in Current Diabetes Management Practices,” Nanomaterials, vol. 13, no. 5, p. 867, Feb. 2023, doi: 10.3390/nano13050867.
  • C. Compton, “Getting to personalized cancer medicine: Taking out the garbage,” Cancer, vol. 110, no. 8, pp. 1641–1643, Oct. 2007, doi: 10.1002/cncr.22966.
  • C. Mohanty, G. Arya, R. S. Verma, and S. K. Sahoo, “Nanobiotechnology: Application of nanotechnology in therapeutics and diagnosis,” Int J Green Nanotechnol Biomed, vol. 1, no. 1, 2009, doi: 10.1080/19430850902908522.
  • E. Guttman-Yassky et al., “Broad defects in epidermal cornification in atopic dermatitis identified through genomic analysis,” Journal of Allergy and Clinical Immunology, vol. 124, no. 6, 2009, doi: 10.1016/J.JACI.2009.09.031.
  • G. A. Silva, “Introduction to nanotechnology and its applications to medicine,” Surg Neurol, vol. 61, no. 3, pp. 216–220, 2004, doi: 10.1016/J.SURNEU.2003.09.036.
  • A. N. Lukashev and A. A. Zamyatnin, “Viral vectors for gene therapy: Current state and clinical perspectives,” Biochemistry (Moscow), vol. 81, no. 7, pp. 700–708, Jul. 2016, doi: 10.1134/S0006297916070063.
  • T. D. Richmond, “The current status and future potential of personalized diagnostics: Streamlining a customized process,” Biotechnol Annu Rev, vol. 14, pp. 411–422, 2008, doi: 10.1016/S1387-2656(08)00015-X.
  • E. Savchenko and S. Bunimovich-Mendrazitsky, “Investigation toward the economic feasibility of personalized medicine for healthcare service providers: the case of bladder cancer.,” Front Med (Lausanne), vol. 11, p. 1388685, 2024, doi: 10.3389/fmed.2024.1388685.
  • J. E. Hulla, S. C. Sahu, and A. W. Hayes, “Nanotechnology: History and future,” Hum Exp Toxicol, vol. 34, no. 12, pp. 1318–1321, Dec. 2015, doi: 10.1177/0960327115603588.
  • L. J. Lesko, “Personalized medicine: Elusive dream or imminent reality?,” Clin Pharmacol Ther, vol. 81, no. 6, pp. 807–816, Jun. 2007, doi: 10.1038/sj.clpt.6100204.
  • Personalized medicine - PubMed.” Accessed: Dec. 01, 2024.
  • T. Yadavalli and D. Shukla, “Role of metal and metal oxide nanoparticles as diagnostic and therapeutic tools for highly prevalent viral infections,” Nanomedicine, vol. 13, no. 1, pp. 219–230, Jan. 2017, doi: 10.1016/J.NANO.2016.08.016.
  • H. Ghaffari et al., “Inhibition of H1N1 influenza virus infection by zinc oxide nanoparticles: Another emerging application of nanomedicine,” J Biomed Sci, vol. 26, no. 1, Sep. 2019, doi: 10.1186/S12929-019-0563-4.
  • S. Basu, P. Biswas, M. Anto, N. Singh, and K. Mukherjee, “Nanomaterial-enabled drug transport systems: a comprehensive exploration of current developments and future avenues in therapeutic delivery.,” 3 Biotech, vol. 14, no. 12, p. 289, Dec. 2024, doi: 10.1007/s13205-024-04135-y.
  • M. Vincent, I. De Lázaro, and K. Kostarelos, “Graphene materials as 2D non-viral gene transfer vector platforms,” Gene Ther, vol. 24, no. 3, pp. 123–132, Mar. 2017, doi: 10.1038/GT.2016.79.
  • Y. Zhou, S. Peng, H. Wang, X. Cai, and Q. Wang, “Review of Personalized Medicine and Pharmacogenomics of Anti-Cancer Compounds and Natural Products,” Genes (Basel), vol. 15, no. 4, Apr. 2024, doi: 10.3390/genes15040468.
  • A. S.-R. Pang et al., “Nanoparticles as Drug Delivery Systems for the Targeted Treatment of Atherosclerosis,” Molecules, vol. 29, no. 12, p. 2873, Jun. 2024, doi: 10.3390/molecules29122873.
  • Y. Abo-zeid and G. R. Williams, “The potential anti-infective applications of metal oxide nanoparticles: A systematic review,” Wiley Interdiscip Rev Nanomed Nanobiotechnol, vol. 12, no. 2, Mar. 2020, doi: 10.1002/WNAN.1592. J. E. Kipp, “The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs,” Int J Pharm, vol. 284, no. 1–2, pp. 109–122, Oct. 2004, doi: 10.1016/J.IJPHARM.2004.07.019.
