Research Article
BibTex RIS Cite

Determination of The Solid Solubility Limit of Iron Atom from Different Sources, in the Mullite Crystals, Obtained from Illitic/Kaolinitic Clays

Year 2024, Issue: 1, 1 - 17, 31.12.2024

Abstract

This study: aims to bring clay, which is one of the important raw materials of the ceramic and porcelain sectors, to the production of soft porcelain in a cleaner and higher quality way. In addition, this study aims to prevent the discoloration of iron, which is present in high ratios in clays used in the traditional ceramic industry. In the study, two types of iron were added to CC-31 clay; Fe2O3 at 0 %, 2 %, 4 %, 6 %, 8 %, 10 % by weight and FeCl3 at 0 %, 4.05 %, 8.1 %, 12.16 %, 16.21 %, 20.26 % by weight. At this point, FeO will be broken down as Fe enters the crystal structure and the coloring effect will be prevented. XRF (X-ray Fluorescence), XRD (X-ray Diffraction), and TG/DTA (Thermal Gravimetry/Differential Thermal Analysis) analyses were performed to determine the chemical properties and thermal properties of CC-31 clay used in the study. Density, water absorption, and porosity tests were performed. L*a*b* (3D color coordinates) values were measured for the samples prepared and sintered with CC-31 clay. In addition, the effect of iron addition to CC-31 clay was investigated on the sintered samples by XRD analysis, the surface images, and the growth of mullite crystals by SEM (Scanning Electron Microscopy) analysis. In addition, the crystal parameters of mullite were calculated and the iron solubility limit in mullite was determined. The results showed that the hematite phase started to appear with the addition of 6% of both iron sources, and the mullite phase formed after sintering at 1200 ⁰C could dissolve iron up to 4-5% addition. Within the scope of the study, it has been shown that CC-31 clay can be used in the porcelain / ceramic industry and that it provides a high advantage with its high mullitization rate and will host a high mullitization rate.

Project Number

2022-61.

Thanks

The authors acknowledge the financial support provided by Kütahya Dumlupınar University Scientific Research Projects Unit (KDPU-BAP), project No: 2022-61.

