The Role of Boron in New Generation Technologies and Sustainable Future
Year 2024,
Issue: 1, 88 - 104, 31.12.2024
Ebru Halvacı
,
Damla İkballı
,
Alper Özengül
,
Berk Sevimli
,
Afnan Ashour Tumeh
,
Zeynep Güzel
,
Mehmet Selçuk Erdoğan
,
Güray Kaya
,
Önder Uysal
,
Fatih Şen
Abstract
Boron, one of the cornerstones of chemistry and materials science, offers a wide range of uses in the historical and modern world. This element, which is found in nature as borate and boric acid salts, has traditionally been used in glass, ceramic and antiseptic products. However, in the modern era, boron is becoming a strategic material in many fields from energy technologies to nanotechnology. The role of boron in the energy sector is very prominent, especially in renewable energy systems and battery technologies. In solar energy systems, boron increases the efficiency of photovoltaic cells, while it stands out as a component that increases the energy density and lifespan of lithium-ion batteries. While the importance of boron hydrides is increasing in the field of hydrogen storage and release, boron carbide increases safety by providing neutron control in nuclear energy reactors. In addition, boron is used in the production of lightweight and durable materials in the defense and aerospace industries. Boron carbide and boron nitride are preferred in ballistic armor and composite materials with properties such as high strength and chemical stability. In the field of nanotechnology, boron nanotubes and nanomaterials enable groundbreaking applications in energy storage, industrial catalysts and sensor technologies. In addition, boron-based compounds attract attention in the biomedical field with their anti-cancer properties and effects that support wound healing. Boron element also contributes to sustainable agricultural practices as the main component of fertilizers that support plant growth and increase productivity in agriculture. The versatile use of boron makes it an indispensable component in the energy, materials and biotechnology fields of the future.
References
- Y. Zhu, J. Cai, N. S. Hosmane, and Y. Zhang, “Introduction: basic concept of boron and its physical and chemical properties,” in Fundamentals and Applications of Boron Chemistry, Elsevier, 2022, pp. 1–57. doi: 10.1016/B978-0-12-822127-3.00003-X.
- “Bor Dergisi » Makale » Thermal decomposition behaviors, kinetics and thermodynamics of colemanite.” Accessed: Dec. 21, 2024. [Online]. Available: https://dergipark.org.tr/tr/pub/boron/issue/87444/1452576
- J. Poater, M. Solà, C. Viñas, and F. Teixidor, “π Aromaticity and Three-Dimensional Aromaticity: Two sides of the Same Coin,” Angew. Chemie - Int. Ed., vol. 53, no. 45, pp. 12191–12195, Nov. 2014, doi: 10.1002/ANIE.201407359.
- S. Kutuk, “Morphology, Crystal Structure and Thermal Properties of Nano-Sized Amorphous Colemanite Synthesis,” Arab. J. Sci. Eng., vol. 49, no. 8, pp. 11699–11716, Aug. 2024, doi: 10.1007/S13369-024-08801-4.
- S. Sumitani and Y. Nagasaki, “Boron neutron capture therapy assisted by boron-conjugated nanoparticles,” Polym. J., vol. 44, no. 6, pp. 522–530, Jun. 2012, doi: 10.1038/PJ.2012.30.
- A. G. Celik and G. O. Cakal, “Characterization of espey colemanite and variation of its physical properties with temperature,” Physicochem. Probl. Miner. Process., vol. 52, no. 1, pp. 66–76, 2016, doi: 10.5277/PPMP160106.
- R. Tiwari, K. Mahasenan, R. Pavlovicz, C. Li, and W. Tjarks, “Carborane clusters in computational drug design: A comparative docking evaluation using AutoDock, FlexX, Glide, and Surflex,” J. Chem. Inf. Model., vol. 49, no. 6, pp. 1581–1589, Jun. 2009, doi: 10.1021/CI900031Y.
- B. Kiraly et al., “Borophene Synthesis on Au(111),” ACS Nano, vol. 13, no. 4, pp. 3816–3822, Apr. 2019, doi: 10.1021/ACSNANO.8B09339.
- F. A. Unal, S. Ok, M. Unal, S. Topal, K. Cellat, and F. Şen, “Synthesis, characterization, and application of transition metals (Ni, Zr, and Fe) doped TiO2 photoelectrodes for dye-sensitized solar cells,” J. Mol. Liq., vol. 299, p. 112177, Feb. 2020, doi: 10.1016/j.molliq.2019.112177.
- P. Taslimi et al., “Pyrazole[3,4-d]pyridazine derivatives: Molecular docking and explore of acetylcholinesterase and carbonic anhydrase enzymes inhibitors as anticholinergics potentials,” Bioorg. Chem., vol. 92, Nov. 2019, doi: 10.1016/J.BIOORG.2019.103213.
- R. N. E. Tiri, F. Gulbagca, A. Aygun, A. Cherif, and F. Sen, “Biosynthesis of Ag–Pt bimetallic nanoparticles using propolis extract: Antibacterial effects and catalytic activity on NaBH4 hydrolysis,” Environ. Res., vol. 206, p. 112622, Apr. 2022, doi: 10.1016/j.envres.2021.112622.
- R. Ayranci, G. Başkaya, M. Güzel, S. Bozkurt, F. Şen, and M. Ak, “Carbon Based Nanomaterials for High Performance Optoelectrochemical Systems,” ChemistrySelect, vol. 2, no. 4, pp. 1548–1555, Feb. 2017, doi: 10.1002/slct.201601632.
- R. Ayranci et al., “Enhanced optical and electrical properties of PEDOT via nanostructured carbon materials: A comparative investigation,” Nano-Structures & Nano-Objects, vol. 11, pp. 13–19, Jul. 2017, doi: 10.1016/j.nanoso.2017.05.008.
- F. Sen, A. A. Boghossian, S. Sen, Z. W. Ulissi, J. Zhang, and M. S. Strano, “Observation of oscillatory surface reactions of riboflavin, trolox, and singlet oxygen using single carbon nanotube fluorescence spectroscopy,” ACS Nano, vol. 6, no. 12, pp. 10632–10645, Dec. 2012, doi: 10.1021/nn303716n.
- N. Lolak, E. Kuyuldar, H. Burhan, H. Goksu, S. Akocak, and F. Sen, “Composites of Palladium-Nickel Alloy Nanoparticles and Graphene Oxide for the Knoevenagel Condensation of Aldehydes with Malononitrile,” ACS Omega, vol. 4, no. 4, pp. 6848–6853, Apr. 2019, doi: 10.1021/acsomega.9b00485.
- B. Sen, B. Demirkan, A. Şavk, S. Karahan Gülbay, and F. Sen, “Trimetallic PdRuNi nanocomposites decorated on graphene oxide: A superior catalyst for the hydrogen evolution reaction,” Int. J. Hydrogen Energy, vol. 43, no. 38, pp. 17984–17992, Sep. 2018, doi: 10.1016/j.ijhydene.2018.07.122.
- F. Şen, G. Gökağaç, and S. Şen, “High performance Pt nanoparticles prepared by new surfactants for C 1 to C3 alcohol oxidation reactions,” J. Nanoparticle Res., vol. 15, no. 10, Oct. 2013, doi: 10.1007/S11051-013-1979-5.
