Research Article
BibTex RIS Cite

OTA 2.0: An Advanced and Secure Blockchain Steganography Algorithm

Year 2023, Volume: 9 Issue: 4, 419 - 434, 31.12.2023

Abstract

Blockchain technology, a disruptive force beyond Bitcoin, is finding applications across various fields, including scientific disciplines like steganography – the art of data hiding. Digital steganography has gained momentum with data digitization, especially in multimedia environments like images, text, audio, and videos. Blockchain's integration into steganography has led to interesting developments, like the OTA (Ozyavas-Takaoglu-Ajlouni) algorithm introduced in 2021. The OTA algorithm consists of two stages: the OTA-steganography algorithm and the OTA-chain algorithm (private blockchain). Developed using Java and JavaScript, the OTA platform utilises OTA-coins as its native currency. Previous versions allowed various file types as cover-multimedia, with the secret message encrypted using the Vernam Cipher symmetric encryption and hidden using OTA steganography. Unlike other steganography methods, OTA doesn't alter the cover-multimedia but uses bit-level data marking. In the OTA system, the marked data indices are stored in 1 KB arrays and transmitted to the receiver as transactions via OTA-chain, each incurring a fixed fee of 1 OTA-coin to prevent DDoS attacks. The OTA 2.0 algorithm improved on the previous version by switching to Hyperledger Fabric protocol, which offers open-source, permissioned blockchain solutions, decentralisation capabilities, and self-sovereign identity support. The new version also enhanced block creation time to 2 seconds, increased block size to 90 MB, and employed a 4-bit marking pattern while eliminating transaction fees. Thanks to its innovative key-sharing method and permissioned architecture, OTA 2.0 proves resistant to steganalysis methods commonly used in steganography studies. This technology enables safe and swift embedding of secret messages in various multimedia files without detection. The broader integration of blockchain and steganography holds great promise for secure communication and data protection in the digital age.

Supporting Institution

TÜBİTAK BİLGEM

Thanks

The authors declare their acknowledgment to the TÜBİTAK-BİLGEM-UEKAE-Blockchain Technologies Department (BZLAB).

