Research Article
BibTex RIS Cite

Thermal Analysis of a Zirconium Dioxide Coated Aluminum Alloy Piston

Year 2018, , 43 - 50, 27.11.2018
https://doi.org/10.22399/ijcesen.479222

Abstract

Performance and operating
costs are the most important factors in internal combustion engines. It is one
of the most commonly used methods to coat pistons with advanced technological
ceramic materials in order to improve performance and fatigue life in internal
combustion engines. In this study, changes in temperature and heat flux were
investigated in various thickness coatings made on a 2500 cc turbo diesel
engine piston.
As bonding coat, NiCrAl was used in a thickness
of 0.2 mm, while ZrO2 (
zirconium dioxide) was used in thicknesses of 0.2-0.4-0.6 and 0.8 mm as
thermal barrier coating material. The piston was modeled in PTC Creo parametric
software and then transferred to ANSYS Workbench environment to create a
mathematical model. Engineering calculations were also done using the finite
element method.  After the calculation, the temperatures at the depth of 5 mm from the
combustion chamber upper surface, the binder layer upper surface, the thermal
coating upper surface and the combustion chamber upper surface were compared.
As a result, it was observed that the combustion chamber and the section at the
depth of 5 mm from the combustion chamber had a temperature decrease of 13%.

References

  • [1] Fu, Y., Shao, C., Cai, C., Wang, Y., Zhou, Y., Zhou, G., Temperature induced structure degradation of yttria-stabilized zirconia thermal barrier coatings, Surface & Coatings Technology 351 (2018), 21–28 https://doi.org/10.1016/j.surfcoat.2018.07.057
  • [2] Khan, M., Zeng, Y., Lan, Z., Wang, Y., Reduced thermal conductivity of solid solution of 20% CeO2 +ZrO2 and 8% Y2O3 +ZrO2 prepared by atmospheric plasma spray technique, Ceramics International, https://doi.org/10.1016/j.ceramint.2018.09.252
  • [3] Liu, H., Cai, J., Zhu, J., CMAS (CaO–MgO–Al2O3–SiO2) resistance of Y2O3-stabilized ZrO2 thermal barrier coatings with Pt layers, Ceramics International 44 (2018), 452–458 https://doi.org/10.1016/j.ceramint.2017.09.197
  • [4] Wang, J., Sun, J., Jing, Q., Liu, B., Zhang, H., Yu, Y., Yuan, J., Dong, S., Zhou, X., Cao, X., Phase stability and thermo-physical properties of ZrO2-CeO2-TiO2 ceramics for thermal barrier coatings, Journal of the European Ceramic Society 38 (2018), 2841–2850, https://doi.org/10.1016/j.jeurceramsoc.2018.02.019
  • [5] Ramaswamy, P., Shankar V, Reghu V.R., Mathew, N., Manoj, K.S., A Model to Predict the Influence of Inconsistencies in Thermal Barrier Coating (TBC) Thicknesses in Pistons of IC Engines, Materials Today: Proceedings 5 (2018), 12623–12631 https://doi.org/10.1016/j.matpr.2018.02.245
  • [6] Dudareva, N.Y., Enikeev, R.D.a, Ivanov, V.Y., Thermal Protection of Internal Combustion Engines Pistons, Procedia Engineering 206 (2017) 1382–1387, https://doi.org/10.1016/j.proeng.2017.10.649