- F. Gulbagca, A. Aygün, M. Gülcan, S. Ozdemir, S. Gonca, and F. Şen, “Green synthesis of palladium nanoparticles: Preparation, characterization, and investigation of antioxidant, antimicrobial, anticancer, and DNA cleavage activities,” Appl. Organomet. Chem., vol. 35, no. 8, Aug. 2021, doi: 10.1002/aoc.6272.
- F. Şen and G. Gökağaç, “Pt nanoparticles synthesized with new surfactants: Improvement in C 1-C3 alcohol oxidation catalytic activity,” J. Appl. Electrochem., vol. 44, no. 1, pp. 199–207, Jan. 2014, doi: 10.1007/S10800-013-0631-5.
- F. Şen and G. Gökaǧaç, “Improving catalytic efficiency in the methanol oxidation reaction by inserting Ru in face-centered cubic Pt nanoparticles prepared by a new surfactant, tert-octanethiol,” Energy and Fuels, vol. 22, no. 3, pp. 1858–1864, May 2008, doi: 10.1021/EF700575T.
- S. Ertan, F. Şen, S. Şen, and G. Gökağaç, “Platinum nanocatalysts prepared with different surfactants for C1-C3 alcohol oxidations and their surface morphologies by AFM,” J. Nanoparticle Res., vol. 14, no. 6, Jun. 2012, doi: 10.1007/s11051-012-0922-5.
- B. Demirkan et al., “Composites of Bimetallic Platinum-Cobalt Alloy Nanoparticles and Reduced Graphene Oxide for Electrochemical Determination of Ascorbic Acid, Dopamine, and Uric Acid,” Sci. Rep., vol. 9, no. 1, p. 12258, Aug. 2019, doi: 10.1038/s41598-019-48802-0.
- B. Demirkan et al., “Palladium supported on polypyrrole/reduced graphene oxide nanoparticles for simultaneous biosensing application of ascorbic acid, dopamine, and uric acid,” Sci. Rep., vol. 10, no. 1, Dec. 2020, doi: 10.1038/S41598-020-59935-Y.
- B. Şen, A. Aygün, T. O. Okyay, A. Şavk, R. Kartop, and F. Şen, “Monodisperse palladium nanoparticles assembled on graphene oxide with the high catalytic activity and reusability in the dehydrogenation of dimethylamine-borane,” Int. J. Hydrogen Energy, vol. 43, no. 44, pp. 20176–20182, Nov. 2018, doi: 10.1016/J.IJHYDENE.2018.03.175.
- B. Şen, A. Aygün, A. Şavk, S. Akocak, and F. Şen, “Bimetallic Palladium–İridium Alloy Nanoparticles as Highly Efficient and Stable Catalyst for The Hydrogen Evolution Reaction,” Int. J. Hydrogen Energy, vol. 43, no. 44, pp. 20183–20191, Nov. 2018, doi: 10.1016/j.ijhydene.2018.07.081.
- N. Korkmaz et al., “Biogenic silver nanoparticles synthesized via Mimusops elengi fruit extract, a study on antibiofilm, antibacterial, and anticancer activities,” J. Drug Deliv. Sci. Technol., vol. 59, Oct. 2020, doi: 10.1016/J.JDDST.2020.101864.
- Z. Ozturk, F. Sen, S. Sen, and G. Gokagac, “The preparation and characterization of nano-sized Pt-Pd/C catalysts and comparison of their superior catalytic activities for methanol and ethanol oxidation,” J. Mater. Sci., vol. 47, no. 23, pp. 8134–8144, 2012, doi: 10.1007/s10853-012-6709-3.
- E. Erken, Y. Yildiz, B. Kilbaş, and F. Şen, “Synthesis and characterization of nearly monodisperse Pt nanoparticles for C1 to C3 alcohol oxidation and dehydrogenation of dimethylamine-borane (DMAB),” J. Nanosci. Nanotechnol., vol. 16, no. 6, pp. 5944–5950, Jun. 2016, doi: 10.1166/JNN.2016.11683.
- M. B. Askari, P. Salarizadeh, A. Di Bartolomeo, and F. Şen, “Enhanced electrochemical performance of MnNi2O4/rGO nanocomposite as pseudocapacitor electrode material and methanol electro-oxidation catalyst,” Nanotechnology, vol. 32, no. 32, Aug. 2021, doi: 10.1088/1361-6528/ABFDED.
- D. Kuru, “Amorf borun elektrokimyasal eksfoliasyonuyla bor nanotabakalarının sentezi ve karakterizasyonu,” Bor Derg., vol. 9, no. 3, pp. 111–119, Sep. 2024, doi: 10.30728/BORON.1483030.
- “Bor Dergisi » Makale » Amorf borun elektrokimyasal eksfoliasyonuyla bor nanotabakalarının sentezi ve karakterizasyonu.” Accessed: Dec. 21, 2024. [Online]. Available: https://dergipark.org.tr/tr/pub/boron/issue/87444/1483030
- P. Lotti et al., “Thermal stability and high-temperature behavior of the natural borate colemanite: An aggregate in radiation-shielding concretes,” Constr. Build. Mater., vol. 203, pp. 679–686, Apr. 2019, doi: 10.1016/J.CONBUILDMAT.2019.01.123.
- I. B. Sivaev, V. I. Bregadze, and N. T. Kuznetsov, “Derivatives of the closo-dodecaborate anion and their application in medicine,” Russ. Chem. Bull., vol. 51, no. 8, pp. 1362–1374, 2002, doi: 10.1023/A:1020942418765.
[34] M. Zhao, C. Casiraghi, and K. Parvez, “Electrochemical exfoliation of 2D materials beyond graphene,” Chem. Soc. Rev., vol. 53, no. 6, pp. 3036–3064, Feb. 2024, doi: 10.1039/D3CS00815K.
- R. Lo, J. Fanfrlík, M. Lepšík, and P. Hobza, “The properties of substituted 3D-aromatic neutral carboranes: The potential for σ-hole bonding,” Phys. Chem. Chem. Phys., vol. 17, no. 32, pp. 20814–20821, Aug. 2015, doi: 10.1039/C5CP03617H.
- X. He, S. Joo, H. Xiao, and H. Liang, “Boron-Based Nanoparticles for Chemical-Mechanical Polishing of Copper Films,” ECS J. Solid State Sci. Technol., vol. 2, no. 1, pp. P20–P25, 2013, doi: 10.1149/2.021301JSS.
- B. C. Das et al., “Boron chemicals in diagnosis and therapeutics,” Future Med. Chem., vol. 5, no. 6, pp. 653–676, Apr. 2013, doi: 10.4155/FMC.13.38.
- W. D. Loomis and R. W. Durst, “Chemistry and biology of boron.,” Biofactors, vol. 3, no. 4, pp. 229–239, Apr. 1992, Accessed: Dec. 21, 2024. [Online]. Available: https://europepmc.org/article/med/1605832
- E. Hey-Hawkins, “Boron-based compounds : potential and emerging applications in medicine,” p. 470, 2018, Accessed: Dec. 21, 2024. [Online]. Available: https://books.google.com/books/about/Boron_Based_Compounds.html?hl=tr&id=235aDwAAQBAJ
- I. B. Sivaev and V. V. Bregadze, “Polyhedral boranes for medical applications: Current status and perspectives,” Eur. J. Inorg. Chem., no. 11, pp. 1433–1450, 2009, doi: 10.1002/EJIC.200900003.
- Z. Q. Wang, T. Y. Lü, H. Q. Wang, Y. P. Feng, and J. C. Zheng, “Review of borophene and its potential applications,” Front. Phys., vol. 14, no. 3, Jun. 2019, doi: 10.1007/S11467-019-0884-5.