References

  • [1] Takaoğlu, M., Özyavaş, A., Ajlouni, N. & Takaoğlu, F. (2023). Highly Secured Hybrid Image Steganography with an Improved Key Generation and Exchange for One-Time-Pad Encryption Method. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 23(1):101-114. DOI:10.35414/akufemubid.1128075
  • [2] Şahin, F., Çevik, T. & Takaoğlu, M. (2021). Review of the Literature on the Steganography Concept. International Journal of Computer Applications. 183(2):38-46. DOI:10.5120/ijca2021921298
  • [3] Takaoğlu, F. & Takaoğlu, M. (2020). Hiding Image and Text Data with DCT and DWT Techniques. Journal of İstanbul Aydın University. 12(3):189-200. DOI:10.17932/IAU.IAUD.2009.002/iaud_v12i3001
  • [4] Takaoğlu, F. & Takaoğlu, M. (2020). Today's Validity of Printer Steganography and Yellow Dot Analysis. e-Journal of New Media / Yeni Medya Elektronik Dergi-eJNM. 4(3):186-194. DOI:10.17932/IAU.EJNM.25480200.2020/ejnm_v4i3004
  • [5] Takaoğlu, M., Özer, Ç. & Parlak, E. (2019). Blockchain Technology and Possible Application Areas in Turkey. International Journal of Eastern Anatolia Science Engineering and Design. 1(2):260-295.
  • [6] Chaum, D. (1983). Blind signatures for untraceable payments. Advances in Cryptology Proceedings of Crypto. 82(3):199-203. DOI:10.1007/978-1-4757-0602-4_18
  • [7] Szabo, N. (2008). Bit Gold. http://unenumerated.blogspot.com/2005/12/bit-gold.html
  • [8] Fanning, S., Parker, S. & Contreras, H. S. (1999). Nabster. https://en.wikipedia.org/wiki/Napster_(streaming_service)
  • [9] Frankel, J. & Pepper , T. (2000). Gnutella. https://www.gnutellaforums.com/
  • [10] Cohen, B. (2001). BitTorrent. https://www.bittorrent.org/
  • [11] Back, A. (1997). Hashcash. http://www.hashcash.org/
  • [12] Dai, W. (1998). Bmoney. http://www.weidai.com/bmoney.txt
  • [13] Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System. https://bitcoin.org/bitcoin.pdf
  • [14] Buterin, V. (2014). Ethereum. https://ethereum.org/en/whitepaper/
  • [15] Yakovenko, A. (2018). Solana: A new architecture for a high performance blockchain v0.8.13. https://solana.com/solana-whitepaper.pdf
  • [16] Kwon, J. (2014). Tendermint: Consensus without Mining. https://tendermint.com/static/docs/tendermint.pdf
  • [17] Sekniqi, K., Laine, D., Buttolph, S. & Sirer, E. G. (2020). Avalanche Platform. https://assets.website-files.com/5d80307810123f5ffbb34d6e/6008d7bbf8b10d1eb01e7e16_Avalanche%20Platform%20Whitepaper.pdf
  • [18] Ching, A. & Shaikh, M. (2022). The Aptos Blockchain: Safe, Scalable, and Upgradeable Web3 Infrastructure. https://aptos.dev/assets/files/Aptos-Whitepaper-47099b4b907b432f81fc0effd34f3b6a.pdf
  • [19] Chen, J. & Micali, S. (2017). Algorand Theoretical Paper. https://algorandcom.cdn.prismic.io/algorandcom%2Fece77f38-75b3-44de-bc7f-805f0e53a8d9_theoretical.pdf
  • [20] Takaoğlu, M., Özyavaş, A., Ajlouni, N., Alshahrani, A. & Alkasasbeh, B. (2021). A Novel and Robust Hybrid Blockchain and Steganography Scheme. Appl. Sci. 11:10698. DOI:10.3390/app112210698
  • [21] Takaoğlu, M., Takaoğlu, F. & Dursun, T. (2023, July 20-21). NBS: An NFT-Based Blockchain Steganography Method. Conference: the 2nd International Conference on Computing, IoT, and Data Analytics (ICCIDA), La Mancha-Spain. https://iccida.net/
