Research Article
BibTex RIS Cite

Heterologous Expression and Molecular Cloning from Williamsia Marianensis

Year 2022, Volume: 8 Issue: 3, 69 - 73, 30.11.2022
https://doi.org/10.22399/ijcesen.1133001

Abstract

The majority of therapy methods include downsides and limits. As a result, many researchers are focused on developing effective remedies. Therapeutic peptides, like proteins and antibodies, are a potential class of medications that have a number of advantages over traditional pharmaceuticals. Williamson marianensis-produced cholesterol oxidase has been demonstrated to have medicinal value. Using PCR and primers specific to an expression vector (pET28b), we were able to clone the cholesterol oxidase gene and express it in E. coli (BL-21/DE3) Rosetta following identification with IPTG. Genscript Corporation in the United States sequenced gyncholestrol oxidase (500 bp) to create a cox sequence, which was then submitted for synthesis. pET 28a(+) cox William showed a twofold restriction digestion pattern. The pattern was made up of two strands: one was a carrier plasmid (4200 bp) and the other was a 2800 base pair strand that contained the cholesterol oxidase gene. The cholesterol oxidase gene was successfully cloned and expressed as a consequence. Williamson marianensis-derived cholesterol oxidase will be exploited in future medicinal re

References

  • [1] Kämpfer, P. Williamsia. In: Bergey’s manual of systematics of Archaea and Bacteria. New York: Springer. p. 1–7, 2015.
  • [2] Butler, WR.; Floyd, MM.; Brown, JM.; Toney, SR.; Daneshvar, MI.; Cooksey, RC. et al. Novel mycolic acid-containing bacteria in the family Segniliparaceae fam. Nov., including the genus Segniliparus gen. nov., with descriptions of Segniliparus rotundus sp. nov. and Segniliparus rugosus sp. nov. Int J Syst Evolut Microbiol. 55(4):1615–24, 2005.
  • [3] Kämpfer, P.; Andersson, MA.; Rainey, FA.; Kroppenstedt, RM.; Salonen, M. Williamsia muralis gen. nov., sp. nov., isolated from the indoor environment of a children’s day care centre. Int. J. Syst. Evolut. Microbiol., 49(2):681–7, 1999.
  • [4] Woods, GL.; Brown-Elliott, BA.; Conville, PS.; Desmond, EP.; Hall, GS.; Lin, G, et al. Susceptibility testing of mycobacteria, Nocardiae, and other aerobic actinomycetes. Wayne: Clinical and Laboratory Standards Institute; 2011.
  • [5] Marisch K.; Bayer, K.; Scharl, T.; Mairhofer, J.; Krempl, PM.; Hummel, K.; Razzazi-Fazeli, E. and Striedner, G. A comparative analysis of industrial Escherichia coli K–12 and B strains in high-glucose batch cultivations on process-, transcriptome-and proteome level. PloS One 8:e70516, 2013.
  • [6] Gigue`re, S. and Prescott, JF. Clinical manifestations, diagnosis, treatment, and prevention of Rhodococcus equi infections in foals. J. Vet. Microbiol., 56: 313–334, 1997.
  • [7] Sota, M., and Top, E. Horizontal gene transfer mediated by plasmids, in Plasmids: Current Research and Future Trends, ed G. Lipps (Norfolk, VA: Caister Academic Press; Horizon Scientific Press)., 111–181, 2008.
  • [8] Yassin, A.; Young CC.; Lai W-A.; Hupfer H.; Arun A.; Shen, F-T.; et al. Williamsia serinedens sp. nov., isolated from an oil-contaminated soil. Int J Syst Evolut Microbiol., 57(3):558–61, 2007.
