Review
BibTex RIS Cite

Boron In Plant Growth and Development: Roles, Nutrient Interaction and Implications for Sustainable Agriculture

Year 2025, Issue: 3, 1 - 14, 31.08.2025

Abstract

Boron (B) serves as a crucial nutrient for plants, significantly influencing various physiological and structural functions important for their development and growth. One of its primary functions is in the formation of plant cell walls through its cross-linking with rhamnogalacturonan II (RG-II) chains, enhancing mechanical strength and maintaining cell wall integrity. Additionally, B is involved in cell division and elongation, stabilises cell membranes, regulates ion transport across membranes, and participates in phenolic metabolism by preventing the accumulation of harmful phenolic compounds. Reproductively, B is indispensable for pollen germination and pollen tube growth, thereby ensuring fertility and seed formation, with varying requirements among crop species. B interacts synergistically or antagonistically with other mineral nutrients such as phosphorus, calcium and nitrogen influencing their uptake and distribution within plants. B deficiency triggers a wide range of physiological and structural disorders, including inhibited growth of meristematic regions, leaf deformation, impaired root development, and reduced reproductive efficiency. These effects can be exacerbated by environmental factors and interactions with other elements, underscoring the importance of understanding B uptake dynamics and transport mechanisms. Comprehensive knowledge of B roles and its interactions with other nutrients provides a scientific basis for developing efficient nutrient management strategies.