  • Y. Cheng, Z. Xu, M. Ma, and T. Xu, “Dendrimers as drug carriers: Applications in different routes of drug administration,” J Pharm Sci, vol. 97, no. 1, pp. 123–143, 2008, doi: 10.1002/JPS.21079.
  • E. Asadipour, M. Asgari, P. Mousavi, T. Piri-Gharaghie, G. Ghajari, and A. Mirzaie, “Nano-Biotechnology and Challenges of Drug Delivery System in Cancer Treatment Pathway: Review Article,” Chem Biodivers, vol. 20, no. 6, Jun. 2023, doi: 10.1002/CBDV.202201072.
  • Z. W. Tay et al., “Magnetic Particle Imaging: An Emerging Modality with Prospects in Diagnosis, Targeting and Therapy of Cancer,” Cancers (Basel), vol. 13, no. 21, p. 5285, Oct. 2021, doi: 10.3390/cancers13215285.
  • A. K. Gupta and M. Gupta, “Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications,” Biomaterials, vol. 26, no. 18, pp. 3995–4021, Jun. 2005, doi: 10.1016/j.biomaterials.2004.10.012.
  • B. Şahin, E. Demir, A. Aygün, H. Gündüz, and F. Şen, “Investigation of the effect of pomegranate extract and monodisperse silver nanoparticle combination on MCF-7 cell line,” J Biotechnol, vol. 260, pp. 79–83, Oct. 2017, doi: 10.1016/J.JBIOTEC.2017.09.012.
  • N. Barkalina, C. Charalambous, C. Jones, and K. Coward, “Nanotechnology in reproductive medicine: Emerging applications of nanomaterials,” Nanomedicine, vol. 10, no. 5, pp. e921–e938, 2014, doi: 10.1016/J.NANO.2014.01.001.
  • D. Mundekkad and W. C. Cho, “Nanoparticles in Clinical Translation for Cancer Therapy,” Int J Mol Sci, vol. 23, no. 3, p. 1685, Feb. 2022, doi: 10.3390/ijms23031685.
  • S. Rafiei, S. E. Rezatofighi, M. R. Ardakani, and S. Rastegarzadeh, “Gold Nanoparticles Impair Foot-and-Mouth Disease Virus Replication,” IEEE Trans Nanobioscience, vol. 15, no. 1, pp. 34–40, Jan. 2016, doi: 10.1109/TNB.2015.2508718.
  • R. Kumar et al., “Iron oxide nanoparticles based antiviral activity of H1N1 influenza A virus,” Journal of Infection and Chemotherapy, vol. 25, no. 5, pp. 325–329, May 2019, doi: 10.1016/J.JIAC.2018.12.006.
  • K. Murugan et al., “Magnetic nanoparticles are highly toxic to chloroquine-resistant Plasmodium falciparum, dengue virus (DEN-2), and their mosquito vectors,” Parasitol Res, vol. 116, no. 2, pp. 495–502, Feb. 2017, doi: 10.1007/S00436-016-5310-0.
  • F. Sanchez and K. Sobolev, “Nanotechnology in concrete - A review,” Constr Build Mater, vol. 24, no. 11, pp. 2060–2071, 2010, doi: 10.1016/J.CONBUILDMAT.2010.03.014.
  • A. Sirelkhatim et al., “Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism,” Nanomicro Lett, vol. 7, no. 3, pp. 219–242, Apr. 2015, doi: 10.1007/S40820-015-0040-X.
  • Z. Ozturk, F. Sen, S. Sen, and G. Gokagac, “The preparation and characterization of nano-sized Pt-Pd/C catalysts and comparison of their superior catalytic activities for methanol and ethanol oxidation,” J Mater Sci, vol. 47, no. 23, pp. 8134–8144, 2012, doi: 10.1007/s10853-012-6709-3.
  • Z. Çıplak, F. S.-P. Ü. M. Bilimleri, and undefined 2024, “Grafen oksit-gümüş-polianilin nanokompozitlerinin fototermal performanslarının incelenmesi,” dergipark.org.tr, Accessed: Dec. 01, 2024.
  • Pascucci et al., “Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: A new approach for drug delivery,” Journal of Controlled Release, vol. 192, pp. 262–270, Oct. 2014, doi: 10.1016/J.JCONREL.2014.07.042.
  • E. J. Bunggulawa et al., “Recent advancements in the use of exosomes as drug delivery systems 06 Biological Sciences 0601 Biochemistry and Cell Biology,” J Nanobiotechnology, vol. 16, no. 1, Oct. 2018, doi: 10.1186/S12951-018-0403-9.