  • [9] Stach, JE.; Maldonado, LA.; Ward, AC.; Bull, AT. and Goodfellow M. Williamson maris sp. nov., a novel actinomycete isolated from the Sea of Japan. Int J Syst Evolut Microbiol., 54(1):191–4, 2004.
  • [10] Pathom-Aree, W.; Nogi, Y.; Sutcliffe, I.; Ward, A. et al. Williamsia marianensis sp. nov., a novel actinomycete isolated from the Mariana Trench. International Journal of Systematic and Evolutionary Microbiology, 56, 1123–1126, 2006.
  • [11] Jones, A.; Payne, G. and Goodfellow, M. Williamsia faeni sp. nov., an actinomycete isolated from a hay meadow. Int J Syst Evolut Microbiol., 60(11):2548–51, 2010.
  • [12] Schlaberg, R.; Simmon, KE. and Fisher, MA. A systematic approach for discovering novel, clinically relevant bacteria. Emerg Infect Dis., 18(3):422, 2012.
  • [13] Lario, PI.; Sampson, N. and Vrielink, A. Sub-atomic resolution crystal structure of cholesterol oxidase:What atomic resolution crystallography reveals about enzyme mechanism and the role of the FAD cofactor in redox activity. J Mol Biol., 326:1635–1650, 2003.
  • [14] Sampson, NS. and Vrielink, A. Cholesterol oxidases: a study of nature's approach to protein design. J. Acc. Chem. Res. 36:713–722, 2003.
  • [15] Sasaki, I.; Goto, H.; Yamamoto, R.; Tanaka H.; Takami KI.; Yamashita, KJ.; Horio, T. Hydrophobic ionic chromatography: its application to microbial glucose oxidase, hyaluronidase, cholesterol oxidase and cholesterol esterase. J Biochem., 5:1555–61, 1982.
  • [16] Wang, Z.; Jin, L.; Yuan, Z.; Węgrzyn, G. and Węgrzyn, A. Classification of plasmid vectors using replication origin, selection marker and promoter as criteria. J. Plasmid., 61(1): 47-51, 2009.
  • [17] Sambrook, J.; Fritsch,E.F. and Maniatis, T. Molecular cloning: A laboratory Manual. 2nd ed. P.A. 12 Cold spring Harbor Laboratory press. Cold sipring Harbor, New York. P: 68, 1989.
  • [18] Pollegioni, L.; Piubelli L. and Molla, G. Cholesterol oxidase: Biotechnological applications. FEBS. J., 276:6857-6870, 2009.
  • [19] Coulombe, R.; Yue, KQ.; Ghisla, S. and Vrielink, A. Oxygen access to the active site of cholesterol oxidase through a narrow channel is gated by an Arg-Glu pair. J. Biol. Chem., 276:30435-30441, 2001.
  • [20] Nishiya, Y.; Harada, N.; Teshima, SI.; Yamashita M, Fujii I, Hirayama N. and Murooka, Y. Improvement of thermal stability of Streptomyces cholesterol oxidase by random mutagenesis and a structural interpretation. Protein. J. Eng., 10(3):231–235, 1997.
  • [21] Shuldiner, A.R.; K. Tanner, L.A. Scott, C.A. Moore, and Roth, J. Ligase-free subcloning: A versatile method to subclone polymerase chain reaction (PCR) products in a single day. J. AnaL. Biochem. 194: 9-15,1991.
  • [22] Qin, H M.; Zhu, Z.; Zhng MaZ.; Xu, P. et al. Rational design of cholesterol oxidase for efficient bioresolution of cholestane skeleton substrates. SCIENTIFIC Reports. 7: 16375, 2017. DOI:10.1038/s41598-017-16768-6.
  • [23] El-Naggar, N.; Deraz, S F.; Soliman, H M.; El-Deeb, N M. and El-Shweihy, N M. Purification, characterization and amino acid content of cholesterol oxidase produced by Streptomyces aegyptia NEAE. J. BMC. Microbiology., 17:76, 2017
Year 2022, Volume: 8 Issue: 3, 69 - 73, 30.11.2022
https://doi.org/10.22399/ijcesen.1133001