- M. Antadze et al., “Metal-ceramics based on nanostructured boron carbide,” Solid State Sci., vol. 14, no. 11–12, pp. 1725–1728, Nov. 2012, doi: 10.1016/j.solidstatesciences.2012.08.004.
- Z. V. Eremeeva, S. Kamali, A. I. Lizunov, and V. A. Ovchinnikov, “Production of Nanostructured Boron Carbide Ceramics for Industrial Applications,” Key Eng. Mater., vol. 910, pp. 1075–1080, Feb. 2022, doi: 10.4028/p-dd4bb5.
- T. Lo Wong, C. Vallés, A. Nasser, and C. Abeykoon, “Effects of boron-nitride-based nanomaterials on the thermal properties of composite organic phase change materials: A state-of-the-art review,” Renew. Sustain. Energy Rev., vol. 187, p. 113730, Nov. 2023, doi: 10.1016/j.rser.2023.113730.
- J. H. Kim, T. V. Pham, J. H. Hwang, C. S. Kim, and M. J. Kim, “Boron nitride nanotubes: synthesis and applications,” Nano Converg., vol. 5, no. 1, p. 17, Dec. 2018, doi: 10.1186/s40580-018-0149-y.
- R. Y. Tay et al., “Advanced nano boron nitride architectures: Synthesis, properties and emerging applications,” Nano Today, vol. 53, p. 102011, Dec. 2023, doi: 10.1016/j.nantod.2023.102011.
- T. Xu et al., “Advances in synthesis and applications of boron nitride nanotubes: A review,” Chem. Eng. J., vol. 431, p. 134118, Mar. 2022, doi: 10.1016/j.cej.2021.134118.
- F. Ali, N. S Hosmane, and Y. Zhu, “Boron Chemistry for Medical Applications,” Molecules, vol. 25, no. 4, p. 828, Feb. 2020, doi: 10.3390/molecules25040828.
- X. Li et al., “Multimodal luminescent-magnetic boron nitride nanotubes@NaGdF 4 :Eu structures for cancer therapy,” Chem. Commun., vol. 50, no. 33, pp. 4371–4374, 2014, doi: 10.1039/C4CC00990H.
- H. Zhu et al., “Ni-doped boron nitride nanotubes as promising gas sensing material for dissolved gases in transformer oil,” Mater. Today Commun., vol. 33, p. 104845, Dec. 2022, doi: 10.1016/j.mtcomm.2022.104845.
- E. Cebeci, B. Yüksel, and F. Şahin, “Anti-cancer effect of boron derivatives on small-cell lung cancer,” J. Trace Elem. Med. Biol., vol. 70, p. 126923, Mar. 2022, doi: 10.1016/j.jtemb.2022.126923.
- E. E. Mohammed, N. Türkel, U. M. Yigit, A. B. Dalan, and F. Sahin, “Boron Derivatives Inhibit the Proliferation of Breast Cancer Cells and Affect Tumor-Specific T Cell Activity In Vitro by Distinct Mechanisms,” Biol. Trace Elem. Res., vol. 201, no. 12, pp. 5692–5707, Dec. 2023, doi: 10.1007/s12011-023-03632-0.
- Z. Huang, S. Wang, R. D. Dewhurst, N. V. Ignat’ev, M. Finze, and H. Braunschweig, “Boron: Its Role in Energy‐Related Processes and Applications,” Angew. Chemie Int. Ed., vol. 59, no. 23, pp. 8800–8816, Jun. 2020, doi: 10.1002/anie.201911108.
- P. Ranjan, J. M. Lee, P. Kumar, and A. Vinu, “Borophene: New Sensation in Flatland,” Adv. Mater., vol. 32, no. 34, Aug. 2020, doi: 10.1002/ADMA.202000531.
- J. Ma et al., “Improvement of solar cells performance by boron doped amorphous silicon carbide/nanocrystalline silicon hybrid window layers,” Sol. Energy Mater. Sol. Cells, vol. 114, pp. 9–14, Jul. 2013, doi: 10.1016/j.solmat.2013.02.013.
- Y. Zhu, S. Gao, and N. S. Hosmane, “Boron-enriched advanced energy materials,” Inorganica Chim. Acta, vol. 471, pp. 577–586, Feb. 2018, doi: 10.1016/j.ica.2017.11.037.
- C. (Allen) Zheng, “Examining the Benefits of Using Boron Compounds in Lithium Batteries: A Comprehensive Review of Literature,” Batteries, vol. 8, no. 10, p. 187, Oct. 2022, doi: 10.3390/batteries8100187.
- A. Budak and M. Gönen, “Extraction of boric acid from colemanite mineral by supercritical carbon dioxide,” J. Supercrit. Fluids, vol. 92, pp. 183–189, 2014, doi: 10.1016/J.SUPFLU.2014.05.016.
- P. Rohani, S. Kim, and M. T. Swihart, “Boron Nanoparticles for Room-Temperature Hydrogen Generation from Water,” Adv. Energy Mater., vol. 6, no. 12, Jun. 2016, doi: 10.1002/AENM.201502550.
- P. Argust, “Distribution of Boron in the environment,” Biol. Trace Elem. Res., vol. 66, no. 1–3, pp. 131–143, 1998, doi: 10.1007/BF02783133.
- Y. Zhu, S. Gao, and N. S. Hosmane, “Boron-enriched advanced energy materials,” Inorganica Chim. Acta, vol. 471, pp. 577–586, Feb. 2018, doi: 10.1016/J.ICA.2017.11.037.
- E. Serrano, G. Rus, and J. García-Martínez, “Nanotechnology for sustainable energy,” Renew. Sustain. Energy Rev., vol. 13, no. 9, pp. 2373–2384, Dec. 2009, doi: 10.1016/J.RSER.2009.06.003.
- S. H. Farjana, N. Huda, M. A. P. Mahmud, and C. Lang, “Comparative life-cycle assessment of uranium extraction processes,” J. Clean. Prod., vol. 202, pp. 666–683, Nov. 2018, doi: 10.1016/J.JCLEPRO.2018.08.105.
- C. Guo and C. Wang, “Strategies for enhancing hydrogen storage capacity of carbon-based sandwich material by boron doping: Exploring the optimal doping ratio,” J. Energy Storage, vol. 97, p. 112915, Sep. 2024, doi: 10.1016/j.est.2024.112915.
- S. Bolan et al., “Boron contamination and its risk management in terrestrial and aquatic environmental settings,” Sci. Total Environ., vol. 894, p. 164744, Oct. 2023, doi: 10.1016/j.scitotenv.2023.164744.
- F. ARLI, “The Critical Significance of Boron Mine in Future Energy Technologies,” J. Soft Comput. Artif. Intell., vol. 3, no. 2, pp. 83–92, Dec. 2022, doi: 10.55195/jscai.1216892.
- A. Mott et al., “Boron in geothermal energy: Sources, environmental impacts, and management in geothermal fluid,” Renew. Sustain. Energy Rev., vol. 167, p. 112825, Oct. 2022, doi: 10.1016/j.rser.2022.112825.
- M. Onifade et al., “Advancing toward sustainability: The emergence of green mining technologies and practices,” Green Smart Min. Eng., vol. 1, no. 2, pp. 157–174, Jun. 2024, doi: 10.1016/j.gsme.2024.05.005.