  • [22] Chaudhary, A., Sharma, A. & Gupta, N. (2023). Designing A Secured Framework for the Steganography Process Using Blockchain and Machine Learning Technology. International Journal of Intelligent Systems and Applications in Engineering, 11(2s):96–103.
  • [23] Torki, O., Ashouri-Talouki, M. & Mahdavi, M. (2023). Hierarchical Deterministic Wallets for Secure Steganography in Blockchain. The ISC International Journal of Information Security. 15(1):73-81. DOI: 10.22042/isecure.2022.319074.729
  • [24] Chaudhary, A., Sharma, A. & Gupta, N. (2023). A Novel Approach to Blockchain and Deep Learning in the field of Steganography. International Journal of Intelligent Systems and Applications in Engineering. 11(2s):104–115.
  • [25] Jahnavi, S., Pradeep, S., Navtej, P., Medini, H.S. & Mamisha. (2023). Blockchain Technology Based Image Steganography. International Journal of Innovative Research in Technology. 9(12):637-642.
  • [26] Sarkar, P.; Ghosal, S.K.; Sarkar, M. (2020). Stego-Chain: A Framework to Mine Encoded Stego-Block in a Decentralized Network. J. King Saud Univ. Comput. Inf. Sci. 2020, 16, 25–29.
  • [27] Mohsin, A.H.; Zaidan, A.A.; Zaidan, B.B.; Mohammed, K.I.; Albahri, O.S.; Albahri, A.S.; Alsalem, M.A. (2021). PSO–Blockchain-Based Image Steganography: Towards a New Method to Secure Updating and Sharing COVID-19 Data in Decentralised Hospitals Intelligence Architecture. Multimed. Tools Appl. 2021, 80, 14137–14161.
  • [28] Li, D., & Kar, P. (2022). B-Spot: Blockchain and Steganography based Robust and Secure Photo Transmission Mechanism. Journal of Mobile Multimedia. 18(06):1677–1708. DOI:10.13052/jmm1550-4646.18610
  • [29] Basuki, A.I.; Rosiyadi, D. (2019). Joint Transaction-Image Steganography for High Capacity Covert Communication. In Proceedings of the 2019 International Conference on Computer, Control, Informatics and its Applications (IC3INA), Tangerang, Indonesia, 23–24 October 2019; pp. 41–46.
  • [30] Kandasamy, L. & Ajay, A. (2023). Implementation of Blockchain Technology for Secure Image Sharing Using Double Layer Steganography. In: Hu, Z., Wang, Y., He, M. (eds) Advances in Intelligent Systems, Computer Science and Digital Economics IV. CSDEIS 2022. Lecture Notes on Data Engineering and Communications Technologies, vol 158. Springer, Cham. DOI:10.1007/978-3-031-24475-9_16
  • [31] Partala, J. (2018). Provably Secure Covert Communication on Blockchain. Cryptography. 2(3):18. DOI:10.3390/cryptography2030018
  • [32] Horng, J. H., Chang, C. C., Li, G. L., Lee,W. K. & Hwang, S.O. (2021). Blockchain-Based Reversible Data Hiding for Securing Medical Images. J. Healthc. Eng. DOI:10.1155/2021/9943402
  • [33] Xu, M., Wu, H., Geng, G., Zhang, X. & Ding, F. (2019). Broadcasting steganography in the blockchain. In International Workshop on Digital Watermarking; Springer: Berlin-Heidelberg, Germany, 2019; pp. 256–267.
  • [34] Matzutt, R., Hiller, J., Henze, M., Ziegeldorf, J. H., Müllmann, D., Hohlfeld, O. & Wehrle, K. (2018). A Quantitative Analysis of the Impact of Arbitrary Blockchain Content on Bitcoin. In Financial Cryptography and Data Security; Meiklejohn, S., Sako, K., Eds.; Springer: Berlin-Heidelberg, Germany, 2018; pp. 420–438.