References

  • R. Abdel Aliem, “Boron, the forgotten element,” Front. Sci. Res. Technol., vol. 6, no. 1, 2023.
  • Q. Wu et al., “Boron Phosphide: A Comprehensive Overview of Structures, Properties, Synthesis, and Functional Applications,” Nanomaterials, vol. 15, no. 9, p. 654, Apr. 2025, doi: 10.3390/nano15090654.
  • M. Saleem, Y. M. Khanif, F. I. Fauziah Ishak, A. W. Samsuri, and B. Hafeez, “Importance of boron for agriculture productivity: a review.,” 2011.
  • M. Brdar-Jokanović, “Boron Toxicity and Deficiency in Agricultural Plants,” Int. J. Mol. Sci., vol. 21, no. 4, p. 1424, Feb. 2020, doi: 10.3390/ijms21041424.
  • K. Miwa and T. Fujiwara, “Boron transport in plants: co-ordinated regulation of transporters,” Ann. Bot., vol. 105, no. 7, pp. 1103–1108, Jun. 2010, doi: 10.1093/aob/mcq044.
  • K. Warington, “The effect of boric acid and borax on the broad bean and certain other plants,” Ann. Bot., vol. 37, no. 148, pp. 629–672, 1923.
  • G. L. Pereira et al., “Physiological and metabolic changes in response to Boron levels are mediated by ethylene affecting tomato fruit yield,” Plant Physiol. Biochem., vol. 202, p. 107994, Sep. 2023, doi: 10.1016/j.plaphy.2023.107994.
  • F. Shireen et al., “Boron: Functions and Approaches to Enhance Its Availability in Plants for Sustainable Agriculture,” Int. J. Mol. Sci., vol. 19, no. 7, p. 1856, Jun. 2018, doi: 10.3390/ijms19071856.
  • P. Vera-Maldonado et al., “Role of boron and its interaction with other elements in plants,” Front. Plant Sci., vol. 15, Feb. 2024, doi: 10.3389/fpls.2024.1332459.
  • S. A. G. Nejad and H. Etesami, “The Importance of Boron in Plant Nutrition,” in Metalloids in Plants, Wiley, 2020, pp. 433–449.
  • J. M. Martello et al., “Adequate Boron Supply Modulates Carbohydrate Synthesis and Allocation in Sugarcane,” Plants, vol. 14, no. 5, p. 657, Feb. 2025, doi: 10.3390/plants14050657.
  • E. CULPAN and M. Gürsoy, “Effects of Different Boron Doses on Germination, Seedling Growth and Relative Water Content of Linseed (Linum usitatissimum L.),” Selcuk J. Agric. Food Sci., Aug. 2023, doi: 10.15316/SJAFS.2023.037.
  • J. G. Álvarez-Herrera, M. Jaime-Guerrero, and G. Fischer, “Effect of Boron on Fruit Quality: A Review.” Jul. 2025, doi: 10.20944/preprints202506.2544.v1.
  • A. Güneş, S. Gezgin, K. Kalinbacak, H. Ozcan, and İ. Cakmak, “The importance of boron for plants,” J. Boron, vol. 2, no. 3, pp. 168–174, 2017.
  • Z. Wu et al., “Slow-release boron fertilizer improves yield and nutritional profile of Beta vulgaris L. grown in Northeast China by increasing boron supply capacity,” Front. Plant Sci., vol. 15, Dec. 2024, doi: 10.3389/fpls.2024.1441226.
  • G. Liu, X. Dong, L. Liu, L. Wu, S. Peng, and C. Jiang, “Boron deficiency is correlated with changes in cell wall structure that lead to growth defects in the leaves of navel orange plants,” Sci. Hortic. (Amsterdam)., vol. 176, pp. 54–62, Sep. 2014, doi: 10.1016/j.scienta.2014.06.036.
  • K. Houston, M. R. Tucker, J. Chowdhury, N. Shirley, and A. Little, “The Plant Cell Wall: A Complex and Dynamic Structure As Revealed by the Responses of Genes under Stress Conditions,” Front. Plant Sci., vol. 7, Aug. 2016, doi: 10.3389/fpls.2016.00984.
  • H. Höfte and A. Voxeur, “Plant cell walls,” Curr. Biol., vol. 27, no. 17, pp. R865–R870, 2017.
  • M. K. Rasheed, “Role of boron in plant growth: a review,” J Agric Res, vol. 47, no. 3, pp. 329–338, 2009.
  • M. Zaib, “Boron nutrient for sustainability of plant growth and soil health: a review with future prospects,” Int J Contemp Issues Soc Sci, vol. 3, no. 1, pp. 912–931, 2024.
  • A. Voxeur and S. C. Fry, “Glycosylinositol phosphorylceramides from Rosa cell cultures are boron‐bridged in the plasma membrane and form complexes with rhamnogalacturonan II,” Plant J., vol. 79, no. 1, pp. 139–149, Jul. 2014, doi: 10.1111/tpj.12547.
  • N. Wang, C. Yang, Z. Pan, Y. Liu, and S. Peng, “Boron deficiency in woody plants: various responses and tolerance mechanisms,” Front. Plant Sci., vol. 6, Oct. 2015, doi: 10.3389/fpls.2015.00916.
  • J. J. Camacho-Cristóbal, E. M. Martín-Rejano, M. B. Herrera-Rodríguez, M. T. Navarro-Gochicoa, J. Rexach, and A. González-Fontes, “Boron deficiency inhibits root cell elongation via an ethylene/auxin/ROS-dependent pathway in Arabidopsis seedlings,” J. Exp. Bot., vol. 66, no. 13, pp. 3831–3840, Jul. 2015, doi: 10.1093/jxb/erv186.
  • C. Zhang et al., “Boron deficiency‐induced root growth inhibition is mediated by brassinosteroid signalling regulation in Arabidopsis,” Plant J., vol. 107, no. 2, pp. 564–578, Jul. 2021, doi: 10.1111/tpj.15311.
  • S. K. Kohli et al., “Boron in plants: uptake, deficiency and biological potential,” Plant Growth Regul., vol. 100, no. 2, pp. 267–282, Jun. 2023, doi: 10.1007/s10725-022-00844-7.
  • G. L. Pereira, J. A. Siqueira, W. Batista-Silva, F. B. Cardoso, A. Nunes-Nesi, and W. L. Araújo, “Boron: More Than an Essential Element for Land Plants?,” Front. Plant Sci., vol. 11, Jan. 2021, doi: 10.3389/fpls.2020.610307.
  • M. A. Wimmer et al., “Boron: an essential element for vascular plants,” New Phytol., vol. 226, no. 5, pp. 1232–1237, Jun. 2020, doi: 10.1111/nph.16127.
  • R. Hajiboland, S. Bahrami-Rad, and S. Bastani, “Phenolics metabolism in boron-deficient tea [Camellia sinensis (L.) O. Kuntze] plants,” Acta Biol. Hung., vol. 64, no. 2, pp. 196–206, 2013.
  • J. J. Camacho-Cristóbal, D. Anzellotti, and A. González-Fontes, “Changes in phenolic metabolism of tobacco plants during short-term boron deficiency,” Plant Physiol. Biochem., vol. 40, no. 12, pp. 997–1002, Dec. 2002, doi: 10.1016/S0981-9428(02)01463-8.
  • J. L. Bolton and T. Dunlap, “Formation and Biological Targets of Quinones: Cytotoxic versus Cytoprotective Effects,” Chem. Res. Toxicol., vol. 30, no. 1, pp. 13–37, Jan. 2017, doi: 10.1021/acs.chemrestox.6b00256.
  • S. I. Hossain, S. C. Saha, and E. Deplazes, “Phenolic compounds alter the ion permeability of phospholipid bilayers via specific lipid interactions,” Phys. Chem. Chem. Phys., vol. 23, no. 39, pp. 22352–22366, 2021, doi: 10.1039/D1CP03250J.
  • N. Pandey, “Role of micronutrients in reproductive physiology of plants,” Plant Stress, vol. 4, no. 2, pp. 1–13, 2010.
  • H. Ma and V. Sundaresan, “Development of Flowering Plant Gametophytes,” 2010, pp. 379–412.
  • A. Bleckmann, S. Alter, and T. Dresselhaus, “The beginning of a seed: regulatory mechanisms of double fertilization,” Front. Plant Sci., vol. 5, Sep. 2014, doi: 10.3389/fpls.2014.00452.
  • X. Liu and R. D. Kasahara, “Reproductive Strategies of the Female Gametophyte,” 2023.
  • N. Pandey and B. Gupta, “The impact of foliar boron sprays on reproductive biology and seed quality of black gram,” J. Trace Elem. Med. Biol., vol. 27, no. 1, pp. 58–64, Jan. 2013, doi: 10.1016/j.jtemb.2012.07.003.
  • B. Şen et al., “Bimetallic PdRu/graphene oxide based Catalysts for one-pot three-component synthesis of 2-amino-4H-chromene derivatives,” Nano-Structures and Nano-Objects, vol. 12, pp. 33–40, Oct. 2017, doi: 10.1016/j.nanoso.2017.08.013.
  • N. Tanaka et al., “Roles of pollen-specific boron efflux transporter, OsBOR4, in the rice fertilization process,” Plant cell Physiol., vol. 54, no. 12, pp. 2011–2019, 2013.