- E. H. Ezechi, M. H. Isa, S. R. Kutty, and N. B. Sapari, “Boron recovery, application and economic significance: A review,” in 2011 National Postgraduate Conference, IEEE, Sep. 2011, pp. 1–6. doi: 10.1109/NatPC.2011.6136374.
- Ç. Sevim and M. Kara, “Boron and Boron-Containing Compounds Toxicity,” in The Toxicity of Environmental Pollutants, IntechOpen, 2022. doi: 10.5772/intechopen.103179.
- E. J. Reardon, “Dissociation constants for alkali earth and sodium borate ion pairs from 10 to 50°C,” Chem. Geol., vol. 18, no. 4, pp. 309–325, 1976, doi: 10.1016/0009-2541(76)90013-9.
- P. D. Howe, “A review of boron effects in the environment.,” Biol. Trace Elem. Res., vol. 66, no. 1–3, pp. 153–166, Jan. 1998, doi: 10.1007/BF02783135.
- K. R. Pulagam et al., “Gold nanoparticles as boron carriers for boron neutron capture therapy: Synthesis, radiolabelling and in vivo evaluation,” Molecules, vol. 24, no. 19, Oct. 2019, doi: 10.3390/MOLECULES24193609.
- L. Li et al., “On-Demand Biodegradable Boron Nitride Nanoparticles for Treating Triple Negative Breast Cancer with Boron Neutron Capture Therapy,” ACS Nano, vol. 13, no. 12, pp. 13843–13852, Dec. 2019, doi: 10.1021/ACSNANO.9B04303.
- A. Azapagic, “Life cycle assessment and its application to process selection, design and optimisation,” Chem. Eng. J., vol. 73, no. 1, pp. 1–21, 1999, doi: 10.1016/S1385-8947(99)00042-X.
- T. Türkbay, B. Laratte, A. Çolak, S. Çoruh, and B. Elevli, “Life Cycle Assessment of Boron Industry from Mining to Refined Products,” Sustain., vol. 14, no. 3, p. 1787, Feb. 2022, doi: 10.3390/SU14031787/S1.
[77] M. Calvaresi and F. Zerbetto, “In silico carborane docking to proteins and potential drug targets,” J. Chem. Inf. Model., vol. 51, no. 8, pp. 1882–1896, Aug. 2011, doi: 10.1021/CI200216Z.
- R. Núñez, M. Tarrés, A. Ferrer-Ugalde, F. F. De Biani, and F. Teixidor, “Electrochemistry and Photoluminescence of Icosahedral Carboranes, Boranes, Metallacarboranes, and Their Derivatives,” Chem. Rev., vol. 116, no. 23, pp. 14307–14378, Dec. 2016, doi: 10.1021/ACS.CHEMREV.6B00198.
- B. C. Das et al., “Boron Chemicals in Drug Discovery and Development: Synthesis and Medicinal Perspective,” Molecules, vol. 27, no. 9, p. 2615, Apr. 2022, doi: 10.3390/molecules27092615.
- I. Waclawska, “Thermal behaviour of mechanically amorphized colemanite: II. Internal structure reconstitution processes of ground colemanite,” J. Therm. Anal., vol. 48, no. 1, pp. 155–161, 1997, doi: 10.1007/BF01978975.
- Ö. Yildiz, “The effect of heat treatment on colemanite processing: A ceramics application,” Powder Technol., vol. 142, no. 1, pp. 7–12, Apr. 2004, doi: 10.1016/J.POWTEC.2004.03.006.
- T. Schaffran, J. Li, G. Karlsson, K. Edwards, M. Winterhalter, and D. Gabel, “Interaction of N,N,N-trialkylammonioundecahydro-closo-dodecaborates with dipalmitoyl phosphatidylcholine liposomes,” Chem. Phys. Lipids, vol. 163, no. 1, pp. 64–73, Jan. 2010, doi: 10.1016/J.CHEMPHYSLIP.2009.09.004.
- S. Biyik, F. Arslan, and M. Aydin, “Arc-Erosion Behavior of Boric Oxide-Reinforced Silver-Based Electrical Contact Materials Produced by Mechanical Alloying,” J. Electron. Mater., vol. 44, no. 1, pp. 457–466, Jan. 2015, doi: 10.1007/S11664-014-3399-4.
- M. Kizilca and M. Copur, “Thermal dehydration of colemanite: kinetics and mechanism determined using the master plots method,” Can. Metall. Q., vol. 56, no. 3, pp. 259–271, Jul. 2017, doi: 10.1080/00084433.2017.1349023.
- J. T. Abrahamson et al., “Excess thermopower and the theory of thermopower waves,” ACS Nano, vol. 7, no. 8, pp. 6533–6544, Aug. 2013, doi: 10.1021/NN402411K.
- W. Kaim, N. S. Hosmane, S. Záliš, J. A. Maguire, and W. N. Lipscomb, “Boron atoms as spin carriers in two- and three-dimensional systems,” Angew. Chemie - Int. Ed., vol. 48, no. 28, pp. 5082–5091, Jun. 2009, doi: 10.1002/ANIE.200803493.
- M. J. Starink, “A new method for the derivation of activation energies from experiments performed at constant heating rate,” Thermochim. Acta, vol. 288, no. 1–2, pp. 97–104, 1996, doi: 10.1016/S0040-6031(96)03053-5.
- S. Günbatar, A. Aygun, Y. Karataş, M. Gülcan, and F. Şen, “Carbon-nanotube-based rhodium nanoparticles as highly-active catalyst for hydrolytic dehydrogenation of dimethylamineborane at room temperature,” J. Colloid Interface Sci., vol. 530, pp. 321–327, Nov. 2018, doi: 10.1016/J.JCIS.2018.06.100.
- M. A. Chowdhury, M. M. K. Uddin, M. B. A. Shuvho, M. Rana, and N. Hossain, “A novel temperature dependent method for borophene synthesis,” Appl. Surf. Sci. Adv., vol. 11, Oct. 2022, doi: 10.1016/J.APSADV.2022.100308.
- J. Wu, B. Li, and J. Lu, “Life cycle assessment on boron production: is boric acid extraction from salt-lake brine environmentally friendly?,” Clean Technol. Environ. Policy, vol. 23, no. 7, pp. 1981–1991, Sep. 2021, doi: 10.1007/S10098-021-02092-1.
- A. Sivakami, R. Sarankumar, and S. Vinodha, “Introduction to nanobiotechnology: Novel and smart applications,” Bio-manufactured Nanomater. Perspect. Promot., pp. 1–22, Jun. 2021, doi: 10.1007/978-3-030-67223-2_1.
- S. H. Farjana, N. Huda, M. A. Parvez Mahmud, and R. Saidur, “A review on the impact of mining and mineral processing industries through life cycle assessment,” J. Clean. Prod., vol. 231, pp. 1200–1217, Sep. 2019, doi: 10.1016/J.JCLEPRO.2019.05.264.
- S. H. Farjana, N. Huda, M. A. P. Mahmud, and C. Lang, “A global life cycle assessment of manganese mining processes based on EcoInvent database,” Sci. Total Environ., vol. 688, pp. 1102–1111, Oct. 2019, doi: 10.1016/J.SCITOTENV.2019.06.184.
- M. F. Hawthorne, “New horizons for therapy based on the boron neutron capture reaction,” Mol. Med. Today, vol. 4, no. 4, pp. 174–181, Apr. 1998, doi: 10.1016/S1357-4310(98)01226-X.