  • [35] Giron, A. A., Martina, J. E. & Custódio, R. (2021). Steganographic Analysis of Blockchains. Sensors. 21(12): 4078. DOI:10.3390/s21124078
  • [36] Hashim, M. M., Rahim, M. S. M., Johi, F. A., Taha, M. S. & Hamad, H. S. (2018). Performance evaluation measurement of image steganography techniques with analysis of LSB based on variation image formats. International Journal of Engineering & Technology. 7(4):3505-3514. DOI:10.14419/ijet.v7i4.17294
  • [37] Al-Refai, S. & Al-Jarrah, M. M. (2020). Secure Data Hiding Technique Using Batch Video Steganography. In Proceedings of the 2019 2nd International Conference on Information Hiding and Image Processing (IHIP 2019). Association for Computing Machinery, New York, NY, USA, 1–4. DOI:10.1145/3383913.3383914
  • [38] Pinchen Cui, P., Guin, U., Skjellum, A. & Umphress, D. (2019). Blockchain in IoT: Current Trends, Challenges, and Future Roadmap. Journal of Hardware and Systems Security. 3(4):338-364. DOI:10.1007/s41635-019-00079-5
  • [39] Yan, T., Chen, W., Zhao, P. & et al. (2021). Handling conditional queries and data storage on Hyperledger Fabric efficiently. World Wide Web. 24:441–461. DOI:10.1007/s11280-020-00844-5
  • [40] Takaoğlu, M., Dursun, T., Doğan, A., Er, H., Bozkurt Günay, B., Emeç, C., Kumru, A., Demir, S., Kurt Toplu, S. & Özcandan, N. (2023). The Impact of Self-Sovereign Identities on CyberSecurity. IST-186-RSM, Specialist Meeting, Blockchain Technology for Coalition Operations. https://bilgem.tubitak.gov.tr/uekae-yayinlar/
  • [41] Khan, D., Jung, L. T., Hashmani, M. A. & Cheong, M. K. (2022). Empirical Performance Analysis of Hyperledger LTS for Small and Medium Enterprises. Sensors. 22(3):915. DOI:10.3390/s22030915
  • [42] Chacko, J. A., Mayer, R. & Jacobsen, H. A. (2021). Why Do My Blockchain Transactions Fail? A Study of Hyperledger Fabric. In Proceedings of the 2021 International Conference on Management of Data (SIGMOD '21). Association for Computing Machinery, New York, NY, USA, 221–234. DOI:10.1145/3448016.3452823
  • [43] Zhou, E., Sun, H., Pi, B., Sun, j., Yamashita, K. & Nomura, Y. (2019). Ledgerdata Refiner: A Powerful Ledger Data Query Platform for Hyperledger Fabric. Sixth International Conference on Internet of Things: Systems, Management and Security (IOTSMS), Granada, Spain, 433-440. DOI: 10.1109/IOTSMS48152.2019.8939212
  • [44] Ke, Z. & Park, N. (2022). Performance modeling and analysis of Hyperledger Fabric. Cluster Comput. DOI:10.1007/s10586-022-03800-2
  • [45] Song, M., Han, J., Eom, H. & Son, Y. (2022). IPFSz: An Efficient Data Compression Scheme in InterPlanetary File System. in IEEE Access. 10:122601-122611. DOI:10.1109/ACCESS.2022.3223107
  • [46] Benet, J. (2014). IPFS documentation. https://docs.ipfs.tech/
  • [47] Muralidharan, S. & Ko, H. (2019). An InterPlanetary File System (IPFS) based IoT framework. 2019 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 2019, pp. 1-2. DOI:10.1109/ICCE.2019.8662002
  • [48] Bennett, C. H., Brassard, G. & Breidbart, S. (2014). Quantum Cryptography II: How to re-use a one-time pad safely even if P=NP. Nat Comput. 13(4):453-458. DOI:10.1007/s11047-014-9453-6
Year 2023, Volume: 9 Issue: 4, 419 - 434, 31.12.2023