  • M. M. A. Elsayed, O. Y. Abdallah, V. F. Naggar, and N. M. Khalafallah, “Lipid vesicles for skin delivery of drugs: Reviewing three decades of research,” Int J Pharm, vol. 332, no. 1–2, pp. 1–16, Mar. 2007, doi: 10.1016/J.IJPHARM.2006.12.005.
  • A. Slominski, D. J. Tobin, S. Shibahara, and J. Wortsman, “Melanin pigmentation in mammalian skin and its hormonal regulation,” Physiol Rev, vol. 84, no. 4, pp. 1155–1228, Oct. 2004, doi: 10.1152/PHYSREV.00044.2003.
  • A. Akbari and J. Rezaie, “Potential therapeutic application of mesenchymal stem cell-derived exosomes in SARS-CoV-2 pneumonia,” Stem Cell Res Ther, vol. 11, no. 1, Aug. 2020, doi: 10.1186/S13287-020-01866-6.
  • S. Ertan, F. Şen, S. Şen, and G. Gökağaç, “Platinum nanocatalysts prepared with different surfactants for C1-C3 alcohol oxidations and their surface morphologies by AFM,” Journal of Nanoparticle Research, vol. 14, no. 6, Jun. 2012, doi: 10.1007/S11051-012-0922-5/FIGURES/8.
  • P. Taslimi et al., “Pyrazole[3,4-d]pyridazine derivatives: Molecular docking and explore of acetylcholinesterase and carbonic anhydrase enzymes inhibitors as anticholinergics potentials,” Bioorg Chem, vol. 92, p. 103213, Nov. 2019, doi: 10.1016/J.BIOORG.2019.103213.
  • K. Arikan, H. Burhan, R. Bayat, and F. Sen, “Glucose nano biosensor with non-enzymatic excellent sensitivity prepared with nickel–cobalt nanocomposites on f-MWCNT,” Chemosphere, vol. 291, Mar. 2022, doi: 10.1016/J.CHEMOSPHERE.2021.132720.
  • A. Şavk, H. Aydın, K. Cellat, and F. Şen, “A novel high performance non-enzymatic electrochemical glucose biosensor based on activated carbon-supported Pt-Ni nanocomposite,” J Mol Liq, vol. 300, Feb. 2020, doi: 10.1016/J.MOLLIQ.2019.112355.
  • K. K. Jain, “Role of nanobiotechnology in developing personalized medicine for cancer,” Technol Cancer Res Treat, vol. 4, no. 6, pp. 645–650, 2005, doi: 10.1177/153303460500400608.
  • A. Sivakami, R. Sarankumar, and S. Vinodha, “Introduction to nanobiotechnology: Novel and smart applications,” Bio-manufactured Nanomaterials: Perspectives and Promotion, pp. 1–22, Jun. 2021, doi: 10.1007/978-3-030-67223-2_1.
  • S. Hossen, M. K. Hossain, M. K. Basher, M. N. H. Mia, M. T. Rahman, and M. J. Uddin, “Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review,” J Adv Res, vol. 15, pp. 1–18, Jan. 2019, doi: 10.1016/J.JARE.2018.06.005.
  • A. W. Thomson and P. A. Knolle, “Antigen-presenting cell function in the tolerogenic liver environment,” Nat Rev Immunol, vol. 10, no. 11, pp. 753–766, Nov. 2010, doi: 10.1038/nri2858.
  • J. Silvestre, N. Silvestre, and J. De Brito, “Review on concrete nanotechnology,” European Journal of Environmental and Civil Engineering, vol. 20, no. 4, pp. 455–485, Apr. 2016, doi: 10.1080/19648189.2015.1042070.
There are 109 citations in total.

Details

Primary Language English
Subjects Cancer Biology, Nanotechnology (Other)
Journal Section Reviews
Authors

Berk Sevimli 0009-0004-3214-134X

Ceren Yaren İlgin 0009-0004-3098-0115

Ecem Acar 0009-0002-6822-1646

Maryam Almusawi 0009-0002-9522-2556

Çisem Aydostan 0009-0002-6453-9032

Ebru Halvacı 0009-0003-2343-0046

Damla İkballı 0009-0005-5206-8810

Fatih Şen

Publication Date December 31, 2024
Submission Date December 9, 2024
Acceptance Date December 30, 2024
Published in Issue Year 2024 Issue: 1

Cite

APA Sevimli, B., İlgin, C. Y., Acar, E., Almusawi, M., et al. (2024). Overview of Nanobiotechnology: Nanotechnological Perspectives and Development of Nano Solutions in the Fight Against Cancer. International Journal of Boron Science and Nanotechnology(1), 50-87.