References

  • F. Gol et al., “Evaluation of solid wastes in the manufacture of ceramic tableware glazes,” Ceram Int, vol. 48, no. 11, pp. 15622–15628, Jun. 2022, doi: 10.1016/J.CERAMINT.2022.02.096.
  • F. Gol et al., “The use of boron based materials on efficiency of environmentally friendly porous ceramics,” Environ Res, vol. 216, p. 114454, Jan. 2023, doi: 10.1016/J.ENVRES.2022.114454.
  • A. De Bonis et al., “Different shades of red: The complexity of mineralogical and physico-chemical factors influencing the colour of ceramics,” Ceram Int, vol. 43, no. 11, pp. 8065–8074, Aug. 2017, doi: 10.1016/J.CERAMINT.2017.03.127.
  • G. Yanik, F. Esenli, V. Uz, V. Esenli, B. Uz, and T. Külah, “Ceramic properties of kaolinized tuffaceous rocks in Kesan region, Thrace, NW Turkey,” Appl Clay Sci, vol. 48, no. 3, pp. 499–505, Apr. 2010, doi: 10.1016/J.CLAY.2010.02.014.
  • A. Akcıl and A. Tuncuk, “Kaolenlerin safsızlaştırılmasında kimyasal ve biyolojik yöntemlerin incelenmesi ,” Kibited, vol. 1, no. 2, pp. 59–69, 2006.
  • Z. G. Sarıtas, “Farklı Tipteki Killerden Oluşturulan Mullit İçinde Demir Çözünürlüğünün Belirlenmesi,” Kutahya, 2022.
  • R. Ceylantekin and R. Başar, “Solid solution limit of Fe2O3 in mullite crystals, produced from kaolin by solid state reactions,” Ceram Int, vol. 44, no. 7, pp. 7599–7604, May 2018, doi: 10.1016/J.CERAMINT.2018.01.178.
  • H. Schneider, R. X. Fischer, and J. Schreuer, “Mullite: Crystal Structure and Related Properties,” Journal of the American Ceramic Society, vol. 98, no. 10, pp. 2948–2967, Oct. 2015, doi: 10.1111/JACE.13817.
  • J. Martín-Márquez, J. M. Rincón, and M. Romero, “Mullite development on firing in porcelain stoneware bodies,” J Eur Ceram Soc, vol. 30, no. 7, pp. 1599–1607, May 2010, doi: 10.1016/J.JEURCERAMSOC.2010.01.002.
  • C. Zhang, Z. Zhang, Y. Tan, and M. Zhong, “The effect of citric acid on the kaolin activation and mullite formation,” Ceram Int, vol. 43, no. 1, pp. 1466–1471, Jan. 2017, doi: 10.1016/J.CERAMINT.2016.10.115.
  • D. J. Duval, S. H. Risbud, and J. F. Shackelford, “Mullite,” Ceramic and Glass Materials: Structure, Properties and Processing, pp. 27–39, 2008, doi: 10.1007/978-0-387-73362-3_2.
  • A. Djemai, E. Balan, G. Morin, G. Hernandez, J. C. Labbe, and J. P. Muller, “Behavior of Paramagnetic Iron during the Thermal Transformations of Kaolinite,” Journal of the American Ceramic Society, vol. 84, no. 5, pp. 1017–1024, May 2001, doi: 10.1111/J.1151-2916.2001.TB00784.X.
  • H. Scheider, “Temperature-Dependent Iron Solubility in Mullite,” Journal of the American Ceramic Society, vol. 70, no. 3, pp. C–43, Mar. 1987, doi: 10.1111/J.1151-2916.1987.TB04961.X.
  • J. H. She and T. Ohji, “Fabrication and characterization of highly porous mullite ceramics,” Mater Chem Phys, vol. 80, no. 3, pp. 610–614, Jun. 2003, doi: 10.1016/S0254-0584(03)00080-4.
  • W. E. Brownell, “Subsolidus Relations Between Mullite and Iron Oxide,” Journal of the American Ceramic Society, vol. 41, no. 6, pp. 226–230, Jun. 1958, doi: 10.1111/J.1151-2916.1958.TB13544.X.
  • E. Elmas, “Mullit Oluşumunda Mekanik Aktivasyonun Etkisi,” Sakarya Üniversitesi, Sakarya, 2009.
  • W. E. Lee and Y. Iqbal, “Influence of mixing on mullite formation in porcelain,” J Eur Ceram Soc, vol. 21, no. 14, pp. 2583–2586, Jan. 2001, doi: 10.1016/S0955-2219(01)00274-6.
  • S. Ilić et al., “Structural, microstructural and mechanical properties of sintered iron-doped mullite,” Materials Science and Engineering: B, vol. 256, p. 114543, Jun. 2020, doi: 10.1016/J.MSEB.2020.114543.
  • O. Castelein, R. Guinebretière, J. P. Bonnet, and P. Blanchart, “Shape, size and composition of mullite nanocrystals from a rapidly sintered kaolin,” J Eur Ceram Soc, vol. 21, no. 13, pp. 2369–2376, Nov. 2001, doi: 10.1016/S0955-2219(01)00211-4.

İllitik/Kaolinitik Killerden Elde Edilen Mullit Kristallerinde Farklı Kaynaklardan Gelen Demir Atomunun Katı Çözünürlük Limitinin Belirlenmesi