  • P. Singh and B. Legese, “Essential mineral nutrients for plant growth: nutrient functions and deficiency symptoms,” B. Hi-tech Crop Prod. pest Manag., 2022.
  • G. M. Cooper and K. Adams, The cell: a molecular approach. Oxford University Press, 2022.
  • E. Zelazny and G. Vert, “Plant Nutrition: Root Transporters on the Move,” Plant Physiol., vol. 166, no. 2, pp. 500–508, Oct. 2014, doi: 10.1104/pp.114.244475.
  • R. Reid, “Understanding the boron transport network in plants,” Plant Soil, vol. 385, no. 1–2, pp. 1–13, Dec. 2014, doi: 10.1007/s11104-014-2149-y.
  • C. Dordas and P. H. Brown, “Permeability of Boric Acid Across Lipid Bilayers and Factors Affecting It,” J. Membr. Biol., vol. 175, no. 2, pp. 95–105, May 2000, doi: 10.1007/s002320001058.
  • J. Takano, K. Miwa, and T. Fujiwara, “Boron transport mechanisms: collaboration of channels and transporters,” Trends Plant Sci., vol. 13, no. 8, pp. 451–457, 2008.
  • A. Yoshinari and J. Takano, “Insights into the Mechanisms Underlying Boron Homeostasis in Plants,” Front. Plant Sci., vol. 8, Nov. 2017, doi: 10.3389/fpls.2017.01951.
  • A. González-Fontes, M. T. Navarro-Gochicoa, J. J. Camacho-Cristóbal, M. B. Herrera-Rodríguez, C. Quiles-Pando, and J. Rexach, “Is Ca2+ involved in the signal transduction pathway of boron deficiency? New hypotheses for sensing boron deprivation,” Plant Sci., vol. 217–218, pp. 135–139, Mar. 2014, doi: 10.1016/j.plantsci.2013.12.011.
  • A. González-Fontes, M. B. Herrera-Rodríguez, E. M. Martín-Rejano, M. T. Navarro-Gochicoa, J. Rexach, and J. J. Camacho-Cristóbal, “Root Responses to Boron Deficiency Mediated by Ethylene,” Front. Plant Sci., vol. 6, Jan. 2016, doi: 10.3389/fpls.2015.01103.
  • J. Takano, M. Wada, U. Ludewig, G. Schaaf, N. von Wirén, and T. Fujiwara, “The Arabidopsis Major Intrinsic Protein NIP5;1 Is Essential for Efficient Boron Uptake and Plant Development under Boron Limitation,” Plant Cell, vol. 18, no. 6, pp. 1498–1509, Jun. 2006, doi: 10.1105/tpc.106.041640.
  • S. Wang, N. Mitani-Ueno, and J. Takano, “Boron Uptake Assay in Xenopus laevis Oocytes,” BIO-PROTOCOL, vol. 8, no. 5, 2018, doi: 10.21769/BioProtoc.2755.
  • A. F. Onuh and K. Miwa, “Regulation, diversity and evolution of boron transporters in plants,” Plant Cell Physiol., vol. 62, no. 4, pp. 590–599, 2021.
  • J. Takano et al., “Arabidopsis boron transporter for xylem loading,” Nature, vol. 420, no. 6913, pp. 337–340, 2002.
  • Y. Nakagawa, H. Hanaoka, M. Kobayashi, K. Miyoshi, K. Miwa, and T. Fujiwara, “Cell-Type Specificity of the Expression of Os BOR1 , a Rice Efflux Boron Transporter Gene, Is Regulated in Response to Boron Availability for Efficient Boron Uptake and Xylem Loading,” Plant Cell, vol. 19, no. 8, pp. 2624–2635, Aug. 2007, doi: 10.1105/tpc.106.049015.
  • Y. Nakagawa, H. Hanaoka, M. Kobayashi, K. Miyoshi, K. Miwa, and T. Fujiwara, “Cell-type specificity of the expression of Os BOR1, a rice efflux boron transporter gene, is regulated in response to boron availability for efficient boron uptake and xylem loading,” Plant Cell, vol. 19, no. 8, pp. 2624–2635, 2007.
  • J. Takano et al., “Polar localization and degradation of Arabidopsis boron transporters through distinct trafficking pathways,” Proc. Natl. Acad. Sci., vol. 107, no. 11, pp. 5220–5225, Mar. 2010, doi: 10.1073/pnas.0910744107.
  • K. Miwa et al., “Roles of BOR2, a Boron Exporter, in Cross Linking of Rhamnogalacturonan II and Root Elongation under Boron Limitation in Arabidopsis,” PLANT Physiol., vol. 163, no. 4, pp. 1699–1709, Dec. 2013, doi: 10.1104/pp.113.225995.
  • J. Takano, M. Yamagami, K. Noguchi, H. Hayashi, and T. Fujiwara, “Preferential translocation of boron to young leaves in Arabidopsis thaliana Regulated by the BOR1 Gene,” Soil Sci. Plant Nutr., vol. 47, no. 2, pp. 345–357, Jun. 2001, doi: 10.1080/00380768.2001.10408398.
  • K. Miwa, J. Takano, H. Omori, M. Seki, K. Shinozaki, and T. Fujiwara, “Plants Tolerant of High Boron Levels,” Science (80-. )., vol. 318, no. 5855, pp. 1417–1417, Nov. 2007, doi: 10.1126/science.1146634.
  • K. Miwa, I. Aibara, and T. Fujiwara, “Arabidopsis thaliana BOR4 is upregulated under high boron conditions and confers tolerance to high boron,” Soil Sci. Plant Nutr., vol. 60, no. 3, pp. 349–355, May 2014, doi: 10.1080/00380768.2013.866524.
  • T. Li, W.-G. Choi, I. S. Wallace, J. Baudry, and D. M. Roberts, “Arabidopsis thaliana NIP7;1: An Anther-Specific Boric Acid Transporter of the Aquaporin Superfamily Regulated by an Unusual Tyrosine in Helix 2 of the Transport Pore,” Biochemistry, vol. 50, no. 31, pp. 6633–6641, Aug. 2011, doi: 10.1021/bi2004476.
  • N. Ahmed et al., “Micronutrients and their effects on Horticultural crop quality, productivity and sustainability,” Sci. Hortic. (Amsterdam)., vol. 323, p. 112512, Jan. 2024, doi: 10.1016/j.scienta.2023.112512.
  • S. Kumar, S. Kumar, and T. Mohapatra, “Interaction Between Macro‐ and Micro-Nutrients in Plants,” Front. Plant Sci., vol. 12, May 2021, doi: 10.3389/fpls.2021.665583.
  • G. Krouk et al., “A framework integrating plant growth with hormones and nutrients,” Trends Plant Sci., vol. 16, no. 4, pp. 178–182, Apr. 2011, doi: 10.1016/j.tplants.2011.02.004.
  • S. Saleem, N. U. Mushtaq, A. Rasool, W. H. Shah, I. Tahir, and R. U. Rehman, “Plant nutrition and soil fertility,” in Sustainable Plant Nutrition, Elsevier, 2023, pp. 23–49.
  • R. Tripathi et al., “Plant mineral nutrition and disease resistance: A significant linkage for sustainable crop protection,” Front. Plant Sci., vol. 13, Oct. 2022, doi: 10.3389/fpls.2022.883970.
  • N. K. Fageria, V. C. Baligar, and R. B. Clark, “Micronutrients in Crop Production,” 2002, pp. 185–268.
  • T. Jing et al., “Role of calcium nutrition in plant Physiology: Advances in research and insights into acidic soil conditions - A comprehensive review,” Plant Physiol. Biochem., vol. 210, p. 108602, May 2024, doi: 10.1016/j.plaphy.2024.108602.
  • H. Elaıbı, F. Mutlag, and Z. K. Al-Ebey, “A comprehensive review of Aloe vera: Multifaceted health benefits and anti-diabetic properties,” 2023.
  • R. Mahious, B. Çetin, F. F. Mutlag, H. K. Elaibi, A. Aygun, and F. Sen, “Synthesis, characterization and bioactivity of biogenic nanomaterials based on callus Sutherlandia frutescens,” Next Res., vol. 2, no. 3, p. 100512, Sep. 2025, doi: 10.1016/j.nexres.2025.100512.
  • A. Fathi, “Role of nitrogen (N) in plant growth, photosynthesis pigments, and N use efficiency: A review. Agrisost, 28, 1–8.” 2022.
  • X. Wei, L. Han, N. Xu, M. Sun, and X. Yang, “Nitrate nitrogen enhances the efficiency of photoprotection in Leymus chinensis under drought stress,” Front. Plant Sci., vol. 15, Feb. 2024, doi: 10.3389/fpls.2024.1348925.
  • W. Chen, D. Modi, and A. Picot, “Soil and Phytomicrobiome for Plant Disease Suppression and Management under Climate Change: A Review,” Plants, vol. 12, no. 14, p. 2736, Jul. 2023, doi: 10.3390/plants12142736.
  • M. et al., “Boron/Nitrogen Interaction Effect on Growth and Yield of Faba Bean Plants Grown under Sandy Soil Conditions,” Int. J. Agric. Res., vol. 1, no. 4, pp. 322–330, Jun. 2006, doi: 10.3923/ijar.2006.322.330.