The Role of Boron in New Generation Technologies and Sustainable Future
Year 2024,
Issue: 1, 88 - 104, 31.12.2024
Ebru Halvacı
,
Damla İkballı
,
Alper Özengül
,
Berk Sevimli
,
Afnan Ashour Tumeh
,
Zeynep Güzel
,
Mehmet Selçuk Erdoğan
,
Güray Kaya
,
Önder Uysal
,
Fatih Şen
Abstract
Boron, one of the cornerstones of chemistry and materials science, offers a wide range of uses in the historical and modern world. This element, which is found in nature as borate and boric acid salts, has traditionally been used in glass, ceramic and antiseptic products. However, in the modern era, boron is becoming a strategic material in many fields from energy technologies to nanotechnology. The role of boron in the energy sector is very prominent, especially in renewable energy systems and battery technologies. In solar energy systems, boron increases the efficiency of photovoltaic cells, while it stands out as a component that increases the energy density and lifespan of lithium-ion batteries. While the importance of boron hydrides is increasing in the field of hydrogen storage and release, boron carbide increases safety by providing neutron control in nuclear energy reactors. In addition, boron is used in the production of lightweight and durable materials in the defense and aerospace industries. Boron carbide and boron nitride are preferred in ballistic armor and composite materials with properties such as high strength and chemical stability. In the field of nanotechnology, boron nanotubes and nanomaterials enable groundbreaking applications in energy storage, industrial catalysts and sensor technologies. In addition, boron-based compounds attract attention in the biomedical field with their anti-cancer properties and effects that support wound healing. Boron element also contributes to sustainable agricultural practices as the main component of fertilizers that support plant growth and increase productivity in agriculture. The versatile use of boron makes it an indispensable component in the energy, materials and biotechnology fields of the future.
References
- Y. Zhu, J. Cai, N. S. Hosmane, and Y. Zhang, “Introduction: basic concept of boron and its physical and chemical properties,” in Fundamentals and Applications of Boron Chemistry, Elsevier, 2022, pp. 1–57. doi: 10.1016/B978-0-12-822127-3.00003-X.
- “Bor Dergisi » Makale » Thermal decomposition behaviors, kinetics and thermodynamics of colemanite.” Accessed: Dec. 21, 2024. [Online]. Available: https://dergipark.org.tr/tr/pub/boron/issue/87444/1452576
- J. Poater, M. Solà, C. Viñas, and F. Teixidor, “π Aromaticity and Three-Dimensional Aromaticity: Two sides of the Same Coin,” Angew. Chemie - Int. Ed., vol. 53, no. 45, pp. 12191–12195, Nov. 2014, doi: 10.1002/ANIE.201407359.
- S. Kutuk, “Morphology, Crystal Structure and Thermal Properties of Nano-Sized Amorphous Colemanite Synthesis,” Arab. J. Sci. Eng., vol. 49, no. 8, pp. 11699–11716, Aug. 2024, doi: 10.1007/S13369-024-08801-4.
- S. Sumitani and Y. Nagasaki, “Boron neutron capture therapy assisted by boron-conjugated nanoparticles,” Polym. J., vol. 44, no. 6, pp. 522–530, Jun. 2012, doi: 10.1038/PJ.2012.30.
- A. G. Celik and G. O. Cakal, “Characterization of espey colemanite and variation of its physical properties with temperature,” Physicochem. Probl. Miner. Process., vol. 52, no. 1, pp. 66–76, 2016, doi: 10.5277/PPMP160106.
- R. Tiwari, K. Mahasenan, R. Pavlovicz, C. Li, and W. Tjarks, “Carborane clusters in computational drug design: A comparative docking evaluation using AutoDock, FlexX, Glide, and Surflex,” J. Chem. Inf. Model., vol. 49, no. 6, pp. 1581–1589, Jun. 2009, doi: 10.1021/CI900031Y.
- B. Kiraly et al., “Borophene Synthesis on Au(111),” ACS Nano, vol. 13, no. 4, pp. 3816–3822, Apr. 2019, doi: 10.1021/ACSNANO.8B09339.
- F. A. Unal, S. Ok, M. Unal, S. Topal, K. Cellat, and F. Şen, “Synthesis, characterization, and application of transition metals (Ni, Zr, and Fe) doped TiO2 photoelectrodes for dye-sensitized solar cells,” J. Mol. Liq., vol. 299, p. 112177, Feb. 2020, doi: 10.1016/j.molliq.2019.112177.
- P. Taslimi et al., “Pyrazole[3,4-d]pyridazine derivatives: Molecular docking and explore of acetylcholinesterase and carbonic anhydrase enzymes inhibitors as anticholinergics potentials,” Bioorg. Chem., vol. 92, Nov. 2019, doi: 10.1016/J.BIOORG.2019.103213.
- R. N. E. Tiri, F. Gulbagca, A. Aygun, A. Cherif, and F. Sen, “Biosynthesis of Ag–Pt bimetallic nanoparticles using propolis extract: Antibacterial effects and catalytic activity on NaBH4 hydrolysis,” Environ. Res., vol. 206, p. 112622, Apr. 2022, doi: 10.1016/j.envres.2021.112622.
- R. Ayranci, G. Başkaya, M. Güzel, S. Bozkurt, F. Şen, and M. Ak, “Carbon Based Nanomaterials for High Performance Optoelectrochemical Systems,” ChemistrySelect, vol. 2, no. 4, pp. 1548–1555, Feb. 2017, doi: 10.1002/slct.201601632.
- R. Ayranci et al., “Enhanced optical and electrical properties of PEDOT via nanostructured carbon materials: A comparative investigation,” Nano-Structures & Nano-Objects, vol. 11, pp. 13–19, Jul. 2017, doi: 10.1016/j.nanoso.2017.05.008.
- F. Sen, A. A. Boghossian, S. Sen, Z. W. Ulissi, J. Zhang, and M. S. Strano, “Observation of oscillatory surface reactions of riboflavin, trolox, and singlet oxygen using single carbon nanotube fluorescence spectroscopy,” ACS Nano, vol. 6, no. 12, pp. 10632–10645, Dec. 2012, doi: 10.1021/nn303716n.
- N. Lolak, E. Kuyuldar, H. Burhan, H. Goksu, S. Akocak, and F. Sen, “Composites of Palladium-Nickel Alloy Nanoparticles and Graphene Oxide for the Knoevenagel Condensation of Aldehydes with Malononitrile,” ACS Omega, vol. 4, no. 4, pp. 6848–6853, Apr. 2019, doi: 10.1021/acsomega.9b00485.
- B. Sen, B. Demirkan, A. Şavk, S. Karahan Gülbay, and F. Sen, “Trimetallic PdRuNi nanocomposites decorated on graphene oxide: A superior catalyst for the hydrogen evolution reaction,” Int. J. Hydrogen Energy, vol. 43, no. 38, pp. 17984–17992, Sep. 2018, doi: 10.1016/j.ijhydene.2018.07.122.
- F. Şen, G. Gökağaç, and S. Şen, “High performance Pt nanoparticles prepared by new surfactants for C 1 to C3 alcohol oxidation reactions,” J. Nanoparticle Res., vol. 15, no. 10, Oct. 2013, doi: 10.1007/S11051-013-1979-5.
