Year 2023,
Volume: 9 Issue: 4, 368 - 375, 31.12.2023
Nagat Elmahdy
,
Asmaa Almellah
,
Hakan Akyıldırım
References
- [1] E. Ma. (2006). Verifiable radiative seesaw mechanism of neutrino mass and dark matter.Physical Review D. 73: 077301. DOI:10.1103/PhysRevD.73.077301.
- [2] S. Y. Ho & J. Tandean. (2014). Probing ScotogenicEffects in Colliders. Physical Review. D. 89:114025. DOI: 10.1103/PhysRevD.89.114025.
- [3] J. Kubo, E. Ma & D. Suematsu. (2006). Cold Dark Matter, Radiative Neutrino Mass, µ→e, and Neutrino less Double β Decay. Physical Letter B. 642:18-23. DOI: 10.1016/j.physletb.2006.08.085.
- [4] J. Beringer et al., (2012). Review of Particle Physics (RPP). Physical Review D. 86:010001. DOI:i:10.1103/PhysRevD.86.010001.
- [5] G. Faisel, S. Y. Ho & J. Tandean, (2014). Exploring X-ray lines as scotogenic signals. Physics Letters B. 738:380-385. DOI:10.1016/j.physletb.2014.09.063.
- [6] G. Jungman, M. Kamionkowski, & K. Griest, (1996). Supersymmetric dark matter. Physics Reports. 267(5–6): 195-373. DOI:10.1016/0370-1573(95)00058-5.
- [7] S. Y. Ho & J. Tandean, (2013). Probing Scotogenic effects in Higgs Boson Decays. Physical Review D. 87:095015. DOI:10.1103/PhysRevD.87.095015.
- [8] P. F. de Salas et al., (2021). 2020 global reassessment of the neutrino oscillation picture. Journal of High Energy Physics. 02:071. DOI:10.1007/JHEP02(2021)071.
- [9] G. Anton et al., (2019). Search for Neutrino less Double-β Decay with the Complete EXO-200 Dataset. Physical. Review Letter. 123(16): 161802. DOI:10.1103/PhysRevLett.123.161802.
- [10] A. Gando et al., (2016). Search for Majorana Neutrinos near the Inverted Mass Hierarchy Region with KamLAND-Zen. Physical Review Letter. 117(8): 082503. DOI:10.1103/PhysRevLett.117.082503.
- [11] M. Agostini et al., (2020). Final Results of GERDA on the Search for Neutrino less Double-β Decay. Physical Review Letter. 125(25): 252502. DOI:10.1103/PhysRevLett.125.252502.
- [12] T. Toma & A. Vicente. (2014). Lepton flavour violation in the scotogenic model. Journal of High Energy Physics. 2014(1):1-27. DOI:https://doi.org/10.48550/arXiv.1312.2840.
- [13] A. M. Baldini et al., (2016). Search for the lepton flavour violating decay → with the full dataset of the MEG experiment. European Physics J. C. 76(8):434. DOI: 10.1140/epjc/s10052-016-4271-x.
- [14] B. Aubert et al., (2010). Searches for Lepton Flavor Violation in the Decays →ᵞ and →ᵞ. Physical Review Letter. 104:021802. DOI:10.1103/PhysRevLett.104.021802.
- [15] E. Ma & M. Raidal. (2001). Neutrino mass, muon anomalous magnetic moment, and lepton flavor non conservation. Physical Review Letter. 87:011802. DOI: 10.1103/PhysRevLett.87.011802.
- [16] T. Aoyama, et al., (2020). The anomalous magneticmoment of the muon in the Standard Model. Physics Report 887:1-166. DOI:10.1016/j.physrep.2020.07.006.
- [17] A. Ibarra, C. E. Yaguna & O. Zapata. (2016). Direct Detection of Fermion Dark Matter in the Radiative Seesaw Model. Physical Review D. 93(3): 035012.DOI:10.1103/PhysRevD.93.035012.
- [18] E. Aprile et al., (2018). Dark Matter Search Results from a One Ton-Year Exposure of XENON1T. Physical Review Letter. 121(11): 111302. DOI: 10.1103/PhysRevLett.121.111302.