  • H. Koohkan and M. Maftoun, “Effect of nitrogen– boron interaction on plant growth and tissue nutrient concentration of canola ( Brassica napus L.),” J. Plant Nutr., vol. 39, no. 7, pp. 922–931, Jun. 2016, doi: 10.1080/01904167.2016.1143492.
  • S. Bielski, K. Romaneckas, and E. Šarauskis, “Impact of Nitrogen and Boron Fertilization on Winter Triticale Productivity Parameters,” Agronomy, vol. 10, no. 2, p. 279, Feb. 2020, doi: 10.3390/agronomy10020279.
  • N. Bellaloui, A. Mengistu, M. Abdelmajid, C. A. Abel, and L. H. S. Zobiole, “Role of Boron Nutrient in Nodules Growth and Nitrogen Fixation in Soybean Genotypes Under Water Stress Conditions,” in Advances in Biology and Ecology of Nitrogen Fixation, InTech, 2014.
  • K. Stigter and W. Plaxton, “Molecular Mechanisms of Phosphorus Metabolism and Transport during Leaf Senescence,” Plants, vol. 4, no. 4, pp. 773–798, Dec. 2015, doi: 10.3390/plants4040773.
  • S. T. Dyhrman, “Nutrients and Their Acquisition: Phosphorus Physiology in Microalgae,” in The Physiology of Microalgae, Cham: Springer International Publishing, 2016, pp. 155–183.
  • J.-M. Barea and A. E. Richardson, “Phosphate Mobilisation by Soil Microorganisms,” in Principles of Plant-Microbe Interactions, Cham: Springer International Publishing, 2015, pp. 225–234.
  • J. Paz-Ares et al., “Plant adaptation to low phosphorus availability: Core signaling, crosstalks, and applied implications,” Mol. Plant, vol. 15, no. 1, pp. 104–124, Jan. 2022, doi: 10.1016/j.molp.2021.12.005.
  • Atique-ur-Rehman et al., “Boron nutrition of rice in different production systems. A review,” Agron. Sustain. Dev., vol. 38, no. 3, p. 25, Jun. 2018, doi: 10.1007/s13593-018-0504-8.
  • Z. Zhao, S. Wang, P. J. White, Y. Wang, L. Shi, and F. Xu, “Boron and Phosphorus Act Synergistically to Modulate Absorption and Distribution of Phosphorus and Growth of Brassica napus,” J. Agric. Food Chem., vol. 68, no. 30, pp. 7830–7838, Jul. 2020, doi: 10.1021/acs.jafc.0c02522.
  • E. A. Khattab, M. H. Afifi, and G. A. Amin, “Significance of nitrogen, phosphorus, and boron foliar spray on jojoba plants,” Bull. Natl. Res. Cent., vol. 43, no. 1, p. 66, Dec. 2019, doi: 10.1186/s42269-019-0109-7.
  • C. Kaya, A. L. Tuna, M. Dikilitas, M. Ashraf, S. Koskeroglu, and M. Guneri, “Supplementary phosphorus can alleviate boron toxicity in tomato,” Sci. Hortic. (Amsterdam)., vol. 121, no. 3, pp. 284–288, Jul. 2009, doi: 10.1016/j.scienta.2009.02.011.
  • A. Wdowiak, A. Podgórska, and B. Szal, “Calcium in plants: an important element of cell physiology and structure, signaling, and stress responses,” Acta Physiol. Plant., vol. 46, no. 12, p. 108, Dec. 2024, doi: 10.1007/s11738-024-03733-w.
  • R. Singh, “CALCIUM IN PLANT BIOLOGY: NUTRIENT AND SECOND MESSENGER,” Int. J. Biol. Innov., vol. 02, no. 01, pp. 31–35, 2020, doi: 10.46505/IJBI.2020.2105.
  • K. Thor, “Calcium—Nutrient and Messenger,” Front. Plant Sci., vol. 10, Apr. 2019, doi: 10.3389/fpls.2019.00440.
  • T. M. Galeriani et al., “Calcium and Boron Fertilization Improves Soybean Photosynthetic Efficiency and Grain Yield,” Plants, vol. 11, no. 21, p. 2937, Nov. 2022, doi: 10.3390/plants11212937.
  • V. Palani, “Synergistic and Antagonistic Interactions of Calcium with Other Nutrients in Soil and Plants,” SSRN Electron. J., 2019, doi: 10.2139/ssrn.3503225.
  • X. Weng et al., “Calcium Regulates Growth and Nutrient Absorption in Poplar Seedlings,” Front. Plant Sci., vol. 13, May 2022, doi: 10.3389/fpls.2022.887098.
  • M. Schmitz-Eiberger, R. Haefs, and G. Noga, “Calcium deficiency - Influence on the antioxidative defense system in tomato plants,” J. Plant Physiol., vol. 159, no. 7, pp. 733–742, Jan. 2002, doi: 10.1078/0176-1617-0621.
  • Y. Long and J. Peng, “Interaction between Boron and Other Elements in Plants,” Genes (Basel)., vol. 14, no. 1, p. 130, Jan. 2023, doi: 10.3390/genes14010130.
  • L. Galić, V. Vukadinović, I. Nikolin, and Z. Lončarić, “Soil Properties and Microelement Availability in Crops for Human Health: An Overview,” Crops, vol. 5, no. 4, p. 40, Jul. 2025, doi: 10.3390/crops5040040.
  • S. Bolan et al., “Boron contamination and its risk management in terrestrial and aquatic environmental settings,” Sci. Total Environ., vol. 894, p. 164744, Oct. 2023, doi: 10.1016/j.scitotenv.2023.164744.
  • E. A. Hasenmueller and R. E. Criss, “Multiple sources of boron in urban surface waters and groundwaters,” Sci. Total Environ., vol. 447, pp. 235–247, Mar. 2013, doi: 10.1016/j.scitotenv.2013.01.001.
  • B. Rerkasem, S. Jamjod, and T. Pusadee, “Productivity limiting impacts of boron deficiency, a review,” Plant Soil, vol. 455, no. 1–2, pp. 23–40, Oct. 2020, doi: 10.1007/s11104-020-04676-0.
  • S. Fatnassi, G. Hörmann, N. Fohrer, J. Navarro-Pedreño, and M. Hachicha, “Boron in Soil, Drainage Water and Groundwater in Long-Term Irrigated Area by Treated Wastewater in Northeast Tunisia,” Soil Syst., vol. 9, no. 1, p. 8, Jan. 2025, doi: 10.3390/soilsystems9010008.
  • “Boron toxicity in plants: understanding mechanisms and developing coping strategies; a review,” Plant Cell Rep., vol. 43, no. 10, p. 238, Oct. 2024, doi: 10.1007/s00299-024-03317-5.
  • A. K. Das and A. Purkait, “Boron dynamics in soil: classification, sources, factors, fractions, and kinetics,” Commun. Soil Sci. Plant Anal., vol. 51, no. 22, pp. 2778–2790, Dec. 2020, doi: 10.1080/00103624.2020.1849261.
  • J. Li et al., “Physiological and molecular bases of the boron deficiency response in tomatoes,” Hortic. Res., vol. 10, no. 12, Dec. 2023, doi: 10.1093/hr/uhad229.
  • L. Bolaños, I. Abreu, I. Bonilla, J. J. Camacho-Cristóbal, and M. Reguera, “What Can Boron Deficiency Symptoms Tell Us about Its Function and Regulation?,” Plants, vol. 12, no. 4, p. 777, Feb. 2023, doi: 10.3390/plants12040777.
  • X. Cong, H. Jing, N. Lin, Z. Xia, M. Huang, and X. Jiang, “Boron deficiency affects cell morphology and structure of young leaves of radish,” Acta Physiol. Plant., vol. 37, no. 11, p. 247, Nov. 2015, doi: 10.1007/s11738-015-2004-7.
  • S. Han, L.-S. Chen, H.-X. Jiang, B. R. Smith, L.-T. Yang, and C.-Y. Xie, “Boron deficiency decreases growth and photosynthesis, and increases starch and hexoses in leaves of citrus seedlings,” J. Plant Physiol., vol. 165, no. 13, pp. 1331–1341, Sep. 2008, doi: 10.1016/j.jplph.2007.11.002.
  • M. Tanaka and T. Fujiwara, “Physiological roles and transport mechanisms of boron: perspectives from plants,” Pflügers Arch. - Eur. J. Physiol., vol. 456, no. 4, pp. 671–677, Jul. 2008, doi: 10.1007/s00424-007-0370-8.
  • J. J. Camacho-Cristóbal et al., “The expression of several cell wall-related genes in Arabidopsis roots is down-regulated under boron deficiency,” Environ. Exp. Bot., vol. 63, no. 1–3, pp. 351–358, 2008.
  • P. Ryden, K. Sugimoto-Shirasu, A. C. Smith, K. Findlay, W.-D. Reiter, and M. C. McCann, “Tensile properties of Arabidopsis cell walls depend on both a xyloglucan cross-linked microfibrillar network and rhamnogalacturonan II-borate complexes,” Plant Physiol., vol. 132, no. 2, pp. 1033–1040, 2003.
  • J. J. Camacho‐Cristóbal, J. Rexach, and A. González‐Fontes, “Boron in Plants: Deficiency and Toxicity,” J. Integr. Plant Biol., vol. 50, no. 10, pp. 1247–1255, Oct. 2008, doi: 10.1111/j.1744-7909.2008.00742.x.