- F. Gulbagca, A. Aygün, M. Gülcan, S. Ozdemir, S. Gonca, and F. Şen, “Green synthesis of palladium nanoparticles: Preparation, characterization, and investigation of antioxidant, antimicrobial, anticancer, and DNA cleavage activities,” Appl. Organomet. Chem., vol. 35, no. 8, Aug. 2021, doi: 10.1002/aoc.6272.
- F. Şen and G. Gökağaç, “Pt nanoparticles synthesized with new surfactants: Improvement in C 1-C3 alcohol oxidation catalytic activity,” J. Appl. Electrochem., vol. 44, no. 1, pp. 199–207, Jan. 2014, doi: 10.1007/S10800-013-0631-5.
- F. Şen and G. Gökaǧaç, “Improving catalytic efficiency in the methanol oxidation reaction by inserting Ru in face-centered cubic Pt nanoparticles prepared by a new surfactant, tert-octanethiol,” Energy and Fuels, vol. 22, no. 3, pp. 1858–1864, May 2008, doi: 10.1021/EF700575T.
- S. Ertan, F. Şen, S. Şen, and G. Gökağaç, “Platinum nanocatalysts prepared with different surfactants for C1-C3 alcohol oxidations and their surface morphologies by AFM,” J. Nanoparticle Res., vol. 14, no. 6, Jun. 2012, doi: 10.1007/s11051-012-0922-5.
- B. Demirkan et al., “Composites of Bimetallic Platinum-Cobalt Alloy Nanoparticles and Reduced Graphene Oxide for Electrochemical Determination of Ascorbic Acid, Dopamine, and Uric Acid,” Sci. Rep., vol. 9, no. 1, p. 12258, Aug. 2019, doi: 10.1038/s41598-019-48802-0.
- B. Demirkan et al., “Palladium supported on polypyrrole/reduced graphene oxide nanoparticles for simultaneous biosensing application of ascorbic acid, dopamine, and uric acid,” Sci. Rep., vol. 10, no. 1, Dec. 2020, doi: 10.1038/S41598-020-59935-Y.
- B. Şen, A. Aygün, T. O. Okyay, A. Şavk, R. Kartop, and F. Şen, “Monodisperse palladium nanoparticles assembled on graphene oxide with the high catalytic activity and reusability in the dehydrogenation of dimethylamine-borane,” Int. J. Hydrogen Energy, vol. 43, no. 44, pp. 20176–20182, Nov. 2018, doi: 10.1016/J.IJHYDENE.2018.03.175.
- B. Şen, A. Aygün, A. Şavk, S. Akocak, and F. Şen, “Bimetallic Palladium–İridium Alloy Nanoparticles as Highly Efficient and Stable Catalyst for The Hydrogen Evolution Reaction,” Int. J. Hydrogen Energy, vol. 43, no. 44, pp. 20183–20191, Nov. 2018, doi: 10.1016/j.ijhydene.2018.07.081.
- N. Korkmaz et al., “Biogenic silver nanoparticles synthesized via Mimusops elengi fruit extract, a study on antibiofilm, antibacterial, and anticancer activities,” J. Drug Deliv. Sci. Technol., vol. 59, Oct. 2020, doi: 10.1016/J.JDDST.2020.101864.
- Z. Ozturk, F. Sen, S. Sen, and G. Gokagac, “The preparation and characterization of nano-sized Pt-Pd/C catalysts and comparison of their superior catalytic activities for methanol and ethanol oxidation,” J. Mater. Sci., vol. 47, no. 23, pp. 8134–8144, 2012, doi: 10.1007/s10853-012-6709-3.
- E. Erken, Y. Yildiz, B. Kilbaş, and F. Şen, “Synthesis and characterization of nearly monodisperse Pt nanoparticles for C1 to C3 alcohol oxidation and dehydrogenation of dimethylamine-borane (DMAB),” J. Nanosci. Nanotechnol., vol. 16, no. 6, pp. 5944–5950, Jun. 2016, doi: 10.1166/JNN.2016.11683.
- M. B. Askari, P. Salarizadeh, A. Di Bartolomeo, and F. Şen, “Enhanced electrochemical performance of MnNi2O4/rGO nanocomposite as pseudocapacitor electrode material and methanol electro-oxidation catalyst,” Nanotechnology, vol. 32, no. 32, Aug. 2021, doi: 10.1088/1361-6528/ABFDED.
- D. Kuru, “Amorf borun elektrokimyasal eksfoliasyonuyla bor nanotabakalarının sentezi ve karakterizasyonu,” Bor Derg., vol. 9, no. 3, pp. 111–119, Sep. 2024, doi: 10.30728/BORON.1483030.
- “Bor Dergisi » Makale » Amorf borun elektrokimyasal eksfoliasyonuyla bor nanotabakalarının sentezi ve karakterizasyonu.” Accessed: Dec. 21, 2024. [Online]. Available: https://dergipark.org.tr/tr/pub/boron/issue/87444/1483030
- P. Lotti et al., “Thermal stability and high-temperature behavior of the natural borate colemanite: An aggregate in radiation-shielding concretes,” Constr. Build. Mater., vol. 203, pp. 679–686, Apr. 2019, doi: 10.1016/J.CONBUILDMAT.2019.01.123.
- I. B. Sivaev, V. I. Bregadze, and N. T. Kuznetsov, “Derivatives of the closo-dodecaborate anion and their application in medicine,” Russ. Chem. Bull., vol. 51, no. 8, pp. 1362–1374, 2002, doi: 10.1023/A:1020942418765.
[34] M. Zhao, C. Casiraghi, and K. Parvez, “Electrochemical exfoliation of 2D materials beyond graphene,” Chem. Soc. Rev., vol. 53, no. 6, pp. 3036–3064, Feb. 2024, doi: 10.1039/D3CS00815K.
- R. Lo, J. Fanfrlík, M. Lepšík, and P. Hobza, “The properties of substituted 3D-aromatic neutral carboranes: The potential for σ-hole bonding,” Phys. Chem. Chem. Phys., vol. 17, no. 32, pp. 20814–20821, Aug. 2015, doi: 10.1039/C5CP03617H.
- X. He, S. Joo, H. Xiao, and H. Liang, “Boron-Based Nanoparticles for Chemical-Mechanical Polishing of Copper Films,” ECS J. Solid State Sci. Technol., vol. 2, no. 1, pp. P20–P25, 2013, doi: 10.1149/2.021301JSS.
- B. C. Das et al., “Boron chemicals in diagnosis and therapeutics,” Future Med. Chem., vol. 5, no. 6, pp. 653–676, Apr. 2013, doi: 10.4155/FMC.13.38.
- W. D. Loomis and R. W. Durst, “Chemistry and biology of boron.,” Biofactors, vol. 3, no. 4, pp. 229–239, Apr. 1992, Accessed: Dec. 21, 2024. [Online]. Available: https://europepmc.org/article/med/1605832
- E. Hey-Hawkins, “Boron-based compounds : potential and emerging applications in medicine,” p. 470, 2018, Accessed: Dec. 21, 2024. [Online]. Available: https://books.google.com/books/about/Boron_Based_Compounds.html?hl=tr&id=235aDwAAQBAJ
- I. B. Sivaev and V. V. Bregadze, “Polyhedral boranes for medical applications: Current status and perspectives,” Eur. J. Inorg. Chem., no. 11, pp. 1433–1450, 2009, doi: 10.1002/EJIC.200900003.
- Z. Q. Wang, T. Y. Lü, H. Q. Wang, Y. P. Feng, and J. C. Zheng, “Review of borophene and its potential applications,” Front. Phys., vol. 14, no. 3, Jun. 2019, doi: 10.1007/S11467-019-0884-5.
