Research Article
BibTex RIS Cite

Investigation the Parameters of Non-Cylindrical Ice Load on Power Transmission Lines

Year 2023, , 29 - 35, 31.03.2023
https://doi.org/10.22399/ijcesen.1260707

Abstract

Ice load on transmission lines is a critical factor that affects their cost and operation. National standards specify how ice load is considered in the design of power lines and poles. These standards generally use empirical relations that assume that the ice load on each phase accumulates uniformly and cylindrically. However, field tests and fault records show that the actual ice load on conductors is often not cylindrical due to altitude, wind strength and direction, and terrain topography. This study firstly defines several parameters to describe asymmetrical ice load. This load can cause additional vertical force on the line, conductor swing angle deviation, and sag changes. Since empirical equations are only valid for cylindrical ice load, the cross-sectional shape of the conductor must be transferred to millimeter paper, and calculations performed using one of several numerical integral methods. The coefficients for asymmetric ice are calculated in kg⁄m (N⁄m) using an AutoCAD model in the numerical study.

References

  • Fikke, S.M., (2008). Modern meteorology and atmospheric icing. Dordrecht: Springer.
  • IEC 60826. (2003) Design criteria of overhead transmission lines IEC 60823:2003 (E) 3rd Ed., International Electrotechnical Commission.
  • Farzaneh, M. (Ed.). (2008). Atmospheric icing of power networks. Canada: Springer.
  • Cai, J., Liu, X., & Zhang, S. (2012). Numerical analysis for galloping of iced quad bundle conductors. Applied Mechanics and Materials, 226(228);30–34. DOI:10.4028/www.scientific.net/amm.226-228.30.
  • Sopper, R., Daley, C., Colbourne, B., & Bruneau, S. (2017). The influence of water, snow and granular ice on ice failure processes, ice load magnitude and process pressure. Cold Regions Science and Technology, 139; 51–64. DOI:10.1016/j.coldregions.2017.04.006.
  • Kermani, M., Farzaneh, M., & Kollar, L. E. (2013). The effects of wind induced conductor motion on accreted atmospheric ice. IEEE Transactions on Power Delivery, 28(2);540–548. DOI:10.1109/TPWRD.2013.2244922
  • Mirshafiei, F., McClure, G., & Farzaneh, M. (2013). Modelling the dynamic response of iced transmission lines subjected to cable rupture and ice shedding. IEEE Transactions on Power Delivery, 28(2); 948–954. DOI:10.1109/TPWRD.2012.2233221
  • IEC/TR2 61774. (1997) Overhead lines - Meteorological data for assessing climatic loads, International Electrotechnical Commission.
  • Wen, Z., Yu, Q., Zhang, M., Xue, K., Chen, L., & Li, D. (2016). Stress and deformation characteristics of transmission tower foundations in permafrost regions along the Qinghai–Tibet Power Transmission Line. Cold Regions Science and Technology, 121; 214–225. DOI:10.1016/j.coldregions.2015.06.007
  • Ma, G., Li, C., Jiang, J., Luo, Y. & Cheng, Y. (2012). A novel optical load cell used in icing monitoring on overhead transmission lines. Cold Regions Science and Technology, 71;67–72. DOI:10.1016/j.coldregions.2011.10.013
  • Lozowski, E. P., Stallabrass J. R., & Hearty P. F. (1983). The icing of an unheated, nonrotating cylinder. Part I: A simulation model. Journal of Applied Meteorology and Climatology, 22(12); 2053-2062. DOI:10.1175/1520-0450(1983)022<2053:TIOAUN>2.0.CO;2
  • Makkonen, L. (1984). Modeling of ice accretion on wires. Journal of Climate and Applied Meteorology, 23;929–939. DOI:10.1175/1520-0450(1984)023<0929:MOIAOW>2.0.CO;2
  • Makkonen, L. (1998). Modeling power line icing in freezing precipitation. Atmospheric Research, 46(1–2);131–142. DOI:10.1016/S0169-8095(97)00056-2
  • Poots, G., & Skelton, P.L. (1995). Simulation of wet-snow accretion by axial growth on a transmission line conductor. Applied Mathematical Modelling, 19(9);514-518. DOI:10.1016/0307-904X(95)00012-9
  • Ay, S. (2018). Enerji iletim sistemleri Cilt 4 Hava hatlarının mekanik hesaplamaları. İstanbul: Birsen Yayınevi.
  • Ajder, A. (2022). Analysis of non-uniform accreted ice in overhead power lines using SAP2000. IEEE Access, 10;128951–128958. DOI:10.1109/ACCESS.2022.3227648
  • TEİAŞ, (2021). Yüksek gerilim enerji iletim hatları için direk tasarımı direk tasarımı teknik şartnamesi, İletim hatları tesis daire başkanlığı, Türkiye Elektrik İletim A.Ş., Haziran, 12–52.
Year 2023, , 29 - 35, 31.03.2023
https://doi.org/10.22399/ijcesen.1260707