Boron In Plant Growth and Development: Roles, Nutrient Interaction and Implications for Sustainable Agriculture

Year 2025, Issue: 3, 1 - 14, 31.08.2025

Abstract

Boron (B) serves as a crucial nutrient for plants, significantly influencing various physiological and structural functions important for their development and growth. One of its primary functions is in the formation of plant cell walls through its cross-linking with rhamnogalacturonan II (RG-II) chains, enhancing mechanical strength and maintaining cell wall integrity. Additionally, B is involved in cell division and elongation, stabilises cell membranes, regulates ion transport across membranes, and participates in phenolic metabolism by preventing the accumulation of harmful phenolic compounds. Reproductively, B is indispensable for pollen germination and pollen tube growth, thereby ensuring fertility and seed formation, with varying requirements among crop species. B interacts synergistically or antagonistically with other mineral nutrients such as phosphorus, calcium and nitrogen influencing their uptake and distribution within plants. B deficiency triggers a wide range of physiological and structural disorders, including inhibited growth of meristematic regions, leaf deformation, impaired root development, and reduced reproductive efficiency. These effects can be exacerbated by environmental factors and interactions with other elements, underscoring the importance of understanding B uptake dynamics and transport mechanisms. Comprehensive knowledge of B roles and its interactions with other nutrients provides a scientific basis for developing efficient nutrient management strategies.