- M. Antadze et al., “Metal-ceramics based on nanostructured boron carbide,” Solid State Sci., vol. 14, no. 11–12, pp. 1725–1728, Nov. 2012, doi: 10.1016/j.solidstatesciences.2012.08.004.
- Z. V. Eremeeva, S. Kamali, A. I. Lizunov, and V. A. Ovchinnikov, “Production of Nanostructured Boron Carbide Ceramics for Industrial Applications,” Key Eng. Mater., vol. 910, pp. 1075–1080, Feb. 2022, doi: 10.4028/p-dd4bb5.
- T. Lo Wong, C. Vallés, A. Nasser, and C. Abeykoon, “Effects of boron-nitride-based nanomaterials on the thermal properties of composite organic phase change materials: A state-of-the-art review,” Renew. Sustain. Energy Rev., vol. 187, p. 113730, Nov. 2023, doi: 10.1016/j.rser.2023.113730.
- J. H. Kim, T. V. Pham, J. H. Hwang, C. S. Kim, and M. J. Kim, “Boron nitride nanotubes: synthesis and applications,” Nano Converg., vol. 5, no. 1, p. 17, Dec. 2018, doi: 10.1186/s40580-018-0149-y.
- R. Y. Tay et al., “Advanced nano boron nitride architectures: Synthesis, properties and emerging applications,” Nano Today, vol. 53, p. 102011, Dec. 2023, doi: 10.1016/j.nantod.2023.102011.
- T. Xu et al., “Advances in synthesis and applications of boron nitride nanotubes: A review,” Chem. Eng. J., vol. 431, p. 134118, Mar. 2022, doi: 10.1016/j.cej.2021.134118.
- F. Ali, N. S Hosmane, and Y. Zhu, “Boron Chemistry for Medical Applications,” Molecules, vol. 25, no. 4, p. 828, Feb. 2020, doi: 10.3390/molecules25040828.
- X. Li et al., “Multimodal luminescent-magnetic boron nitride nanotubes@NaGdF 4 :Eu structures for cancer therapy,” Chem. Commun., vol. 50, no. 33, pp. 4371–4374, 2014, doi: 10.1039/C4CC00990H.
- H. Zhu et al., “Ni-doped boron nitride nanotubes as promising gas sensing material for dissolved gases in transformer oil,” Mater. Today Commun., vol. 33, p. 104845, Dec. 2022, doi: 10.1016/j.mtcomm.2022.104845.
- E. Cebeci, B. Yüksel, and F. Şahin, “Anti-cancer effect of boron derivatives on small-cell lung cancer,” J. Trace Elem. Med. Biol., vol. 70, p. 126923, Mar. 2022, doi: 10.1016/j.jtemb.2022.126923.
- E. E. Mohammed, N. Türkel, U. M. Yigit, A. B. Dalan, and F. Sahin, “Boron Derivatives Inhibit the Proliferation of Breast Cancer Cells and Affect Tumor-Specific T Cell Activity In Vitro by Distinct Mechanisms,” Biol. Trace Elem. Res., vol. 201, no. 12, pp. 5692–5707, Dec. 2023, doi: 10.1007/s12011-023-03632-0.
- Z. Huang, S. Wang, R. D. Dewhurst, N. V. Ignat’ev, M. Finze, and H. Braunschweig, “Boron: Its Role in Energy‐Related Processes and Applications,” Angew. Chemie Int. Ed., vol. 59, no. 23, pp. 8800–8816, Jun. 2020, doi: 10.1002/anie.201911108.
- P. Ranjan, J. M. Lee, P. Kumar, and A. Vinu, “Borophene: New Sensation in Flatland,” Adv. Mater., vol. 32, no. 34, Aug. 2020, doi: 10.1002/ADMA.202000531.
- J. Ma et al., “Improvement of solar cells performance by boron doped amorphous silicon carbide/nanocrystalline silicon hybrid window layers,” Sol. Energy Mater. Sol. Cells, vol. 114, pp. 9–14, Jul. 2013, doi: 10.1016/j.solmat.2013.02.013.
- Y. Zhu, S. Gao, and N. S. Hosmane, “Boron-enriched advanced energy materials,” Inorganica Chim. Acta, vol. 471, pp. 577–586, Feb. 2018, doi: 10.1016/j.ica.2017.11.037.
- C. (Allen) Zheng, “Examining the Benefits of Using Boron Compounds in Lithium Batteries: A Comprehensive Review of Literature,” Batteries, vol. 8, no. 10, p. 187, Oct. 2022, doi: 10.3390/batteries8100187.
- A. Budak and M. Gönen, “Extraction of boric acid from colemanite mineral by supercritical carbon dioxide,” J. Supercrit. Fluids, vol. 92, pp. 183–189, 2014, doi: 10.1016/J.SUPFLU.2014.05.016.
- P. Rohani, S. Kim, and M. T. Swihart, “Boron Nanoparticles for Room-Temperature Hydrogen Generation from Water,” Adv. Energy Mater., vol. 6, no. 12, Jun. 2016, doi: 10.1002/AENM.201502550.
- P. Argust, “Distribution of Boron in the environment,” Biol. Trace Elem. Res., vol. 66, no. 1–3, pp. 131–143, 1998, doi: 10.1007/BF02783133.
- Y. Zhu, S. Gao, and N. S. Hosmane, “Boron-enriched advanced energy materials,” Inorganica Chim. Acta, vol. 471, pp. 577–586, Feb. 2018, doi: 10.1016/J.ICA.2017.11.037.
- E. Serrano, G. Rus, and J. García-Martínez, “Nanotechnology for sustainable energy,” Renew. Sustain. Energy Rev., vol. 13, no. 9, pp. 2373–2384, Dec. 2009, doi: 10.1016/J.RSER.2009.06.003.
- S. H. Farjana, N. Huda, M. A. P. Mahmud, and C. Lang, “Comparative life-cycle assessment of uranium extraction processes,” J. Clean. Prod., vol. 202, pp. 666–683, Nov. 2018, doi: 10.1016/J.JCLEPRO.2018.08.105.
- C. Guo and C. Wang, “Strategies for enhancing hydrogen storage capacity of carbon-based sandwich material by boron doping: Exploring the optimal doping ratio,” J. Energy Storage, vol. 97, p. 112915, Sep. 2024, doi: 10.1016/j.est.2024.112915.
- S. Bolan et al., “Boron contamination and its risk management in terrestrial and aquatic environmental settings,” Sci. Total Environ., vol. 894, p. 164744, Oct. 2023, doi: 10.1016/j.scitotenv.2023.164744.
- F. ARLI, “The Critical Significance of Boron Mine in Future Energy Technologies,” J. Soft Comput. Artif. Intell., vol. 3, no. 2, pp. 83–92, Dec. 2022, doi: 10.55195/jscai.1216892.
- A. Mott et al., “Boron in geothermal energy: Sources, environmental impacts, and management in geothermal fluid,” Renew. Sustain. Energy Rev., vol. 167, p. 112825, Oct. 2022, doi: 10.1016/j.rser.2022.112825.
- M. Onifade et al., “Advancing toward sustainability: The emergence of green mining technologies and practices,” Green Smart Min. Eng., vol. 1, no. 2, pp. 157–174, Jun. 2024, doi: 10.1016/j.gsme.2024.05.005.
