Research Article
BibTex RIS Cite
Year 2022, Volume: 8 Issue: 1, 19 - 24, 31.03.2022
https://doi.org/10.22399/ijcesen.932994

Abstract

References

  • [1] Zadeh L.A., (1965). Fuzzy sets. Information and Control. 8(3):338–353. DOI: 10.1016/S0019-9958(65)90241-X
  • [2] Li D. F. and J.-B-. Yang. (2004). Fuzzy linear programming technique for multiattribute group decision making in fuzzy environments. Inf. Sci. (Ny). 158:263–275. DOI: 10.1016/j.ins.2003.08.007
  • [3] Çalışkan M. and F. Fındık. (2012). Malzeme, Ergonomi Ve Biyomekanik İlişkisi. Sakarya Üniv. Fen Bilim. Enstitüsü Derg. 16(3):273–282. DOI: 10.16984/saufbed.08867
  • [4] Coşkun M.B., H. Sağıroğlu, and N. Erginel, (2015) İş İstasyonlarının Ergonomik Riskinin Niosh Yöntemi İle Belirlenmesi. Mühendislik Bilim. ve Tasarım Derg., 3(3):365–370.
  • [5] Alkan E. and M. A. Ilgın, (2018), Bir Elektronik Firmasının Montaj Hatlarının Ergonomik Analizi. Ömer Halisdemir Üniversitesi Mühendislik Bilim. Derg., 7(1):149–158. DOI: 10.28948/ngumuh.386385
  • [6] Can G. F., K. D. Atalay, and E. Eraslan, (2015). Working Posture Analysis in Fuzzy Environment and Ergonomic Work Station Design Recommendations. Journal of the Faculty of Engineering and Architecture of Gazi University 30:451-460
  • [7] Güner M., A.. İlleez, and C. Ünal, (2009), Evaluation of Plant's Physical Conditions Using Fuzzy Logic: An Apparel Industry Case Study, Tekst. ve Konfeksiyon, 19(3):206–211.
  • [8] Başbakanlık Mevzuatı Geliştirme ve Yayın Genel Müdürlüğü. (Accessed: 29-Jan-2021) https://www.resmigazete.gov.tr/eskiler/2013/07/20130728-11.htm
  • [9] Güner M. A., A. A. İlleez, Konfeksiyon İşletmeleri Kalite Kontrol Departmanlarındaki Aydınlatma Seviyeleri, TMOBB Elekrik Mühendisleri Odası. https://www.emo.org.tr/ekler/051430a15d3d44d_ek.pdf
  • [10] Özkan M., (2003), Bulanık Hedef Programlama. Ekin Kitabevi
  • [11] Aluclu I., A. Dalgic and Z.F. Toprak, (2008), A Fuzzy Logic-based Model for Noise Control at Industrial Workplaces, Applied Ergonomics, 39:368-378. DOI: 10.1016/j.apergo.2007.08.005
  • [12] Taqizade S., H. Eskandari, I. Alimohammadi and F. Jaderi, (2014), A fuzzy expert system for selection of an effective method for noise reduction in a petrochemical complex, Noise Control Engineering Journal, 62:344-353.
  • [13] Mamdani E.H. and S. Assilian, (1975), An experiment in linguistic synthesis with a fuzzy logic controller, International Journal of Man-Machine Studies, 7(1):1-13. DOI: 10.1016/S0020-7373(75)80002-2
  • [14] Zhou H. and H. Ying, (2013), A method for deriving the analytical structure of a broad class of typical interval type-2 Mamdani fuzzy controllers, IEEE Trans. Fuzzy Syst., 21(3):447–458. DOI: 10.1109/TFUZZ.2012.2226891
  • [15] Sanchez-Torrubia M.G., C. Torres-Blanc, and S. Krishnankutty, (2006), Analyzing and applying computer algebraic systems to engineering education: WSEAS Transactions on Advances in Engineering Education, 3:977-983.

Evaluation of Ergonomic Conditions using Fuzzy Logic in a Metal Processing Plant

Year 2022, Volume: 8 Issue: 1, 19 - 24, 31.03.2022
https://doi.org/10.22399/ijcesen.932994

Abstract

Ergonomic conditions of workplace settings is important for the performance of companies. Especially in the manufacturing industry, the employees are required to have convenient workplace conditions. If this is not the case, it is most likely to have a decrease in work efficiency, increase in workload, and negative impacts on employee health. In this study, we evaluate two ergonomic conditions, illumination and noise level, in different departments of a metal processing plant, to find the initial department to work on the improvement of ergonomic conditions. The evaluation of ergonomic conditions is done through a fuzzification process. The quantitative measurement results of illumination and noise level are fuzzified by Mamdani method. The fuzzified measurement values are scored with respect to specified interval lengths. As a result of this scoring process, ergonomically the worst conditioned department is found to start the improvement process.