Year 2024, Issue: 1, 1 - 17, 31.12.2024

Abstract

Bu çalışma; seramik ve porselen sektörünün önemli hammaddelerinden biri olan kilin daha temiz ve kaliteli bir şekilde yumuşak porselen üretimine kazandırılmasını amaçlamaktadır. Ayrıca bu çalışma ile geleneksel seramik endüstrisinde kullanılan killerde yüksek oranlarda bulunan demirin renk değiştirmesinin önüne geçilmesi hedeflenmektedir. Çalışmada CC-31 kiline ağırlıkça %0, %2, %4, %6, %8, %10 oranlarında Fe2O3 ve ağırlıkça %0, %4,05, %8,1, %12,16, %16,21, %20,26 oranlarında FeCl3 olmak üzere iki tür demir eklenmiştir. Bu noktada Fe kristal yapıya girerken FeO parçalanacak ve renklendirme etkisi önlenecektir. Çalışmada kullanılan CC-31 kilinin kimyasal özelliklerini ve termal özelliklerini belirlemek için XRF (X-ray Fluorescence), XRD (X-ray Diffraction) ve TG/DTA (Thermal Gravimetry/Differential Thermal Analysis) analizleri yapılmıştır. Yoğunluk, su emme ve porozite testleri gerçekleştirilmiştir. CC-31 kili ile hazırlanan ve sinterlenen numuneler için L*a*b* (3D renk koordinatları) değerleri ölçülmüştür. Ayrıca, CC-31 kiline demir ilavesinin sinterlenmiş numuneler üzerindeki etkisi XRD analizi, yüzey görüntüleri ve SEM (Taramalı Elektron Mikroskobu) analizi ile mullit kristallerinin büyümesi incelenmiştir. Ayrıca, mullitin kristal parametreleri hesaplanmış ve mullitteki demir çözünürlük limiti belirlenmiştir. Sonuçlar, her iki demir kaynağının %6 ilavesiyle hematit fazının ortaya çıkmaya başladığını ve 1200 ⁰C'de sinterleme sonrası oluşan mullit fazının %4-5 ilaveye kadar demiri çözebildiğini göstermiştir. Çalışma kapsamında CC-31 kilinin porselen/seramik sektöründe kullanılabileceği ve yüksek mullitleşme oranı ile yüksek avantaj sağladığı ve yüksek bir mullitleşme oranına ev sahipliği yapacağı gösterilmiştir.

Project Number

2022-61.

