Research Article
BibTex RIS Cite
Year 2022, Volume: 8 Issue: 1, 14 - 18, 31.03.2022
https://doi.org/10.22399/ijcesen.843038

Abstract

References

  • [1] Yegeubayeva S., A.B. Bayeshov , A.K. Bayeshova. (2015). Electrochemical Method of Obtaining of Electric Current from Thermal Energy Using Graphite Electrodes Acta. Physica. Polonica A. 128(2B): B-255-B-257 DOI: 10.12693/APhysPolA.B-455
  • [2] Kumar M., A. Dubey, N. Adhikari, S. Venkatesan, Q. Qiao, (2015). Strategic review of secondary phases, defects and defect-complexes in kesterite CZTS–Se solar cells. Energy. Environmental. Science. 8:3134-3159, DOI:10.1039/C5EE02153G
  • [3] Jackson P., R. Wuerz, D. Hariskos, E. Lotter, W. Witte, M. Powalla, (2016). Effects of heavy alkali elements in Cu(In,Ga)Se-2 solar cells with efficiencies up to 22.6%. Physica. Status. Solidi R. 10:583–586, DOI: 10.1002/pssr.201600199
  • [4] Saha U., M.K. Alam (2017) Proposition and computational analysis of a kesterite / kesterite tandem solar cell with enhanced efficiency. RSC. Advances. 7(8):4806-814, DOI:10.1039/c6ra25704f
  • [5] Haddout A., A. Raidou, M. Fahoume. (2019) A review on the numerical modeling of CdS/CZTS-based solar cells. Applied Physics A. 125(2): DOI:10.1007/s00339-019-2413-3
  • [6] Wang W., M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi. (2013) Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency. Advanced. Energy. Materials 4(7):1301465 DOI:10.1002/aenm.201301465
  • [7] Yin L., G. Cheng, Y. Feng, Z. Li, C.Yang, X. Xiao, (2015). Limitation factors for the performance of kesterite Cu2ZnSnS4 thin film solar cells studied by defect characterization. RSC. Advances. 5(50):40369–40374, DOI:10.1039/c5ra00069f
  • [8] Garud S., B. Vermang, S. Sahayaraj, S. Ranjbar, G. Brammertz, M. Meuris et. al. (2017). Alkali Assisted Reduction of Open‐Circuit Voltage Deficit in CZTSe Solar Cells. Physic. Status. Solidi 1700171, DOI: 10.1002/pssc.201700171
  • [9] Gupta G., A. Dixit. (2018). Simulation studies of CZT(S,Se) single and tandem junction solar cells towards possibilities for higher efficiencies up to 22%", Physics. Materials. Sciences. arXiv:Applied Physics. https://arxiv.org/ftp/arxiv/papers/1801/1801.08498.pdf
  • [10] Amiri S., S. Dehghani, (2020) Design of Highly Efficient CZTS/CZTSe Tandem Solar Cells. J. Electron. Mater. 49:2164–2172, DOI: 10.1007/s11664-019-07898-w
  • [11] Shin B., O. Gunawan, Y. Zhu, N.A. Bojarczuk, S.J. Chey, S. Guha. (2013) Thin film solar cell with 8.4% power conversion efficiency using an earth‐abundant Cu2ZnSnS4 absorber", Progress. Photovoltaics. 21:72–76, DOI:10.1002/pip.1174
  • [12] Tauc T., A. Menth. (1972) States in the gap. Journal of Non-Crystal. Solids. 8(10):569-585, DOI: 10.1016/0022-3093(72)90194-9
  • [13] White T.P., N.N. Lal, K.P. Catchpole. (2014) Tandem solar cells based on high-efficiency c-si bottom cells: top cell requirements for>30% efficiency. IEEE. Journal. of Photovoltaics. 4:208–214, DOI: 10.1109/JPHOTOV.2013.2283342
  • [14] Onno A., N.P. Harder, L. Oberbeck, H. Liu. (2016). Simulation study of GaAsP/Si tandem solar cells. Sol. Energy Mat. And. Sol .Cells. 145:206–216, DOI: 10.1016/j.solmat.2015.10.028
  • [15] Ferhati H., F. Djeffal, (2019). An efficient analytical model for tandem solar cells. Materials. Research. Express. 6(7):1-29. DOI:10.1088/2053-1591/ab1596
  • [16] Elbar M., S. Tobbeche. (2015). Numerical simulation of CGS/CIGS single and tandem thin-film solar cells using the Silvaco-Atlas software. Energy. Procedia. 74:1220-1227, DOI:10.1016/j.egypro.2015.07.766
  • [17] Kariper A., O. Baglayan, (2015). Fabrication and Optical Characterization of CdSe Thin Films Grown by Chemical Bath Deposition. Acta. Physica. Polonica A. 128(2B):B-219-B-221, DOI: 10.13140/RG.2.1.2898.0569
  • [18]Kariper A., F. Gode, F. Yavuz, (2015). Preparation and characterisation of Nano crystalline PbS thin films produced by chemical deposition,, Acta. Physica. Polonica A. 128(2B):B-215-B-217, DOI: 10.13140/RG.2.1.3291.2721