References

  • [1] Zadeh L.A., (1965). Fuzzy sets. Information and Control. 8(3):338–353. DOI: 10.1016/S0019-9958(65)90241-X
  • [2] Li D. F. and J.-B-. Yang. (2004). Fuzzy linear programming technique for multiattribute group decision making in fuzzy environments. Inf. Sci. (Ny). 158:263–275. DOI: 10.1016/j.ins.2003.08.007
  • [3] Çalışkan M. and F. Fındık. (2012). Malzeme, Ergonomi Ve Biyomekanik İlişkisi. Sakarya Üniv. Fen Bilim. Enstitüsü Derg. 16(3):273–282. DOI: 10.16984/saufbed.08867
  • [4] Coşkun M.B., H. Sağıroğlu, and N. Erginel, (2015) İş İstasyonlarının Ergonomik Riskinin Niosh Yöntemi İle Belirlenmesi. Mühendislik Bilim. ve Tasarım Derg., 3(3):365–370.
  • [5] Alkan E. and M. A. Ilgın, (2018), Bir Elektronik Firmasının Montaj Hatlarının Ergonomik Analizi. Ömer Halisdemir Üniversitesi Mühendislik Bilim. Derg., 7(1):149–158. DOI: 10.28948/ngumuh.386385
  • [6] Can G. F., K. D. Atalay, and E. Eraslan, (2015). Working Posture Analysis in Fuzzy Environment and Ergonomic Work Station Design Recommendations. Journal of the Faculty of Engineering and Architecture of Gazi University 30:451-460
  • [7] Güner M., A.. İlleez, and C. Ünal, (2009), Evaluation of Plant's Physical Conditions Using Fuzzy Logic: An Apparel Industry Case Study, Tekst. ve Konfeksiyon, 19(3):206–211.
  • [8] Başbakanlık Mevzuatı Geliştirme ve Yayın Genel Müdürlüğü. (Accessed: 29-Jan-2021) https://www.resmigazete.gov.tr/eskiler/2013/07/20130728-11.htm
  • [9] Güner M. A., A. A. İlleez, Konfeksiyon İşletmeleri Kalite Kontrol Departmanlarındaki Aydınlatma Seviyeleri, TMOBB Elekrik Mühendisleri Odası. https://www.emo.org.tr/ekler/051430a15d3d44d_ek.pdf
  • [10] Özkan M., (2003), Bulanık Hedef Programlama. Ekin Kitabevi
  • [11] Aluclu I., A. Dalgic and Z.F. Toprak, (2008), A Fuzzy Logic-based Model for Noise Control at Industrial Workplaces, Applied Ergonomics, 39:368-378. DOI: 10.1016/j.apergo.2007.08.005
  • [12] Taqizade S., H. Eskandari, I. Alimohammadi and F. Jaderi, (2014), A fuzzy expert system for selection of an effective method for noise reduction in a petrochemical complex, Noise Control Engineering Journal, 62:344-353.
  • [13] Mamdani E.H. and S. Assilian, (1975), An experiment in linguistic synthesis with a fuzzy logic controller, International Journal of Man-Machine Studies, 7(1):1-13. DOI: 10.1016/S0020-7373(75)80002-2
  • [14] Zhou H. and H. Ying, (2013), A method for deriving the analytical structure of a broad class of typical interval type-2 Mamdani fuzzy controllers, IEEE Trans. Fuzzy Syst., 21(3):447–458. DOI: 10.1109/TFUZZ.2012.2226891
  • [15] Sanchez-Torrubia M.G., C. Torres-Blanc, and S. Krishnankutty, (2006), Analyzing and applying computer algebraic systems to engineering education: WSEAS Transactions on Advances in Engineering Education, 3:977-983.
There are 15 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Tuğçe Caymaz 0000-0002-5754-7475

Sümeyye Çalışkan 0000-0002-0171-8976

Ahmet Reha Botsalı 0000-0002-8809-9353

Publication Date March 31, 2022
Submission Date May 5, 2021
Acceptance Date March 5, 2022
Published in Issue Year 2022 Volume: 8 Issue: 1

Cite

APA Caymaz, T., Çalışkan, S., & Botsalı, A. R. (2022). Evaluation of Ergonomic Conditions using Fuzzy Logic in a Metal Processing Plant. International Journal of Computational and Experimental Science and Engineering, 8(1), 19-24. https://doi.org/10.22399/ijcesen.932994

Cited By

Computation of Neutron Coefficients for B2O3 reinforced Composite
International Journal of Computational and Experimental Science and Engineering
https://doi.org/10.22399/ijcesen.1290497

Process Improvement Study in a Tire Factory
International Journal of Computational and Experimental Science and Engineering
https://doi.org/10.22399/ijcesen.1289121


Assessment of Gamma Ray Shielding Properties for Skin
International Journal of Computational and Experimental Science and Engineering
https://doi.org/10.22399/ijcesen.1247867