Abstract

References

  • [1] Takaoğlu, M., Özyavaş, A., Ajlouni, N. & Takaoğlu, F. (2023). Highly Secured Hybrid Image Steganography with an Improved Key Generation and Exchange for One-Time-Pad Encryption Method. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 23(1):101-114. DOI:10.35414/akufemubid.1128075
  • [2] Şahin, F., Çevik, T. & Takaoğlu, M. (2021). Review of the Literature on the Steganography Concept. International Journal of Computer Applications. 183(2):38-46. DOI:10.5120/ijca2021921298
  • [3] Takaoğlu, F. & Takaoğlu, M. (2020). Hiding Image and Text Data with DCT and DWT Techniques. Journal of İstanbul Aydın University. 12(3):189-200. DOI:10.17932/IAU.IAUD.2009.002/iaud_v12i3001
  • [4] Takaoğlu, F. & Takaoğlu, M. (2020). Today's Validity of Printer Steganography and Yellow Dot Analysis. e-Journal of New Media / Yeni Medya Elektronik Dergi-eJNM. 4(3):186-194. DOI:10.17932/IAU.EJNM.25480200.2020/ejnm_v4i3004
  • [5] Takaoğlu, M., Özer, Ç. & Parlak, E. (2019). Blockchain Technology and Possible Application Areas in Turkey. International Journal of Eastern Anatolia Science Engineering and Design. 1(2):260-295.
  • [6] Chaum, D. (1983). Blind signatures for untraceable payments. Advances in Cryptology Proceedings of Crypto. 82(3):199-203. DOI:10.1007/978-1-4757-0602-4_18
  • [7] Szabo, N. (2008). Bit Gold. http://unenumerated.blogspot.com/2005/12/bit-gold.html
  • [8] Fanning, S., Parker, S. & Contreras, H. S. (1999). Nabster. https://en.wikipedia.org/wiki/Napster_(streaming_service)
  • [9] Frankel, J. & Pepper , T. (2000). Gnutella. https://www.gnutellaforums.com/
  • [10] Cohen, B. (2001). BitTorrent. https://www.bittorrent.org/
  • [11] Back, A. (1997). Hashcash. http://www.hashcash.org/
  • [12] Dai, W. (1998). Bmoney. http://www.weidai.com/bmoney.txt
  • [13] Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System. https://bitcoin.org/bitcoin.pdf
  • [14] Buterin, V. (2014). Ethereum. https://ethereum.org/en/whitepaper/
  • [15] Yakovenko, A. (2018). Solana: A new architecture for a high performance blockchain v0.8.13. https://solana.com/solana-whitepaper.pdf
  • [16] Kwon, J. (2014). Tendermint: Consensus without Mining. https://tendermint.com/static/docs/tendermint.pdf
  • [17] Sekniqi, K., Laine, D., Buttolph, S. & Sirer, E. G. (2020). Avalanche Platform. https://assets.website-files.com/5d80307810123f5ffbb34d6e/6008d7bbf8b10d1eb01e7e16_Avalanche%20Platform%20Whitepaper.pdf
  • [18] Ching, A. & Shaikh, M. (2022). The Aptos Blockchain: Safe, Scalable, and Upgradeable Web3 Infrastructure. https://aptos.dev/assets/files/Aptos-Whitepaper-47099b4b907b432f81fc0effd34f3b6a.pdf
  • [19] Chen, J. & Micali, S. (2017). Algorand Theoretical Paper. https://algorandcom.cdn.prismic.io/algorandcom%2Fece77f38-75b3-44de-bc7f-805f0e53a8d9_theoretical.pdf
  • [20] Takaoğlu, M., Özyavaş, A., Ajlouni, N., Alshahrani, A. & Alkasasbeh, B. (2021). A Novel and Robust Hybrid Blockchain and Steganography Scheme. Appl. Sci. 11:10698. DOI:10.3390/app112210698
  • [21] Takaoğlu, M., Takaoğlu, F. & Dursun, T. (2023, July 20-21). NBS: An NFT-Based Blockchain Steganography Method. Conference: the 2nd International Conference on Computing, IoT, and Data Analytics (ICCIDA), La Mancha-Spain. https://iccida.net/
  • [22] Chaudhary, A., Sharma, A. & Gupta, N. (2023). Designing A Secured Framework for the Steganography Process Using Blockchain and Machine Learning Technology. International Journal of Intelligent Systems and Applications in Engineering, 11(2s):96–103.