Abstract

References

  • [1] Kämpfer, P. Williamsia. In: Bergey’s manual of systematics of Archaea and Bacteria. New York: Springer. p. 1–7, 2015.
  • [2] Butler, WR.; Floyd, MM.; Brown, JM.; Toney, SR.; Daneshvar, MI.; Cooksey, RC. et al. Novel mycolic acid-containing bacteria in the family Segniliparaceae fam. Nov., including the genus Segniliparus gen. nov., with descriptions of Segniliparus rotundus sp. nov. and Segniliparus rugosus sp. nov. Int J Syst Evolut Microbiol. 55(4):1615–24, 2005.
  • [3] Kämpfer, P.; Andersson, MA.; Rainey, FA.; Kroppenstedt, RM.; Salonen, M. Williamsia muralis gen. nov., sp. nov., isolated from the indoor environment of a children’s day care centre. Int. J. Syst. Evolut. Microbiol., 49(2):681–7, 1999.
  • [4] Woods, GL.; Brown-Elliott, BA.; Conville, PS.; Desmond, EP.; Hall, GS.; Lin, G, et al. Susceptibility testing of mycobacteria, Nocardiae, and other aerobic actinomycetes. Wayne: Clinical and Laboratory Standards Institute; 2011.
  • [5] Marisch K.; Bayer, K.; Scharl, T.; Mairhofer, J.; Krempl, PM.; Hummel, K.; Razzazi-Fazeli, E. and Striedner, G. A comparative analysis of industrial Escherichia coli K–12 and B strains in high-glucose batch cultivations on process-, transcriptome-and proteome level. PloS One 8:e70516, 2013.
  • [6] Gigue`re, S. and Prescott, JF. Clinical manifestations, diagnosis, treatment, and prevention of Rhodococcus equi infections in foals. J. Vet. Microbiol., 56: 313–334, 1997.
  • [7] Sota, M., and Top, E. Horizontal gene transfer mediated by plasmids, in Plasmids: Current Research and Future Trends, ed G. Lipps (Norfolk, VA: Caister Academic Press; Horizon Scientific Press)., 111–181, 2008.
  • [8] Yassin, A.; Young CC.; Lai W-A.; Hupfer H.; Arun A.; Shen, F-T.; et al. Williamsia serinedens sp. nov., isolated from an oil-contaminated soil. Int J Syst Evolut Microbiol., 57(3):558–61, 2007.
  • [9] Stach, JE.; Maldonado, LA.; Ward, AC.; Bull, AT. and Goodfellow M. Williamson maris sp. nov., a novel actinomycete isolated from the Sea of Japan. Int J Syst Evolut Microbiol., 54(1):191–4, 2004.
  • [10] Pathom-Aree, W.; Nogi, Y.; Sutcliffe, I.; Ward, A. et al. Williamsia marianensis sp. nov., a novel actinomycete isolated from the Mariana Trench. International Journal of Systematic and Evolutionary Microbiology, 56, 1123–1126, 2006.
  • [11] Jones, A.; Payne, G. and Goodfellow, M. Williamsia faeni sp. nov., an actinomycete isolated from a hay meadow. Int J Syst Evolut Microbiol., 60(11):2548–51, 2010.
  • [12] Schlaberg, R.; Simmon, KE. and Fisher, MA. A systematic approach for discovering novel, clinically relevant bacteria. Emerg Infect Dis., 18(3):422, 2012.
  • [13] Lario, PI.; Sampson, N. and Vrielink, A. Sub-atomic resolution crystal structure of cholesterol oxidase:What atomic resolution crystallography reveals about enzyme mechanism and the role of the FAD cofactor in redox activity. J Mol Biol., 326:1635–1650, 2003.
  • [14] Sampson, NS. and Vrielink, A. Cholesterol oxidases: a study of nature's approach to protein design. J. Acc. Chem. Res. 36:713–722, 2003.
  • [15] Sasaki, I.; Goto, H.; Yamamoto, R.; Tanaka H.; Takami KI.; Yamashita, KJ.; Horio, T. Hydrophobic ionic chromatography: its application to microbial glucose oxidase, hyaluronidase, cholesterol oxidase and cholesterol esterase. J Biochem., 5:1555–61, 1982.
  • [16] Wang, Z.; Jin, L.; Yuan, Z.; Węgrzyn, G. and Węgrzyn, A. Classification of plasmid vectors using replication origin, selection marker and promoter as criteria. J. Plasmid., 61(1): 47-51, 2009.
  • [17] Sambrook, J.; Fritsch,E.F. and Maniatis, T. Molecular cloning: A laboratory Manual. 2nd ed. P.A. 12 Cold spring Harbor Laboratory press. Cold sipring Harbor, New York. P: 68, 1989.
  • [18] Pollegioni, L.; Piubelli L. and Molla, G. Cholesterol oxidase: Biotechnological applications. FEBS. J., 276:6857-6870, 2009.
  • [19] Coulombe, R.; Yue, KQ.; Ghisla, S. and Vrielink, A. Oxygen access to the active site of cholesterol oxidase through a narrow channel is gated by an Arg-Glu pair. J. Biol. Chem., 276:30435-30441, 2001.
  • [20] Nishiya, Y.; Harada, N.; Teshima, SI.; Yamashita M, Fujii I, Hirayama N. and Murooka, Y. Improvement of thermal stability of Streptomyces cholesterol oxidase by random mutagenesis and a structural interpretation. Protein. J. Eng., 10(3):231–235, 1997.
  • [21] Shuldiner, A.R.; K. Tanner, L.A. Scott, C.A. Moore, and Roth, J. Ligase-free subcloning: A versatile method to subclone polymerase chain reaction (PCR) products in a single day. J. AnaL. Biochem. 194: 9-15,1991.
  • [22] Qin, H M.; Zhu, Z.; Zhng MaZ.; Xu, P. et al. Rational design of cholesterol oxidase for efficient bioresolution of cholestane skeleton substrates. SCIENTIFIC Reports. 7: 16375, 2017. DOI:10.1038/s41598-017-16768-6.
  • [23] El-Naggar, N.; Deraz, S F.; Soliman, H M.; El-Deeb, N M. and El-Shweihy, N M. Purification, characterization and amino acid content of cholesterol oxidase produced by Streptomyces aegyptia NEAE. J. BMC. Microbiology., 17:76, 2017
There are 23 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Alaa Kadhim Shareef Shareef This is me

Faez Waheed 0000-0002-0003-0467

Belgin Erdem

Ahmed Jasim Neamah This is me

Ahmed Sadeq Habeeb Al-adban This is me

Publication Date November 30, 2022
Submission Date June 20, 2022
Acceptance Date September 29, 2022
Published in Issue Year 2022 Volume: 8 Issue: 3

Cite

APA Shareef, A. K. S., Waheed, F., Erdem, B., Neamah, A. J., et al. (2022). Heterologous Expression and Molecular Cloning from Williamsia Marianensis. International Journal of Computational and Experimental Science and Engineering, 8(3), 69-73. https://doi.org/10.22399/ijcesen.1133001