References

  • R. Abdel Aliem, “Boron, the forgotten element,” Front. Sci. Res. Technol., vol. 6, no. 1, 2023.
  • Q. Wu et al., “Boron Phosphide: A Comprehensive Overview of Structures, Properties, Synthesis, and Functional Applications,” Nanomaterials, vol. 15, no. 9, p. 654, Apr. 2025, doi: 10.3390/nano15090654.
  • M. Saleem, Y. M. Khanif, F. I. Fauziah Ishak, A. W. Samsuri, and B. Hafeez, “Importance of boron for agriculture productivity: a review.,” 2011.
  • M. Brdar-Jokanović, “Boron Toxicity and Deficiency in Agricultural Plants,” Int. J. Mol. Sci., vol. 21, no. 4, p. 1424, Feb. 2020, doi: 10.3390/ijms21041424.
  • K. Miwa and T. Fujiwara, “Boron transport in plants: co-ordinated regulation of transporters,” Ann. Bot., vol. 105, no. 7, pp. 1103–1108, Jun. 2010, doi: 10.1093/aob/mcq044.
  • K. Warington, “The effect of boric acid and borax on the broad bean and certain other plants,” Ann. Bot., vol. 37, no. 148, pp. 629–672, 1923.
  • G. L. Pereira et al., “Physiological and metabolic changes in response to Boron levels are mediated by ethylene affecting tomato fruit yield,” Plant Physiol. Biochem., vol. 202, p. 107994, Sep. 2023, doi: 10.1016/j.plaphy.2023.107994.
  • F. Shireen et al., “Boron: Functions and Approaches to Enhance Its Availability in Plants for Sustainable Agriculture,” Int. J. Mol. Sci., vol. 19, no. 7, p. 1856, Jun. 2018, doi: 10.3390/ijms19071856.
  • P. Vera-Maldonado et al., “Role of boron and its interaction with other elements in plants,” Front. Plant Sci., vol. 15, Feb. 2024, doi: 10.3389/fpls.2024.1332459.
  • S. A. G. Nejad and H. Etesami, “The Importance of Boron in Plant Nutrition,” in Metalloids in Plants, Wiley, 2020, pp. 433–449.
  • J. M. Martello et al., “Adequate Boron Supply Modulates Carbohydrate Synthesis and Allocation in Sugarcane,” Plants, vol. 14, no. 5, p. 657, Feb. 2025, doi: 10.3390/plants14050657.
  • E. CULPAN and M. Gürsoy, “Effects of Different Boron Doses on Germination, Seedling Growth and Relative Water Content of Linseed (Linum usitatissimum L.),” Selcuk J. Agric. Food Sci., Aug. 2023, doi: 10.15316/SJAFS.2023.037.
  • J. G. Álvarez-Herrera, M. Jaime-Guerrero, and G. Fischer, “Effect of Boron on Fruit Quality: A Review.” Jul. 2025, doi: 10.20944/preprints202506.2544.v1.
  • A. Güneş, S. Gezgin, K. Kalinbacak, H. Ozcan, and İ. Cakmak, “The importance of boron for plants,” J. Boron, vol. 2, no. 3, pp. 168–174, 2017.
  • Z. Wu et al., “Slow-release boron fertilizer improves yield and nutritional profile of Beta vulgaris L. grown in Northeast China by increasing boron supply capacity,” Front. Plant Sci., vol. 15, Dec. 2024, doi: 10.3389/fpls.2024.1441226.
  • G. Liu, X. Dong, L. Liu, L. Wu, S. Peng, and C. Jiang, “Boron deficiency is correlated with changes in cell wall structure that lead to growth defects in the leaves of navel orange plants,” Sci. Hortic. (Amsterdam)., vol. 176, pp. 54–62, Sep. 2014, doi: 10.1016/j.scienta.2014.06.036.
  • K. Houston, M. R. Tucker, J. Chowdhury, N. Shirley, and A. Little, “The Plant Cell Wall: A Complex and Dynamic Structure As Revealed by the Responses of Genes under Stress Conditions,” Front. Plant Sci., vol. 7, Aug. 2016, doi: 10.3389/fpls.2016.00984.
  • H. Höfte and A. Voxeur, “Plant cell walls,” Curr. Biol., vol. 27, no. 17, pp. R865–R870, 2017.
  • M. K. Rasheed, “Role of boron in plant growth: a review,” J Agric Res, vol. 47, no. 3, pp. 329–338, 2009.
  • M. Zaib, “Boron nutrient for sustainability of plant growth and soil health: a review with future prospects,” Int J Contemp Issues Soc Sci, vol. 3, no. 1, pp. 912–931, 2024.
  • A. Voxeur and S. C. Fry, “Glycosylinositol phosphorylceramides from Rosa cell cultures are boron‐bridged in the plasma membrane and form complexes with rhamnogalacturonan II,” Plant J., vol. 79, no. 1, pp. 139–149, Jul. 2014, doi: 10.1111/tpj.12547.
  • N. Wang, C. Yang, Z. Pan, Y. Liu, and S. Peng, “Boron deficiency in woody plants: various responses and tolerance mechanisms,” Front. Plant Sci., vol. 6, Oct. 2015, doi: 10.3389/fpls.2015.00916.
  • J. J. Camacho-Cristóbal, E. M. Martín-Rejano, M. B. Herrera-Rodríguez, M. T. Navarro-Gochicoa, J. Rexach, and A. González-Fontes, “Boron deficiency inhibits root cell elongation via an ethylene/auxin/ROS-dependent pathway in Arabidopsis seedlings,” J. Exp. Bot., vol. 66, no. 13, pp. 3831–3840, Jul. 2015, doi: 10.1093/jxb/erv186.
  • C. Zhang et al., “Boron deficiency‐induced root growth inhibition is mediated by brassinosteroid signalling regulation in Arabidopsis,” Plant J., vol. 107, no. 2, pp. 564–578, Jul. 2021, doi: 10.1111/tpj.15311.
  • S. K. Kohli et al., “Boron in plants: uptake, deficiency and biological potential,” Plant Growth Regul., vol. 100, no. 2, pp. 267–282, Jun. 2023, doi: 10.1007/s10725-022-00844-7.
  • G. L. Pereira, J. A. Siqueira, W. Batista-Silva, F. B. Cardoso, A. Nunes-Nesi, and W. L. Araújo, “Boron: More Than an Essential Element for Land Plants?,” Front. Plant Sci., vol. 11, Jan. 2021, doi: 10.3389/fpls.2020.610307.
  • M. A. Wimmer et al., “Boron: an essential element for vascular plants,” New Phytol., vol. 226, no. 5, pp. 1232–1237, Jun. 2020, doi: 10.1111/nph.16127.
  • R. Hajiboland, S. Bahrami-Rad, and S. Bastani, “Phenolics metabolism in boron-deficient tea [Camellia sinensis (L.) O. Kuntze] plants,” Acta Biol. Hung., vol. 64, no. 2, pp. 196–206, 2013.
  • J. J. Camacho-Cristóbal, D. Anzellotti, and A. González-Fontes, “Changes in phenolic metabolism of tobacco plants during short-term boron deficiency,” Plant Physiol. Biochem., vol. 40, no. 12, pp. 997–1002, Dec. 2002, doi: 10.1016/S0981-9428(02)01463-8.
  • J. L. Bolton and T. Dunlap, “Formation and Biological Targets of Quinones: Cytotoxic versus Cytoprotective Effects,” Chem. Res. Toxicol., vol. 30, no. 1, pp. 13–37, Jan. 2017, doi: 10.1021/acs.chemrestox.6b00256.
  • S. I. Hossain, S. C. Saha, and E. Deplazes, “Phenolic compounds alter the ion permeability of phospholipid bilayers via specific lipid interactions,” Phys. Chem. Chem. Phys., vol. 23, no. 39, pp. 22352–22366, 2021, doi: 10.1039/D1CP03250J.
  • N. Pandey, “Role of micronutrients in reproductive physiology of plants,” Plant Stress, vol. 4, no. 2, pp. 1–13, 2010.
  • H. Ma and V. Sundaresan, “Development of Flowering Plant Gametophytes,” 2010, pp. 379–412.
  • A. Bleckmann, S. Alter, and T. Dresselhaus, “The beginning of a seed: regulatory mechanisms of double fertilization,” Front. Plant Sci., vol. 5, Sep. 2014, doi: 10.3389/fpls.2014.00452.
  • X. Liu and R. D. Kasahara, “Reproductive Strategies of the Female Gametophyte,” 2023.
  • N. Pandey and B. Gupta, “The impact of foliar boron sprays on reproductive biology and seed quality of black gram,” J. Trace Elem. Med. Biol., vol. 27, no. 1, pp. 58–64, Jan. 2013, doi: 10.1016/j.jtemb.2012.07.003.
  • B. Şen et al., “Bimetallic PdRu/graphene oxide based Catalysts for one-pot three-component synthesis of 2-amino-4H-chromene derivatives,” Nano-Structures and Nano-Objects, vol. 12, pp. 33–40, Oct. 2017, doi: 10.1016/j.nanoso.2017.08.013.
  • N. Tanaka et al., “Roles of pollen-specific boron efflux transporter, OsBOR4, in the rice fertilization process,” Plant cell Physiol., vol. 54, no. 12, pp. 2011–2019, 2013.
  • P. Singh and B. Legese, “Essential mineral nutrients for plant growth: nutrient functions and deficiency symptoms,” B. Hi-tech Crop Prod. pest Manag., 2022.