- [19] Y. Meng et al., (2021). Dark Matter Search Results from the PandaX-4T Commissioning Run. Physical Review Letter. 127(26): 261802. DOI:10.1103/PhysRevLett.127.261802.
- [20] Jiao Liu et al. (2022). Unraveling the Scotogenic model at muon collider. Journal of High Energy Physics. 12(57):001-034
- [21] A. Vicente & C. E. Yaguna. (2015). Probing the scotogenic model with lepton flavor violating processes. Journal of High Energy Physics. 2015(2):144-150. DOI: 10.1007/JHEP02(2015)144.
- [22] G. Aad et al., (2020). Searches for electroweak production of supersymmetric particles with compressed mass spectra in =13 TeV pp collisions with the ATLAS detector. Physical Review D. 101(5): 052005. DOI: 10.1103/PhysRevD.101.052005.
- [23] A. M. Sirunyan et al., (2021). Search for supersymmetry in final states with two oppositely charged same-flavor leptons and missing transverse momentum in proton-proton collisions at =13 TeV. Journal of High Energy Physics. 04:123. DOI:10.1007/JHEP04(2021)123.
- [24] A. Arhrib, R. Benbrik, & N. Gaur. (2012). H→ in Inert Higgs Doublet Model. Physical Review D. 85:095021. DOI: 10.1103/PhysRevD.85.095021.
- [25] Q.H. Cao, E. Ma, & G. Rajasekaran. (2007). Observing the Dark Scalar Doublet and its Impact on the Standard-Model Higgs Boson at Colliders. Physical Review D. 76:095011. DOI: 10.1103/PhysRevD.76.095011.
- [26] Dolle, Ethan M. and Su, Shufang. (2022) Inert dark matter, Physical Review D. 5(80): 1550-2368. DOI:10.1103/physrevd.80.055012.
Collider signature of e^+ e^-⟶ H^+ H^-in the Scotogenic model
Year 2023,
Volume: 9 Issue: 4, 368 - 375, 31.12.2023
Nagat Elmahdy
,
Asmaa Almellah
,
Hakan Akyıldırım
Abstract
We investigate the process e^+ e^-⟶H^+ H^- in the framework of the scotogenic model. The process receives different contributions arising from tree-level diagrams mediated by photon exchange, Z boson exchange and from the exchange of new singlet right-handed fermions N_1,2,3. We estimate the size of each contribution and the total cross section of the process after applying all dominant constraints on the parameters of the model. We show that the dominant contribution to the cross section originate from the new singlet right-handed fermions N_1,2,3. Additionally, we show the dependency of the cross section on the centre of mass energy for set of benchmark points of the parameter space of the model respecting the strong obtained bounds. These predictions can be tested in future e^+ e^- colliders and hence can test the validity of the model or setting further strong constraints on the model.
References
- [1] E. Ma. (2006). Verifiable radiative seesaw mechanism of neutrino mass and dark matter.Physical Review D. 73: 077301. DOI:10.1103/PhysRevD.73.077301.
- [2] S. Y. Ho & J. Tandean. (2014). Probing ScotogenicEffects in Colliders. Physical Review. D. 89:114025. DOI: 10.1103/PhysRevD.89.114025.
- [3] J. Kubo, E. Ma & D. Suematsu. (2006). Cold Dark Matter, Radiative Neutrino Mass, µ→e, and Neutrino less Double β Decay. Physical Letter B. 642:18-23. DOI: 10.1016/j.physletb.2006.08.085.
- [4] J. Beringer et al., (2012). Review of Particle Physics (RPP). Physical Review D. 86:010001. DOI:i:10.1103/PhysRevD.86.010001.
- [5] G. Faisel, S. Y. Ho & J. Tandean, (2014). Exploring X-ray lines as scotogenic signals. Physics Letters B. 738:380-385. DOI:10.1016/j.physletb.2014.09.063.
- [6] G. Jungman, M. Kamionkowski, & K. Griest, (1996). Supersymmetric dark matter. Physics Reports. 267(5–6): 195-373. DOI:10.1016/0370-1573(95)00058-5.
- [7] S. Y. Ho & J. Tandean, (2013). Probing Scotogenic effects in Higgs Boson Decays. Physical Review D. 87:095015. DOI:10.1103/PhysRevD.87.095015.