  • [23] Torki, O., Ashouri-Talouki, M. & Mahdavi, M. (2023). Hierarchical Deterministic Wallets for Secure Steganography in Blockchain. The ISC International Journal of Information Security. 15(1):73-81. DOI: 10.22042/isecure.2022.319074.729
  • [24] Chaudhary, A., Sharma, A. & Gupta, N. (2023). A Novel Approach to Blockchain and Deep Learning in the field of Steganography. International Journal of Intelligent Systems and Applications in Engineering. 11(2s):104–115.
  • [25] Jahnavi, S., Pradeep, S., Navtej, P., Medini, H.S. & Mamisha. (2023). Blockchain Technology Based Image Steganography. International Journal of Innovative Research in Technology. 9(12):637-642.
  • [26] Sarkar, P.; Ghosal, S.K.; Sarkar, M. (2020). Stego-Chain: A Framework to Mine Encoded Stego-Block in a Decentralized Network. J. King Saud Univ. Comput. Inf. Sci. 2020, 16, 25–29.
  • [27] Mohsin, A.H.; Zaidan, A.A.; Zaidan, B.B.; Mohammed, K.I.; Albahri, O.S.; Albahri, A.S.; Alsalem, M.A. (2021). PSO–Blockchain-Based Image Steganography: Towards a New Method to Secure Updating and Sharing COVID-19 Data in Decentralised Hospitals Intelligence Architecture. Multimed. Tools Appl. 2021, 80, 14137–14161.
  • [28] Li, D., & Kar, P. (2022). B-Spot: Blockchain and Steganography based Robust and Secure Photo Transmission Mechanism. Journal of Mobile Multimedia. 18(06):1677–1708. DOI:10.13052/jmm1550-4646.18610
  • [29] Basuki, A.I.; Rosiyadi, D. (2019). Joint Transaction-Image Steganography for High Capacity Covert Communication. In Proceedings of the 2019 International Conference on Computer, Control, Informatics and its Applications (IC3INA), Tangerang, Indonesia, 23–24 October 2019; pp. 41–46.
  • [30] Kandasamy, L. & Ajay, A. (2023). Implementation of Blockchain Technology for Secure Image Sharing Using Double Layer Steganography. In: Hu, Z., Wang, Y., He, M. (eds) Advances in Intelligent Systems, Computer Science and Digital Economics IV. CSDEIS 2022. Lecture Notes on Data Engineering and Communications Technologies, vol 158. Springer, Cham. DOI:10.1007/978-3-031-24475-9_16
  • [31] Partala, J. (2018). Provably Secure Covert Communication on Blockchain. Cryptography. 2(3):18. DOI:10.3390/cryptography2030018
  • [32] Horng, J. H., Chang, C. C., Li, G. L., Lee,W. K. & Hwang, S.O. (2021). Blockchain-Based Reversible Data Hiding for Securing Medical Images. J. Healthc. Eng. DOI:10.1155/2021/9943402
  • [33] Xu, M., Wu, H., Geng, G., Zhang, X. & Ding, F. (2019). Broadcasting steganography in the blockchain. In International Workshop on Digital Watermarking; Springer: Berlin-Heidelberg, Germany, 2019; pp. 256–267.
  • [34] Matzutt, R., Hiller, J., Henze, M., Ziegeldorf, J. H., Müllmann, D., Hohlfeld, O. & Wehrle, K. (2018). A Quantitative Analysis of the Impact of Arbitrary Blockchain Content on Bitcoin. In Financial Cryptography and Data Security; Meiklejohn, S., Sako, K., Eds.; Springer: Berlin-Heidelberg, Germany, 2018; pp. 420–438.
  • [35] Giron, A. A., Martina, J. E. & Custódio, R. (2021). Steganographic Analysis of Blockchains. Sensors. 21(12): 4078. DOI:10.3390/s21124078
  • [36] Hashim, M. M., Rahim, M. S. M., Johi, F. A., Taha, M. S. & Hamad, H. S. (2018). Performance evaluation measurement of image steganography techniques with analysis of LSB based on variation image formats. International Journal of Engineering & Technology. 7(4):3505-3514. DOI:10.14419/ijet.v7i4.17294