  • [7] Bolek, T., Sitek, R., Sienkiewicz, J., Dobosz, R., Mizera, J., Kobayashi, A., Kurzydlowski, K.J., Simulation of the influence of the interface roughness on the residual stresses induced in (ZrO2+Y2O3)+NiAl-type composite coatings deposited on Inconel 713C, Vacuum 136 (2017), 221-228, https://doi.org/10.1016/j.vacuum.2016.11.003
  • [8] Kumar, P.S.R., Kumar, P.N., Janardhana, G.R., Static Analysis of Al - ZrO2FG Thick Plate Using Graded FEM, Materials Today: Proceedings 4 (2017), 8117–8126,https://doi.org/10.1016/j.matpr.2017.07.152
  • [9] Yerrennagoudaru, H., Manjunatha, K., Combustion analysis of modified inverted “M” type piston for diesel engine with platinum coating and without coating by using CFD, Materials Today: Proceedings 4 (2017), 2333–2340,https://doi.org/10.1016/j.matpr.2017.02.082
  • [10] Ma, G., Yan, S., Wu, D., Miao, Q., Liu, M., Niu, F., Microstructure evolution and mechanical properties of ultrasonic assisted laser clad yttria stabilized zirconia coating, Ceramics International 43 (2017), 9622–9629,https://doi.org/10.1016/j.ceramint.2017.04.103
  • [11] Kocabicak, U., Mimaroglu, A., Sarikaya, O., Mete, O.H., Comparison of the developed thermal stresses in Al2O3-SG, ZrO2-12%Si+Al and ZrO2-SG coating systems subjected to thermal loading, Materials and Design 20 (1999), 287-290https://doi.org/10.1016/S0261-3069(99)00041-2
  • [12] Celik, E., Sarikaya, O., The effect on residual stresses of porosity in plasma sprayed MgO–ZrO2 coatings for an internal combustion diesel engine, Materials Science and Engineering A 379 (2004), 11–16, https://doi.org/10.1016/j.msea.2003.12.019
  • [13] Taymaz, I., Mimaroglu, A., Avci, E., Ucar, V., Gur, M., Comparison of thermal stresses developed in Al2O3–SG, ZrO2–(12% Si+Al ) and ZrO2–SG thermal barrier coating systems with NiAl, NiCrAlY and NiCoCrAlY interlayer materials subjected to thermal loading,Surface and Coatings Technology 116–119 (1999), 690–693, https://doi.org/10.1016/S0257-8972(99)00121-8
  • [14] Sarikaya, O., Celik, E., Effects of residual stress on thickness and interlayer of thermal barrier ceramic MgO–ZrO2 coatings on Ni and AlSi substrates using finite element method, Materials and Design 23 (2002), 645–650,https://doi.org/10.1016/S0261-3069(02)00047-X
  • [15] Mimaroglu, Kocabicak, U., A., Genc, S., Influence of porosity characteristics in Mg0.ZrO2-GG coating subjected to thermal loading, Materials & Design, 18(1997), 77-80, https://doi.org/10.1016/S0261-3069(97)00042-3
  • [16] Khor, K.A., Gu, Y.W., Effects of residual stress on the performance of plasma sprayed functionally graded ZrO2/NiCoCrAlY coatings, Materials Science and Engineering A277 (2000), 64–76, https://doi.org/10.1016/S0921-5093(99)00565-1
  • [17] Mimaroglu, A., Yenihayat, O.F. Avci, E., Numerical analysis of fracture in ceramic coatings subjected to thermal loading, Materials&Design 17 (1996), 283-287,https://doi.org/10.1016/S0261-3069(97)00023-X
  • [18] ANSYS Workbench Help
  • [19] Buyukkaya, E., Thermal analysis of functionally graded coating AlSi alloy and steel pistons, Surface & Coatings Technology 202 (2008) 3856–3865,https://doi.org/10.1016/j.surfcoat.2008.01.034
Year 2018, , 43 - 50, 27.11.2018
https://doi.org/10.22399/ijcesen.479222