- [8] P. F. de Salas et al., (2021). 2020 global reassessment of the neutrino oscillation picture. Journal of High Energy Physics. 02:071. DOI:10.1007/JHEP02(2021)071.
- [9] G. Anton et al., (2019). Search for Neutrino less Double-β Decay with the Complete EXO-200 Dataset. Physical. Review Letter. 123(16): 161802. DOI:10.1103/PhysRevLett.123.161802.
- [10] A. Gando et al., (2016). Search for Majorana Neutrinos near the Inverted Mass Hierarchy Region with KamLAND-Zen. Physical Review Letter. 117(8): 082503. DOI:10.1103/PhysRevLett.117.082503.
- [11] M. Agostini et al., (2020). Final Results of GERDA on the Search for Neutrino less Double-β Decay. Physical Review Letter. 125(25): 252502. DOI:10.1103/PhysRevLett.125.252502.
- [12] T. Toma & A. Vicente. (2014). Lepton flavour violation in the scotogenic model. Journal of High Energy Physics. 2014(1):1-27. DOI:https://doi.org/10.48550/arXiv.1312.2840.
- [13] A. M. Baldini et al., (2016). Search for the lepton flavour violating decay → with the full dataset of the MEG experiment. European Physics J. C. 76(8):434. DOI: 10.1140/epjc/s10052-016-4271-x.
- [14] B. Aubert et al., (2010). Searches for Lepton Flavor Violation in the Decays →ᵞ and →ᵞ. Physical Review Letter. 104:021802. DOI:10.1103/PhysRevLett.104.021802.
- [15] E. Ma & M. Raidal. (2001). Neutrino mass, muon anomalous magnetic moment, and lepton flavor non conservation. Physical Review Letter. 87:011802. DOI: 10.1103/PhysRevLett.87.011802.
- [16] T. Aoyama, et al., (2020). The anomalous magneticmoment of the muon in the Standard Model. Physics Report 887:1-166. DOI:10.1016/j.physrep.2020.07.006.
- [17] A. Ibarra, C. E. Yaguna & O. Zapata. (2016). Direct Detection of Fermion Dark Matter in the Radiative Seesaw Model. Physical Review D. 93(3): 035012.DOI:10.1103/PhysRevD.93.035012.
- [18] E. Aprile et al., (2018). Dark Matter Search Results from a One Ton-Year Exposure of XENON1T. Physical Review Letter. 121(11): 111302. DOI: 10.1103/PhysRevLett.121.111302.
- [19] Y. Meng et al., (2021). Dark Matter Search Results from the PandaX-4T Commissioning Run. Physical Review Letter. 127(26): 261802. DOI:10.1103/PhysRevLett.127.261802.
- [20] Jiao Liu et al. (2022). Unraveling the Scotogenic model at muon collider. Journal of High Energy Physics. 12(57):001-034
- [21] A. Vicente & C. E. Yaguna. (2015). Probing the scotogenic model with lepton flavor violating processes. Journal of High Energy Physics. 2015(2):144-150. DOI: 10.1007/JHEP02(2015)144.
- [22] G. Aad et al., (2020). Searches for electroweak production of supersymmetric particles with compressed mass spectra in =13 TeV pp collisions with the ATLAS detector. Physical Review D. 101(5): 052005. DOI: 10.1103/PhysRevD.101.052005.
- [23] A. M. Sirunyan et al., (2021). Search for supersymmetry in final states with two oppositely charged same-flavor leptons and missing transverse momentum in proton-proton collisions at =13 TeV. Journal of High Energy Physics. 04:123. DOI:10.1007/JHEP04(2021)123.
- [24] A. Arhrib, R. Benbrik, & N. Gaur. (2012). H→ in Inert Higgs Doublet Model. Physical Review D. 85:095021. DOI: 10.1103/PhysRevD.85.095021.
- [25] Q.H. Cao, E. Ma, & G. Rajasekaran. (2007). Observing the Dark Scalar Doublet and its Impact on the Standard-Model Higgs Boson at Colliders. Physical Review D. 76:095011. DOI: 10.1103/PhysRevD.76.095011.
- [26] Dolle, Ethan M. and Su, Shufang. (2022) Inert dark matter, Physical Review D. 5(80): 1550-2368. DOI:10.1103/physrevd.80.055012.