References

  • F. Gol et al., “Evaluation of solid wastes in the manufacture of ceramic tableware glazes,” Ceram Int, vol. 48, no. 11, pp. 15622–15628, Jun. 2022, doi: 10.1016/J.CERAMINT.2022.02.096.
  • F. Gol et al., “The use of boron based materials on efficiency of environmentally friendly porous ceramics,” Environ Res, vol. 216, p. 114454, Jan. 2023, doi: 10.1016/J.ENVRES.2022.114454.
  • A. De Bonis et al., “Different shades of red: The complexity of mineralogical and physico-chemical factors influencing the colour of ceramics,” Ceram Int, vol. 43, no. 11, pp. 8065–8074, Aug. 2017, doi: 10.1016/J.CERAMINT.2017.03.127.
  • G. Yanik, F. Esenli, V. Uz, V. Esenli, B. Uz, and T. Külah, “Ceramic properties of kaolinized tuffaceous rocks in Kesan region, Thrace, NW Turkey,” Appl Clay Sci, vol. 48, no. 3, pp. 499–505, Apr. 2010, doi: 10.1016/J.CLAY.2010.02.014.
  • A. Akcıl and A. Tuncuk, “Kaolenlerin safsızlaştırılmasında kimyasal ve biyolojik yöntemlerin incelenmesi ,” Kibited, vol. 1, no. 2, pp. 59–69, 2006.
  • Z. G. Sarıtas, “Farklı Tipteki Killerden Oluşturulan Mullit İçinde Demir Çözünürlüğünün Belirlenmesi,” Kutahya, 2022.
  • R. Ceylantekin and R. Başar, “Solid solution limit of Fe2O3 in mullite crystals, produced from kaolin by solid state reactions,” Ceram Int, vol. 44, no. 7, pp. 7599–7604, May 2018, doi: 10.1016/J.CERAMINT.2018.01.178.
  • H. Schneider, R. X. Fischer, and J. Schreuer, “Mullite: Crystal Structure and Related Properties,” Journal of the American Ceramic Society, vol. 98, no. 10, pp. 2948–2967, Oct. 2015, doi: 10.1111/JACE.13817.
  • J. Martín-Márquez, J. M. Rincón, and M. Romero, “Mullite development on firing in porcelain stoneware bodies,” J Eur Ceram Soc, vol. 30, no. 7, pp. 1599–1607, May 2010, doi: 10.1016/J.JEURCERAMSOC.2010.01.002.
  • C. Zhang, Z. Zhang, Y. Tan, and M. Zhong, “The effect of citric acid on the kaolin activation and mullite formation,” Ceram Int, vol. 43, no. 1, pp. 1466–1471, Jan. 2017, doi: 10.1016/J.CERAMINT.2016.10.115.
  • D. J. Duval, S. H. Risbud, and J. F. Shackelford, “Mullite,” Ceramic and Glass Materials: Structure, Properties and Processing, pp. 27–39, 2008, doi: 10.1007/978-0-387-73362-3_2.
  • A. Djemai, E. Balan, G. Morin, G. Hernandez, J. C. Labbe, and J. P. Muller, “Behavior of Paramagnetic Iron during the Thermal Transformations of Kaolinite,” Journal of the American Ceramic Society, vol. 84, no. 5, pp. 1017–1024, May 2001, doi: 10.1111/J.1151-2916.2001.TB00784.X.
  • H. Scheider, “Temperature-Dependent Iron Solubility in Mullite,” Journal of the American Ceramic Society, vol. 70, no. 3, pp. C–43, Mar. 1987, doi: 10.1111/J.1151-2916.1987.TB04961.X.
  • J. H. She and T. Ohji, “Fabrication and characterization of highly porous mullite ceramics,” Mater Chem Phys, vol. 80, no. 3, pp. 610–614, Jun. 2003, doi: 10.1016/S0254-0584(03)00080-4.
  • W. E. Brownell, “Subsolidus Relations Between Mullite and Iron Oxide,” Journal of the American Ceramic Society, vol. 41, no. 6, pp. 226–230, Jun. 1958, doi: 10.1111/J.1151-2916.1958.TB13544.X.
  • E. Elmas, “Mullit Oluşumunda Mekanik Aktivasyonun Etkisi,” Sakarya Üniversitesi, Sakarya, 2009.
  • W. E. Lee and Y. Iqbal, “Influence of mixing on mullite formation in porcelain,” J Eur Ceram Soc, vol. 21, no. 14, pp. 2583–2586, Jan. 2001, doi: 10.1016/S0955-2219(01)00274-6.
  • S. Ilić et al., “Structural, microstructural and mechanical properties of sintered iron-doped mullite,” Materials Science and Engineering: B, vol. 256, p. 114543, Jun. 2020, doi: 10.1016/J.MSEB.2020.114543.
  • O. Castelein, R. Guinebretière, J. P. Bonnet, and P. Blanchart, “Shape, size and composition of mullite nanocrystals from a rapidly sintered kaolin,” J Eur Ceram Soc, vol. 21, no. 13, pp. 2369–2376, Nov. 2001, doi: 10.1016/S0955-2219(01)00211-4.
There are 19 citations in total.

Details

Primary Language English
Subjects Ceramics in Materials Engineering
Journal Section Research Article
Authors

Zeynep Gizem Sarıtaş

Rasim Ceylantekin

Merve Akın

Güray Kaya

Fatih Şen

Project Number 2022-61.
Publication Date December 31, 2024
Submission Date December 23, 2024
Acceptance Date December 30, 2024
Published in Issue Year 2024 Issue: 1

Cite

APA Sarıtaş, Z. G., Ceylantekin, R., Akın, M., Kaya, G., et al. (2024). Determination of The Solid Solubility Limit of Iron Atom from Different Sources, in the Mullite Crystals, Obtained from Illitic/Kaolinitic Clays. International Journal of Boron Science and Nanotechnology(1), 1-17.