Abstract

References

  • [1] Fu, Y., Shao, C., Cai, C., Wang, Y., Zhou, Y., Zhou, G., Temperature induced structure degradation of yttria-stabilized zirconia thermal barrier coatings, Surface & Coatings Technology 351 (2018), 21–28 https://doi.org/10.1016/j.surfcoat.2018.07.057
  • [2] Khan, M., Zeng, Y., Lan, Z., Wang, Y., Reduced thermal conductivity of solid solution of 20% CeO2 +ZrO2 and 8% Y2O3 +ZrO2 prepared by atmospheric plasma spray technique, Ceramics International, https://doi.org/10.1016/j.ceramint.2018.09.252
  • [3] Liu, H., Cai, J., Zhu, J., CMAS (CaO–MgO–Al2O3–SiO2) resistance of Y2O3-stabilized ZrO2 thermal barrier coatings with Pt layers, Ceramics International 44 (2018), 452–458 https://doi.org/10.1016/j.ceramint.2017.09.197
  • [4] Wang, J., Sun, J., Jing, Q., Liu, B., Zhang, H., Yu, Y., Yuan, J., Dong, S., Zhou, X., Cao, X., Phase stability and thermo-physical properties of ZrO2-CeO2-TiO2 ceramics for thermal barrier coatings, Journal of the European Ceramic Society 38 (2018), 2841–2850, https://doi.org/10.1016/j.jeurceramsoc.2018.02.019
  • [5] Ramaswamy, P., Shankar V, Reghu V.R., Mathew, N., Manoj, K.S., A Model to Predict the Influence of Inconsistencies in Thermal Barrier Coating (TBC) Thicknesses in Pistons of IC Engines, Materials Today: Proceedings 5 (2018), 12623–12631 https://doi.org/10.1016/j.matpr.2018.02.245
  • [6] Dudareva, N.Y., Enikeev, R.D.a, Ivanov, V.Y., Thermal Protection of Internal Combustion Engines Pistons, Procedia Engineering 206 (2017) 1382–1387, https://doi.org/10.1016/j.proeng.2017.10.649
  • [7] Bolek, T., Sitek, R., Sienkiewicz, J., Dobosz, R., Mizera, J., Kobayashi, A., Kurzydlowski, K.J., Simulation of the influence of the interface roughness on the residual stresses induced in (ZrO2+Y2O3)+NiAl-type composite coatings deposited on Inconel 713C, Vacuum 136 (2017), 221-228, https://doi.org/10.1016/j.vacuum.2016.11.003
  • [8] Kumar, P.S.R., Kumar, P.N., Janardhana, G.R., Static Analysis of Al - ZrO2FG Thick Plate Using Graded FEM, Materials Today: Proceedings 4 (2017), 8117–8126,https://doi.org/10.1016/j.matpr.2017.07.152
  • [9] Yerrennagoudaru, H., Manjunatha, K., Combustion analysis of modified inverted “M” type piston for diesel engine with platinum coating and without coating by using CFD, Materials Today: Proceedings 4 (2017), 2333–2340,https://doi.org/10.1016/j.matpr.2017.02.082
  • [10] Ma, G., Yan, S., Wu, D., Miao, Q., Liu, M., Niu, F., Microstructure evolution and mechanical properties of ultrasonic assisted laser clad yttria stabilized zirconia coating, Ceramics International 43 (2017), 9622–9629,https://doi.org/10.1016/j.ceramint.2017.04.103
  • [11] Kocabicak, U., Mimaroglu, A., Sarikaya, O., Mete, O.H., Comparison of the developed thermal stresses in Al2O3-SG, ZrO2-12%Si+Al and ZrO2-SG coating systems subjected to thermal loading, Materials and Design 20 (1999), 287-290https://doi.org/10.1016/S0261-3069(99)00041-2
  • [12] Celik, E., Sarikaya, O., The effect on residual stresses of porosity in plasma sprayed MgO–ZrO2 coatings for an internal combustion diesel engine, Materials Science and Engineering A 379 (2004), 11–16, https://doi.org/10.1016/j.msea.2003.12.019
  • [13] Taymaz, I., Mimaroglu, A., Avci, E., Ucar, V., Gur, M., Comparison of thermal stresses developed in Al2O3–SG, ZrO2–(12% Si+Al ) and ZrO2–SG thermal barrier coating systems with NiAl, NiCrAlY and NiCoCrAlY interlayer materials subjected to thermal loading,Surface and Coatings Technology 116–119 (1999), 690–693, https://doi.org/10.1016/S0257-8972(99)00121-8
  • [14] Sarikaya, O., Celik, E., Effects of residual stress on thickness and interlayer of thermal barrier ceramic MgO–ZrO2 coatings on Ni and AlSi substrates using finite element method, Materials and Design 23 (2002), 645–650,https://doi.org/10.1016/S0261-3069(02)00047-X
  • [15] Mimaroglu, Kocabicak, U., A., Genc, S., Influence of porosity characteristics in Mg0.ZrO2-GG coating subjected to thermal loading, Materials & Design, 18(1997), 77-80, https://doi.org/10.1016/S0261-3069(97)00042-3
  • [16] Khor, K.A., Gu, Y.W., Effects of residual stress on the performance of plasma sprayed functionally graded ZrO2/NiCoCrAlY coatings, Materials Science and Engineering A277 (2000), 64–76, https://doi.org/10.1016/S0921-5093(99)00565-1
  • [17] Mimaroglu, A., Yenihayat, O.F. Avci, E., Numerical analysis of fracture in ceramic coatings subjected to thermal loading, Materials&Design 17 (1996), 283-287,https://doi.org/10.1016/S0261-3069(97)00023-X
  • [18] ANSYS Workbench Help
  • [19] Buyukkaya, E., Thermal analysis of functionally graded coating AlSi alloy and steel pistons, Surface & Coatings Technology 202 (2008) 3856–3865,https://doi.org/10.1016/j.surfcoat.2008.01.034
There are 19 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Murat Ozsoy 0000-0003-2400-5212

İsmet Tıkız 0000-0002-9601-7119

Hüseyin Pehlivan 0000-0002-5711-651X

Publication Date November 27, 2018
Submission Date November 6, 2018
Acceptance Date November 26, 2018
Published in Issue Year 2018

Cite

APA Ozsoy, M., Tıkız, İ., & Pehlivan, H. (2018). Thermal Analysis of a Zirconium Dioxide Coated Aluminum Alloy Piston. International Journal of Computational and Experimental Science and Engineering, 4(3), 43-50. https://doi.org/10.22399/ijcesen.479222