  • G. M. Cooper and K. Adams, The cell: a molecular approach. Oxford University Press, 2022.
  • E. Zelazny and G. Vert, “Plant Nutrition: Root Transporters on the Move,” Plant Physiol., vol. 166, no. 2, pp. 500–508, Oct. 2014, doi: 10.1104/pp.114.244475.
  • R. Reid, “Understanding the boron transport network in plants,” Plant Soil, vol. 385, no. 1–2, pp. 1–13, Dec. 2014, doi: 10.1007/s11104-014-2149-y.
  • C. Dordas and P. H. Brown, “Permeability of Boric Acid Across Lipid Bilayers and Factors Affecting It,” J. Membr. Biol., vol. 175, no. 2, pp. 95–105, May 2000, doi: 10.1007/s002320001058.
  • J. Takano, K. Miwa, and T. Fujiwara, “Boron transport mechanisms: collaboration of channels and transporters,” Trends Plant Sci., vol. 13, no. 8, pp. 451–457, 2008.
  • A. Yoshinari and J. Takano, “Insights into the Mechanisms Underlying Boron Homeostasis in Plants,” Front. Plant Sci., vol. 8, Nov. 2017, doi: 10.3389/fpls.2017.01951.
  • A. González-Fontes, M. T. Navarro-Gochicoa, J. J. Camacho-Cristóbal, M. B. Herrera-Rodríguez, C. Quiles-Pando, and J. Rexach, “Is Ca2+ involved in the signal transduction pathway of boron deficiency? New hypotheses for sensing boron deprivation,” Plant Sci., vol. 217–218, pp. 135–139, Mar. 2014, doi: 10.1016/j.plantsci.2013.12.011.
  • A. González-Fontes, M. B. Herrera-Rodríguez, E. M. Martín-Rejano, M. T. Navarro-Gochicoa, J. Rexach, and J. J. Camacho-Cristóbal, “Root Responses to Boron Deficiency Mediated by Ethylene,” Front. Plant Sci., vol. 6, Jan. 2016, doi: 10.3389/fpls.2015.01103.
  • J. Takano, M. Wada, U. Ludewig, G. Schaaf, N. von Wirén, and T. Fujiwara, “The Arabidopsis Major Intrinsic Protein NIP5;1 Is Essential for Efficient Boron Uptake and Plant Development under Boron Limitation,” Plant Cell, vol. 18, no. 6, pp. 1498–1509, Jun. 2006, doi: 10.1105/tpc.106.041640.
  • S. Wang, N. Mitani-Ueno, and J. Takano, “Boron Uptake Assay in Xenopus laevis Oocytes,” BIO-PROTOCOL, vol. 8, no. 5, 2018, doi: 10.21769/BioProtoc.2755.
  • A. F. Onuh and K. Miwa, “Regulation, diversity and evolution of boron transporters in plants,” Plant Cell Physiol., vol. 62, no. 4, pp. 590–599, 2021.
  • J. Takano et al., “Arabidopsis boron transporter for xylem loading,” Nature, vol. 420, no. 6913, pp. 337–340, 2002.
  • Y. Nakagawa, H. Hanaoka, M. Kobayashi, K. Miyoshi, K. Miwa, and T. Fujiwara, “Cell-Type Specificity of the Expression of Os BOR1 , a Rice Efflux Boron Transporter Gene, Is Regulated in Response to Boron Availability for Efficient Boron Uptake and Xylem Loading,” Plant Cell, vol. 19, no. 8, pp. 2624–2635, Aug. 2007, doi: 10.1105/tpc.106.049015.
  • Y. Nakagawa, H. Hanaoka, M. Kobayashi, K. Miyoshi, K. Miwa, and T. Fujiwara, “Cell-type specificity of the expression of Os BOR1, a rice efflux boron transporter gene, is regulated in response to boron availability for efficient boron uptake and xylem loading,” Plant Cell, vol. 19, no. 8, pp. 2624–2635, 2007.
  • J. Takano et al., “Polar localization and degradation of Arabidopsis boron transporters through distinct trafficking pathways,” Proc. Natl. Acad. Sci., vol. 107, no. 11, pp. 5220–5225, Mar. 2010, doi: 10.1073/pnas.0910744107.
  • K. Miwa et al., “Roles of BOR2, a Boron Exporter, in Cross Linking of Rhamnogalacturonan II and Root Elongation under Boron Limitation in Arabidopsis,” PLANT Physiol., vol. 163, no. 4, pp. 1699–1709, Dec. 2013, doi: 10.1104/pp.113.225995.
  • J. Takano, M. Yamagami, K. Noguchi, H. Hayashi, and T. Fujiwara, “Preferential translocation of boron to young leaves in Arabidopsis thaliana Regulated by the BOR1 Gene,” Soil Sci. Plant Nutr., vol. 47, no. 2, pp. 345–357, Jun. 2001, doi: 10.1080/00380768.2001.10408398.
  • K. Miwa, J. Takano, H. Omori, M. Seki, K. Shinozaki, and T. Fujiwara, “Plants Tolerant of High Boron Levels,” Science (80-. )., vol. 318, no. 5855, pp. 1417–1417, Nov. 2007, doi: 10.1126/science.1146634.
  • K. Miwa, I. Aibara, and T. Fujiwara, “Arabidopsis thaliana BOR4 is upregulated under high boron conditions and confers tolerance to high boron,” Soil Sci. Plant Nutr., vol. 60, no. 3, pp. 349–355, May 2014, doi: 10.1080/00380768.2013.866524.
  • T. Li, W.-G. Choi, I. S. Wallace, J. Baudry, and D. M. Roberts, “Arabidopsis thaliana NIP7;1: An Anther-Specific Boric Acid Transporter of the Aquaporin Superfamily Regulated by an Unusual Tyrosine in Helix 2 of the Transport Pore,” Biochemistry, vol. 50, no. 31, pp. 6633–6641, Aug. 2011, doi: 10.1021/bi2004476.
  • N. Ahmed et al., “Micronutrients and their effects on Horticultural crop quality, productivity and sustainability,” Sci. Hortic. (Amsterdam)., vol. 323, p. 112512, Jan. 2024, doi: 10.1016/j.scienta.2023.112512.
  • S. Kumar, S. Kumar, and T. Mohapatra, “Interaction Between Macro‐ and Micro-Nutrients in Plants,” Front. Plant Sci., vol. 12, May 2021, doi: 10.3389/fpls.2021.665583.
  • G. Krouk et al., “A framework integrating plant growth with hormones and nutrients,” Trends Plant Sci., vol. 16, no. 4, pp. 178–182, Apr. 2011, doi: 10.1016/j.tplants.2011.02.004.
  • S. Saleem, N. U. Mushtaq, A. Rasool, W. H. Shah, I. Tahir, and R. U. Rehman, “Plant nutrition and soil fertility,” in Sustainable Plant Nutrition, Elsevier, 2023, pp. 23–49.
  • R. Tripathi et al., “Plant mineral nutrition and disease resistance: A significant linkage for sustainable crop protection,” Front. Plant Sci., vol. 13, Oct. 2022, doi: 10.3389/fpls.2022.883970.
  • N. K. Fageria, V. C. Baligar, and R. B. Clark, “Micronutrients in Crop Production,” 2002, pp. 185–268.
  • T. Jing et al., “Role of calcium nutrition in plant Physiology: Advances in research and insights into acidic soil conditions - A comprehensive review,” Plant Physiol. Biochem., vol. 210, p. 108602, May 2024, doi: 10.1016/j.plaphy.2024.108602.
  • H. Elaıbı, F. Mutlag, and Z. K. Al-Ebey, “A comprehensive review of Aloe vera: Multifaceted health benefits and anti-diabetic properties,” 2023.
  • R. Mahious, B. Çetin, F. F. Mutlag, H. K. Elaibi, A. Aygun, and F. Sen, “Synthesis, characterization and bioactivity of biogenic nanomaterials based on callus Sutherlandia frutescens,” Next Res., vol. 2, no. 3, p. 100512, Sep. 2025, doi: 10.1016/j.nexres.2025.100512.
  • A. Fathi, “Role of nitrogen (N) in plant growth, photosynthesis pigments, and N use efficiency: A review. Agrisost, 28, 1–8.” 2022.
  • X. Wei, L. Han, N. Xu, M. Sun, and X. Yang, “Nitrate nitrogen enhances the efficiency of photoprotection in Leymus chinensis under drought stress,” Front. Plant Sci., vol. 15, Feb. 2024, doi: 10.3389/fpls.2024.1348925.
  • W. Chen, D. Modi, and A. Picot, “Soil and Phytomicrobiome for Plant Disease Suppression and Management under Climate Change: A Review,” Plants, vol. 12, no. 14, p. 2736, Jul. 2023, doi: 10.3390/plants12142736.
  • M. et al., “Boron/Nitrogen Interaction Effect on Growth and Yield of Faba Bean Plants Grown under Sandy Soil Conditions,” Int. J. Agric. Res., vol. 1, no. 4, pp. 322–330, Jun. 2006, doi: 10.3923/ijar.2006.322.330.
  • H. Koohkan and M. Maftoun, “Effect of nitrogen– boron interaction on plant growth and tissue nutrient concentration of canola ( Brassica napus L.),” J. Plant Nutr., vol. 39, no. 7, pp. 922–931, Jun. 2016, doi: 10.1080/01904167.2016.1143492.
  • S. Bielski, K. Romaneckas, and E. Šarauskis, “Impact of Nitrogen and Boron Fertilization on Winter Triticale Productivity Parameters,” Agronomy, vol. 10, no. 2, p. 279, Feb. 2020, doi: 10.3390/agronomy10020279.