  • [37] Al-Refai, S. & Al-Jarrah, M. M. (2020). Secure Data Hiding Technique Using Batch Video Steganography. In Proceedings of the 2019 2nd International Conference on Information Hiding and Image Processing (IHIP 2019). Association for Computing Machinery, New York, NY, USA, 1–4. DOI:10.1145/3383913.3383914
  • [38] Pinchen Cui, P., Guin, U., Skjellum, A. & Umphress, D. (2019). Blockchain in IoT: Current Trends, Challenges, and Future Roadmap. Journal of Hardware and Systems Security. 3(4):338-364. DOI:10.1007/s41635-019-00079-5
  • [39] Yan, T., Chen, W., Zhao, P. & et al. (2021). Handling conditional queries and data storage on Hyperledger Fabric efficiently. World Wide Web. 24:441–461. DOI:10.1007/s11280-020-00844-5
  • [40] Takaoğlu, M., Dursun, T., Doğan, A., Er, H., Bozkurt Günay, B., Emeç, C., Kumru, A., Demir, S., Kurt Toplu, S. & Özcandan, N. (2023). The Impact of Self-Sovereign Identities on CyberSecurity. IST-186-RSM, Specialist Meeting, Blockchain Technology for Coalition Operations. https://bilgem.tubitak.gov.tr/uekae-yayinlar/
  • [41] Khan, D., Jung, L. T., Hashmani, M. A. & Cheong, M. K. (2022). Empirical Performance Analysis of Hyperledger LTS for Small and Medium Enterprises. Sensors. 22(3):915. DOI:10.3390/s22030915
  • [42] Chacko, J. A., Mayer, R. & Jacobsen, H. A. (2021). Why Do My Blockchain Transactions Fail? A Study of Hyperledger Fabric. In Proceedings of the 2021 International Conference on Management of Data (SIGMOD '21). Association for Computing Machinery, New York, NY, USA, 221–234. DOI:10.1145/3448016.3452823
  • [43] Zhou, E., Sun, H., Pi, B., Sun, j., Yamashita, K. & Nomura, Y. (2019). Ledgerdata Refiner: A Powerful Ledger Data Query Platform for Hyperledger Fabric. Sixth International Conference on Internet of Things: Systems, Management and Security (IOTSMS), Granada, Spain, 433-440. DOI: 10.1109/IOTSMS48152.2019.8939212
  • [44] Ke, Z. & Park, N. (2022). Performance modeling and analysis of Hyperledger Fabric. Cluster Comput. DOI:10.1007/s10586-022-03800-2
  • [45] Song, M., Han, J., Eom, H. & Son, Y. (2022). IPFSz: An Efficient Data Compression Scheme in InterPlanetary File System. in IEEE Access. 10:122601-122611. DOI:10.1109/ACCESS.2022.3223107
  • [46] Benet, J. (2014). IPFS documentation. https://docs.ipfs.tech/
  • [47] Muralidharan, S. & Ko, H. (2019). An InterPlanetary File System (IPFS) based IoT framework. 2019 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 2019, pp. 1-2. DOI:10.1109/ICCE.2019.8662002
  • [48] Bennett, C. H., Brassard, G. & Breidbart, S. (2014). Quantum Cryptography II: How to re-use a one-time pad safely even if P=NP. Nat Comput. 13(4):453-458. DOI:10.1007/s11047-014-9453-6
There are 48 citations in total.

Details

Primary Language English
Subjects Civil Engineering (Other)
Journal Section Research Article
Authors

Mustafa Takaoğlu 0000-0002-1634-2705

Adem Özyavaş 0000-0001-5375-1826

Naim Ajlouni 0000-0002-5116-8933

Taner Dursun 0000-0001-5893-8219

Faruk Takaoğlu 0000-0003-0828-2017

Selin Demir 0009-0006-6331-6418

Early Pub Date December 22, 2023
Publication Date December 31, 2023
Submission Date August 18, 2023
Acceptance Date December 15, 2023
Published in Issue Year 2023 Volume: 9 Issue: 4

Cite

APA Takaoğlu, M., Özyavaş, A., Ajlouni, N., Dursun, T., et al. (2023). OTA 2.0: An Advanced and Secure Blockchain Steganography Algorithm. International Journal of Computational and Experimental Science and Engineering, 9(4), 419-434.