Modeling of a Tandem Solar Cell Structure Based on CZTS and CZTSe Absorber Materials

Year 2022, Volume: 8 Issue: 1, 14 - 18, 31.03.2022
https://doi.org/10.22399/ijcesen.843038

Abstract

In this paper, we simulated a double junction cell based on top CdS/Cu2ZnSnS4 cell, stacked on a bottom CdS/Cu2ZnSnSe4 cell. We started by studying the perfomance of the bottom solar cell, based on the copper zinc tin selenide Cu2ZnSnSe4 (CZTSe) absorber. Then, we evaluated the photovoltaic parameters of the tandem cell at the optimized thickness of the copper zinc tin sulfide Cu2ZnSnS4 (CZTS) absorber of the top cell, where the top and bottom cells deliver the same photocurrent density. We achieved A maximum efficiency of 24.68% with an open circuit voltage of 1.33 V and a photocurrent density of 16.54 mA/cm² for the thicknesses 413.8 nm and 2 µm of CZTS and CZTSe absorbers, respectively. İn order to improve power conversion efficiency, light trapping effects was studied. The use of randomly textured top cell absorber allows the reduction of its thickness to 270 nm. An efficiency of 24.71% was then obtained. Finally, the effect of replacing the toxic CdS buffer absorber with the ZnS material was investigated.