  • N. Bellaloui, A. Mengistu, M. Abdelmajid, C. A. Abel, and L. H. S. Zobiole, “Role of Boron Nutrient in Nodules Growth and Nitrogen Fixation in Soybean Genotypes Under Water Stress Conditions,” in Advances in Biology and Ecology of Nitrogen Fixation, InTech, 2014.
  • K. Stigter and W. Plaxton, “Molecular Mechanisms of Phosphorus Metabolism and Transport during Leaf Senescence,” Plants, vol. 4, no. 4, pp. 773–798, Dec. 2015, doi: 10.3390/plants4040773.
  • S. T. Dyhrman, “Nutrients and Their Acquisition: Phosphorus Physiology in Microalgae,” in The Physiology of Microalgae, Cham: Springer International Publishing, 2016, pp. 155–183.
  • J.-M. Barea and A. E. Richardson, “Phosphate Mobilisation by Soil Microorganisms,” in Principles of Plant-Microbe Interactions, Cham: Springer International Publishing, 2015, pp. 225–234.
  • J. Paz-Ares et al., “Plant adaptation to low phosphorus availability: Core signaling, crosstalks, and applied implications,” Mol. Plant, vol. 15, no. 1, pp. 104–124, Jan. 2022, doi: 10.1016/j.molp.2021.12.005.
  • Atique-ur-Rehman et al., “Boron nutrition of rice in different production systems. A review,” Agron. Sustain. Dev., vol. 38, no. 3, p. 25, Jun. 2018, doi: 10.1007/s13593-018-0504-8.
  • Z. Zhao, S. Wang, P. J. White, Y. Wang, L. Shi, and F. Xu, “Boron and Phosphorus Act Synergistically to Modulate Absorption and Distribution of Phosphorus and Growth of Brassica napus,” J. Agric. Food Chem., vol. 68, no. 30, pp. 7830–7838, Jul. 2020, doi: 10.1021/acs.jafc.0c02522.
  • E. A. Khattab, M. H. Afifi, and G. A. Amin, “Significance of nitrogen, phosphorus, and boron foliar spray on jojoba plants,” Bull. Natl. Res. Cent., vol. 43, no. 1, p. 66, Dec. 2019, doi: 10.1186/s42269-019-0109-7.
  • C. Kaya, A. L. Tuna, M. Dikilitas, M. Ashraf, S. Koskeroglu, and M. Guneri, “Supplementary phosphorus can alleviate boron toxicity in tomato,” Sci. Hortic. (Amsterdam)., vol. 121, no. 3, pp. 284–288, Jul. 2009, doi: 10.1016/j.scienta.2009.02.011.
  • A. Wdowiak, A. Podgórska, and B. Szal, “Calcium in plants: an important element of cell physiology and structure, signaling, and stress responses,” Acta Physiol. Plant., vol. 46, no. 12, p. 108, Dec. 2024, doi: 10.1007/s11738-024-03733-w.
  • R. Singh, “CALCIUM IN PLANT BIOLOGY: NUTRIENT AND SECOND MESSENGER,” Int. J. Biol. Innov., vol. 02, no. 01, pp. 31–35, 2020, doi: 10.46505/IJBI.2020.2105.
  • K. Thor, “Calcium—Nutrient and Messenger,” Front. Plant Sci., vol. 10, Apr. 2019, doi: 10.3389/fpls.2019.00440.
  • T. M. Galeriani et al., “Calcium and Boron Fertilization Improves Soybean Photosynthetic Efficiency and Grain Yield,” Plants, vol. 11, no. 21, p. 2937, Nov. 2022, doi: 10.3390/plants11212937.
  • V. Palani, “Synergistic and Antagonistic Interactions of Calcium with Other Nutrients in Soil and Plants,” SSRN Electron. J., 2019, doi: 10.2139/ssrn.3503225.
  • X. Weng et al., “Calcium Regulates Growth and Nutrient Absorption in Poplar Seedlings,” Front. Plant Sci., vol. 13, May 2022, doi: 10.3389/fpls.2022.887098.
  • M. Schmitz-Eiberger, R. Haefs, and G. Noga, “Calcium deficiency - Influence on the antioxidative defense system in tomato plants,” J. Plant Physiol., vol. 159, no. 7, pp. 733–742, Jan. 2002, doi: 10.1078/0176-1617-0621.
  • Y. Long and J. Peng, “Interaction between Boron and Other Elements in Plants,” Genes (Basel)., vol. 14, no. 1, p. 130, Jan. 2023, doi: 10.3390/genes14010130.
  • L. Galić, V. Vukadinović, I. Nikolin, and Z. Lončarić, “Soil Properties and Microelement Availability in Crops for Human Health: An Overview,” Crops, vol. 5, no. 4, p. 40, Jul. 2025, doi: 10.3390/crops5040040.
  • S. Bolan et al., “Boron contamination and its risk management in terrestrial and aquatic environmental settings,” Sci. Total Environ., vol. 894, p. 164744, Oct. 2023, doi: 10.1016/j.scitotenv.2023.164744.
  • E. A. Hasenmueller and R. E. Criss, “Multiple sources of boron in urban surface waters and groundwaters,” Sci. Total Environ., vol. 447, pp. 235–247, Mar. 2013, doi: 10.1016/j.scitotenv.2013.01.001.
  • B. Rerkasem, S. Jamjod, and T. Pusadee, “Productivity limiting impacts of boron deficiency, a review,” Plant Soil, vol. 455, no. 1–2, pp. 23–40, Oct. 2020, doi: 10.1007/s11104-020-04676-0.
  • S. Fatnassi, G. Hörmann, N. Fohrer, J. Navarro-Pedreño, and M. Hachicha, “Boron in Soil, Drainage Water and Groundwater in Long-Term Irrigated Area by Treated Wastewater in Northeast Tunisia,” Soil Syst., vol. 9, no. 1, p. 8, Jan. 2025, doi: 10.3390/soilsystems9010008.
  • “Boron toxicity in plants: understanding mechanisms and developing coping strategies; a review,” Plant Cell Rep., vol. 43, no. 10, p. 238, Oct. 2024, doi: 10.1007/s00299-024-03317-5.
  • A. K. Das and A. Purkait, “Boron dynamics in soil: classification, sources, factors, fractions, and kinetics,” Commun. Soil Sci. Plant Anal., vol. 51, no. 22, pp. 2778–2790, Dec. 2020, doi: 10.1080/00103624.2020.1849261.
  • J. Li et al., “Physiological and molecular bases of the boron deficiency response in tomatoes,” Hortic. Res., vol. 10, no. 12, Dec. 2023, doi: 10.1093/hr/uhad229.
  • L. Bolaños, I. Abreu, I. Bonilla, J. J. Camacho-Cristóbal, and M. Reguera, “What Can Boron Deficiency Symptoms Tell Us about Its Function and Regulation?,” Plants, vol. 12, no. 4, p. 777, Feb. 2023, doi: 10.3390/plants12040777.
  • X. Cong, H. Jing, N. Lin, Z. Xia, M. Huang, and X. Jiang, “Boron deficiency affects cell morphology and structure of young leaves of radish,” Acta Physiol. Plant., vol. 37, no. 11, p. 247, Nov. 2015, doi: 10.1007/s11738-015-2004-7.
  • S. Han, L.-S. Chen, H.-X. Jiang, B. R. Smith, L.-T. Yang, and C.-Y. Xie, “Boron deficiency decreases growth and photosynthesis, and increases starch and hexoses in leaves of citrus seedlings,” J. Plant Physiol., vol. 165, no. 13, pp. 1331–1341, Sep. 2008, doi: 10.1016/j.jplph.2007.11.002.
  • M. Tanaka and T. Fujiwara, “Physiological roles and transport mechanisms of boron: perspectives from plants,” Pflügers Arch. - Eur. J. Physiol., vol. 456, no. 4, pp. 671–677, Jul. 2008, doi: 10.1007/s00424-007-0370-8.
  • J. J. Camacho-Cristóbal et al., “The expression of several cell wall-related genes in Arabidopsis roots is down-regulated under boron deficiency,” Environ. Exp. Bot., vol. 63, no. 1–3, pp. 351–358, 2008.
  • P. Ryden, K. Sugimoto-Shirasu, A. C. Smith, K. Findlay, W.-D. Reiter, and M. C. McCann, “Tensile properties of Arabidopsis cell walls depend on both a xyloglucan cross-linked microfibrillar network and rhamnogalacturonan II-borate complexes,” Plant Physiol., vol. 132, no. 2, pp. 1033–1040, 2003.
  • J. J. Camacho‐Cristóbal, J. Rexach, and A. González‐Fontes, “Boron in Plants: Deficiency and Toxicity,” J. Integr. Plant Biol., vol. 50, no. 10, pp. 1247–1255, Oct. 2008, doi: 10.1111/j.1744-7909.2008.00742.x.
There are 106 citations in total.

Details

Primary Language English
Subjects Analytical Biochemistry, Glycobiology, Nanotechnology (Other)
Journal Section Reviews
Authors

Rayane Mahious 0009-0007-9443-1934

Ebru Halvacı 0009-0003-2343-0046

Fatih Şen 0000-0001-9929-9556

Publication Date August 31, 2025
Submission Date August 13, 2025
Acceptance Date August 29, 2025
Published in Issue Year 2025 Issue: 3

Cite

APA Mahious, R., Halvacı, E., & Şen, F. (2025). Boron In Plant Growth and Development: Roles, Nutrient Interaction and Implications for Sustainable Agriculture. International Journal of Boron Science and Nanotechnology(3), 1-14.

e-ISSN:: 3062-1933