Abstract

References

  • Fikke, S.M., (2008). Modern meteorology and atmospheric icing. Dordrecht: Springer.
  • IEC 60826. (2003) Design criteria of overhead transmission lines IEC 60823:2003 (E) 3rd Ed., International Electrotechnical Commission.
  • Farzaneh, M. (Ed.). (2008). Atmospheric icing of power networks. Canada: Springer.
  • Cai, J., Liu, X., & Zhang, S. (2012). Numerical analysis for galloping of iced quad bundle conductors. Applied Mechanics and Materials, 226(228);30–34. DOI:10.4028/www.scientific.net/amm.226-228.30.
  • Sopper, R., Daley, C., Colbourne, B., & Bruneau, S. (2017). The influence of water, snow and granular ice on ice failure processes, ice load magnitude and process pressure. Cold Regions Science and Technology, 139; 51–64. DOI:10.1016/j.coldregions.2017.04.006.
  • Kermani, M., Farzaneh, M., & Kollar, L. E. (2013). The effects of wind induced conductor motion on accreted atmospheric ice. IEEE Transactions on Power Delivery, 28(2);540–548. DOI:10.1109/TPWRD.2013.2244922
  • Mirshafiei, F., McClure, G., & Farzaneh, M. (2013). Modelling the dynamic response of iced transmission lines subjected to cable rupture and ice shedding. IEEE Transactions on Power Delivery, 28(2); 948–954. DOI:10.1109/TPWRD.2012.2233221
  • IEC/TR2 61774. (1997) Overhead lines - Meteorological data for assessing climatic loads, International Electrotechnical Commission.
  • Wen, Z., Yu, Q., Zhang, M., Xue, K., Chen, L., & Li, D. (2016). Stress and deformation characteristics of transmission tower foundations in permafrost regions along the Qinghai–Tibet Power Transmission Line. Cold Regions Science and Technology, 121; 214–225. DOI:10.1016/j.coldregions.2015.06.007
  • Ma, G., Li, C., Jiang, J., Luo, Y. & Cheng, Y. (2012). A novel optical load cell used in icing monitoring on overhead transmission lines. Cold Regions Science and Technology, 71;67–72. DOI:10.1016/j.coldregions.2011.10.013
  • Lozowski, E. P., Stallabrass J. R., & Hearty P. F. (1983). The icing of an unheated, nonrotating cylinder. Part I: A simulation model. Journal of Applied Meteorology and Climatology, 22(12); 2053-2062. DOI:10.1175/1520-0450(1983)022<2053:TIOAUN>2.0.CO;2
  • Makkonen, L. (1984). Modeling of ice accretion on wires. Journal of Climate and Applied Meteorology, 23;929–939. DOI:10.1175/1520-0450(1984)023<0929:MOIAOW>2.0.CO;2
  • Makkonen, L. (1998). Modeling power line icing in freezing precipitation. Atmospheric Research, 46(1–2);131–142. DOI:10.1016/S0169-8095(97)00056-2
  • Poots, G., & Skelton, P.L. (1995). Simulation of wet-snow accretion by axial growth on a transmission line conductor. Applied Mathematical Modelling, 19(9);514-518. DOI:10.1016/0307-904X(95)00012-9
  • Ay, S. (2018). Enerji iletim sistemleri Cilt 4 Hava hatlarının mekanik hesaplamaları. İstanbul: Birsen Yayınevi.
  • Ajder, A. (2022). Analysis of non-uniform accreted ice in overhead power lines using SAP2000. IEEE Access, 10;128951–128958. DOI:10.1109/ACCESS.2022.3227648
  • TEİAŞ, (2021). Yüksek gerilim enerji iletim hatları için direk tasarımı direk tasarımı teknik şartnamesi, İletim hatları tesis daire başkanlığı, Türkiye Elektrik İletim A.Ş., Haziran, 12–52.
There are 17 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Ali Ajder 0000-0001-9411-4452

Publication Date March 31, 2023
Submission Date March 6, 2023
Acceptance Date March 15, 2023
Published in Issue Year 2023

Cite

APA Ajder, A. (2023). Investigation the Parameters of Non-Cylindrical Ice Load on Power Transmission Lines. International Journal of Computational and Experimental Science and Engineering, 9(1), 29-35. https://doi.org/10.22399/ijcesen.1260707