References

  • [1] Yegeubayeva S., A.B. Bayeshov , A.K. Bayeshova. (2015). Electrochemical Method of Obtaining of Electric Current from Thermal Energy Using Graphite Electrodes Acta. Physica. Polonica A. 128(2B): B-255-B-257 DOI: 10.12693/APhysPolA.B-455
  • [2] Kumar M., A. Dubey, N. Adhikari, S. Venkatesan, Q. Qiao, (2015). Strategic review of secondary phases, defects and defect-complexes in kesterite CZTS–Se solar cells. Energy. Environmental. Science. 8:3134-3159, DOI:10.1039/C5EE02153G
  • [3] Jackson P., R. Wuerz, D. Hariskos, E. Lotter, W. Witte, M. Powalla, (2016). Effects of heavy alkali elements in Cu(In,Ga)Se-2 solar cells with efficiencies up to 22.6%. Physica. Status. Solidi R. 10:583–586, DOI: 10.1002/pssr.201600199
  • [4] Saha U., M.K. Alam (2017) Proposition and computational analysis of a kesterite / kesterite tandem solar cell with enhanced efficiency. RSC. Advances. 7(8):4806-814, DOI:10.1039/c6ra25704f
  • [5] Haddout A., A. Raidou, M. Fahoume. (2019) A review on the numerical modeling of CdS/CZTS-based solar cells. Applied Physics A. 125(2): DOI:10.1007/s00339-019-2413-3
  • [6] Wang W., M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi. (2013) Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency. Advanced. Energy. Materials 4(7):1301465 DOI:10.1002/aenm.201301465
  • [7] Yin L., G. Cheng, Y. Feng, Z. Li, C.Yang, X. Xiao, (2015). Limitation factors for the performance of kesterite Cu2ZnSnS4 thin film solar cells studied by defect characterization. RSC. Advances. 5(50):40369–40374, DOI:10.1039/c5ra00069f
  • [8] Garud S., B. Vermang, S. Sahayaraj, S. Ranjbar, G. Brammertz, M. Meuris et. al. (2017). Alkali Assisted Reduction of Open‐Circuit Voltage Deficit in CZTSe Solar Cells. Physic. Status. Solidi 1700171, DOI: 10.1002/pssc.201700171
  • [9] Gupta G., A. Dixit. (2018). Simulation studies of CZT(S,Se) single and tandem junction solar cells towards possibilities for higher efficiencies up to 22%", Physics. Materials. Sciences. arXiv:Applied Physics. https://arxiv.org/ftp/arxiv/papers/1801/1801.08498.pdf
  • [10] Amiri S., S. Dehghani, (2020) Design of Highly Efficient CZTS/CZTSe Tandem Solar Cells. J. Electron. Mater. 49:2164–2172, DOI: 10.1007/s11664-019-07898-w
  • [11] Shin B., O. Gunawan, Y. Zhu, N.A. Bojarczuk, S.J. Chey, S. Guha. (2013) Thin film solar cell with 8.4% power conversion efficiency using an earth‐abundant Cu2ZnSnS4 absorber", Progress. Photovoltaics. 21:72–76, DOI:10.1002/pip.1174
  • [12] Tauc T., A. Menth. (1972) States in the gap. Journal of Non-Crystal. Solids. 8(10):569-585, DOI: 10.1016/0022-3093(72)90194-9
  • [13] White T.P., N.N. Lal, K.P. Catchpole. (2014) Tandem solar cells based on high-efficiency c-si bottom cells: top cell requirements for>30% efficiency. IEEE. Journal. of Photovoltaics. 4:208–214, DOI: 10.1109/JPHOTOV.2013.2283342
  • [14] Onno A., N.P. Harder, L. Oberbeck, H. Liu. (2016). Simulation study of GaAsP/Si tandem solar cells. Sol. Energy Mat. And. Sol .Cells. 145:206–216, DOI: 10.1016/j.solmat.2015.10.028
  • [15] Ferhati H., F. Djeffal, (2019). An efficient analytical model for tandem solar cells. Materials. Research. Express. 6(7):1-29. DOI:10.1088/2053-1591/ab1596
  • [16] Elbar M., S. Tobbeche. (2015). Numerical simulation of CGS/CIGS single and tandem thin-film solar cells using the Silvaco-Atlas software. Energy. Procedia. 74:1220-1227, DOI:10.1016/j.egypro.2015.07.766
  • [17] Kariper A., O. Baglayan, (2015). Fabrication and Optical Characterization of CdSe Thin Films Grown by Chemical Bath Deposition. Acta. Physica. Polonica A. 128(2B):B-219-B-221, DOI: 10.13140/RG.2.1.2898.0569
  • [18]Kariper A., F. Gode, F. Yavuz, (2015). Preparation and characterisation of Nano crystalline PbS thin films produced by chemical deposition,, Acta. Physica. Polonica A. 128(2B):B-215-B-217, DOI: 10.13140/RG.2.1.3291.2721
There are 18 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Hayat Arbouz 0000-0003-2780-5215

Publication Date March 31, 2022
Submission Date December 19, 2020
Acceptance Date March 4, 2022
Published in Issue Year 2022 Volume: 8 Issue: 1

Cite

APA Arbouz, H. (2022). Modeling of a Tandem Solar Cell Structure Based on CZTS and CZTSe Absorber Materials. International Journal of Computational and Experimental Science and Engineering, 8(1), 14-18. https://doi.org/10.22399/ijcesen.843038

Cited By



Computation of Neutron Coefficients for B2O3 reinforced Composite
International Journal of Computational and Experimental Science and Engineering
https://doi.org/10.22399/ijcesen.1290497

Assessment of Gamma Ray Shielding Properties for Skin
International Journal of Computational and Experimental Science and Engineering
https://doi.org/10.22399/ijcesen.1247867