- E. H. Ezechi, M. H. Isa, S. R. Kutty, and N. B. Sapari, “Boron recovery, application and economic significance: A review,” in 2011 National Postgraduate Conference, IEEE, Sep. 2011, pp. 1–6. doi: 10.1109/NatPC.2011.6136374.
- Ç. Sevim and M. Kara, “Boron and Boron-Containing Compounds Toxicity,” in The Toxicity of Environmental Pollutants, IntechOpen, 2022. doi: 10.5772/intechopen.103179.
- E. J. Reardon, “Dissociation constants for alkali earth and sodium borate ion pairs from 10 to 50°C,” Chem. Geol., vol. 18, no. 4, pp. 309–325, 1976, doi: 10.1016/0009-2541(76)90013-9.
- P. D. Howe, “A review of boron effects in the environment.,” Biol. Trace Elem. Res., vol. 66, no. 1–3, pp. 153–166, Jan. 1998, doi: 10.1007/BF02783135.
- K. R. Pulagam et al., “Gold nanoparticles as boron carriers for boron neutron capture therapy: Synthesis, radiolabelling and in vivo evaluation,” Molecules, vol. 24, no. 19, Oct. 2019, doi: 10.3390/MOLECULES24193609.
- L. Li et al., “On-Demand Biodegradable Boron Nitride Nanoparticles for Treating Triple Negative Breast Cancer with Boron Neutron Capture Therapy,” ACS Nano, vol. 13, no. 12, pp. 13843–13852, Dec. 2019, doi: 10.1021/ACSNANO.9B04303.
- A. Azapagic, “Life cycle assessment and its application to process selection, design and optimisation,” Chem. Eng. J., vol. 73, no. 1, pp. 1–21, 1999, doi: 10.1016/S1385-8947(99)00042-X.
- T. Türkbay, B. Laratte, A. Çolak, S. Çoruh, and B. Elevli, “Life Cycle Assessment of Boron Industry from Mining to Refined Products,” Sustain., vol. 14, no. 3, p. 1787, Feb. 2022, doi: 10.3390/SU14031787/S1.
[77] M. Calvaresi and F. Zerbetto, “In silico carborane docking to proteins and potential drug targets,” J. Chem. Inf. Model., vol. 51, no. 8, pp. 1882–1896, Aug. 2011, doi: 10.1021/CI200216Z.
- R. Núñez, M. Tarrés, A. Ferrer-Ugalde, F. F. De Biani, and F. Teixidor, “Electrochemistry and Photoluminescence of Icosahedral Carboranes, Boranes, Metallacarboranes, and Their Derivatives,” Chem. Rev., vol. 116, no. 23, pp. 14307–14378, Dec. 2016, doi: 10.1021/ACS.CHEMREV.6B00198.
- B. C. Das et al., “Boron Chemicals in Drug Discovery and Development: Synthesis and Medicinal Perspective,” Molecules, vol. 27, no. 9, p. 2615, Apr. 2022, doi: 10.3390/molecules27092615.
- I. Waclawska, “Thermal behaviour of mechanically amorphized colemanite: II. Internal structure reconstitution processes of ground colemanite,” J. Therm. Anal., vol. 48, no. 1, pp. 155–161, 1997, doi: 10.1007/BF01978975.
- Ö. Yildiz, “The effect of heat treatment on colemanite processing: A ceramics application,” Powder Technol., vol. 142, no. 1, pp. 7–12, Apr. 2004, doi: 10.1016/J.POWTEC.2004.03.006.
- T. Schaffran, J. Li, G. Karlsson, K. Edwards, M. Winterhalter, and D. Gabel, “Interaction of N,N,N-trialkylammonioundecahydro-closo-dodecaborates with dipalmitoyl phosphatidylcholine liposomes,” Chem. Phys. Lipids, vol. 163, no. 1, pp. 64–73, Jan. 2010, doi: 10.1016/J.CHEMPHYSLIP.2009.09.004.
- S. Biyik, F. Arslan, and M. Aydin, “Arc-Erosion Behavior of Boric Oxide-Reinforced Silver-Based Electrical Contact Materials Produced by Mechanical Alloying,” J. Electron. Mater., vol. 44, no. 1, pp. 457–466, Jan. 2015, doi: 10.1007/S11664-014-3399-4.
- M. Kizilca and M. Copur, “Thermal dehydration of colemanite: kinetics and mechanism determined using the master plots method,” Can. Metall. Q., vol. 56, no. 3, pp. 259–271, Jul. 2017, doi: 10.1080/00084433.2017.1349023.
- J. T. Abrahamson et al., “Excess thermopower and the theory of thermopower waves,” ACS Nano, vol. 7, no. 8, pp. 6533–6544, Aug. 2013, doi: 10.1021/NN402411K.
- W. Kaim, N. S. Hosmane, S. Záliš, J. A. Maguire, and W. N. Lipscomb, “Boron atoms as spin carriers in two- and three-dimensional systems,” Angew. Chemie - Int. Ed., vol. 48, no. 28, pp. 5082–5091, Jun. 2009, doi: 10.1002/ANIE.200803493.
- M. J. Starink, “A new method for the derivation of activation energies from experiments performed at constant heating rate,” Thermochim. Acta, vol. 288, no. 1–2, pp. 97–104, 1996, doi: 10.1016/S0040-6031(96)03053-5.
- S. Günbatar, A. Aygun, Y. Karataş, M. Gülcan, and F. Şen, “Carbon-nanotube-based rhodium nanoparticles as highly-active catalyst for hydrolytic dehydrogenation of dimethylamineborane at room temperature,” J. Colloid Interface Sci., vol. 530, pp. 321–327, Nov. 2018, doi: 10.1016/J.JCIS.2018.06.100.
- M. A. Chowdhury, M. M. K. Uddin, M. B. A. Shuvho, M. Rana, and N. Hossain, “A novel temperature dependent method for borophene synthesis,” Appl. Surf. Sci. Adv., vol. 11, Oct. 2022, doi: 10.1016/J.APSADV.2022.100308.
- J. Wu, B. Li, and J. Lu, “Life cycle assessment on boron production: is boric acid extraction from salt-lake brine environmentally friendly?,” Clean Technol. Environ. Policy, vol. 23, no. 7, pp. 1981–1991, Sep. 2021, doi: 10.1007/S10098-021-02092-1.
- A. Sivakami, R. Sarankumar, and S. Vinodha, “Introduction to nanobiotechnology: Novel and smart applications,” Bio-manufactured Nanomater. Perspect. Promot., pp. 1–22, Jun. 2021, doi: 10.1007/978-3-030-67223-2_1.
- S. H. Farjana, N. Huda, M. A. Parvez Mahmud, and R. Saidur, “A review on the impact of mining and mineral processing industries through life cycle assessment,” J. Clean. Prod., vol. 231, pp. 1200–1217, Sep. 2019, doi: 10.1016/J.JCLEPRO.2019.05.264.
- S. H. Farjana, N. Huda, M. A. P. Mahmud, and C. Lang, “A global life cycle assessment of manganese mining processes based on EcoInvent database,” Sci. Total Environ., vol. 688, pp. 1102–1111, Oct. 2019, doi: 10.1016/J.SCITOTENV.2019.06.184.
- M. F. Hawthorne, “New horizons for therapy based on the boron neutron capture reaction,” Mol. Med. Today, vol. 4, no. 4, pp. 174–181, Apr. 1998, doi: 10.1016/S1357-4310(98)01226-X.