Research Article
BibTex RIS Cite
Year 2022, , 66 - 75, 06.07.2022
https://doi.org/10.32571/ijct.1131313

Abstract

References

  • Chowdhury, M. F.; Khandaker, S.; Sarker, F.; Islam, A.; Rahman, M. T.; Awual, M. R. J. Mol. Liq. 2020, 114061.
  • Roa, K.; Oyarce, E.; Boulett, A.; ALSamman, M.; Oyarzún, D.; Pizarro, G. D. C.; Sánchez, J. SM&T. 2021, 29, e00320.
  • Sirajudheen, P.; Poovathumkuzhi, N. C.; Vigneshwaran, S.; Chelaveettil, B. M.; Meenakshi, S. Carbohydrate Polymers. 2021, 273, 118604.
  • Bagotia, N.; Sharma, A. K.; Kumar, S. Chemosphere. 2020, 129309.
  • Lan, D.; Zhu, H.; Zhang, J.; Li, S.; Chen, Q.; Wang, C.; Wu, T.; Xu, M. Chemosphere. 2021, 133464.
  • Januário, E. F. D.; Vidovix, T. B.; Beluci, N. D. C. L.; Paixão, R. M.; da Silva, L.H.B.R.; Homem, N. C.; Bergamasco, R.; Vieira, A. M. S. Sci. Total. Environ. 2021,789, 147957-147957.
  • Abu-Nada, A.; Abdala, A.; McKay, G. J. Environ. Chem. 2021, 9(5), 105858.
  • Demir, E.; Yalçın, H. Türk Bilimsel Derlemeler Dergisi, 2014, 2(7), 70-79.
  • Reynolds, T.D.; Richards, P.A.; Çeviri Editörü: Ülker Bakır Öğütveren. Efil Yayınevi, Ankara. 2011.
  • Wong, Y.C.; Szeto, Y.S.; Cheung, W.H.; McKay, G. Process Biochemistry. 2004, 39/6, 695-704.
  • Eckenfelder W. W. McGraw-Hill international editions, New York. 1898.
  • Waranusantigul, P.; Pokethitiyook P.; Kruatrachue, M.; Upatham, E.S. Environmental Pollution. 2003, 125/3, 385-392.
  • Saravanan, P.; Josephraj, J.; Pushpa, B.; Thillainayagam, B. P. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100560.
  • Koyuncu, H.; Kul, A. R. Applied Water Science. 2020, 10(2), 1-14.
  • Fawzy, M. A. Adv. Powder Technol. 2020, 31(9), 3724-3735.
  • Rajesh, Y.; Jeeru, L. R. Materials Today: Proceedings. 2022, 57, 34-37.
  • Srinivasulu, D. Acta Ecologica Sinica. 2021.
  • Wang, Q.; Wang, Y.; Tang, J.; Yang, Z.; Zhang, L.; Huang, X. Chemosphere. 2022,135048.
  • Dey, S.; Basha, S. R.; Babu, G. V.; Nagendra, T. Cleaner Materials. 2021, 1, 100001.
  • Giri, D. D.; Alhazmi, A.; Mohammad, A.; Haque, S.; Srivastava, N.; Thakur, V. K.; Gupta, V.K.; Pal, D. B. Chemosphere. 2022, 287, 132016.
  • Kachangoon, R.; Vichapong, J.; Santaladchaiyakit, Y.; Srijaranai, S. Microchemical Journal. 2022, 107194.
  • Wang, Q.; Wang, Y.; Yang, Z.; Han, W.; Yuan, L.; Zhang, L.; Huang, X. Chemical Engineering Journal Advances. 2022, 11, 100295.
  • dos Santos Escobar, O.; de Azevedo, C. F.; Swarowsky, A.; Adebayo, M. A.; Netto, M. S.; Machado, F. M. J. Environ. Chem. 2021, 9(4), 105553.
  • Kua, T. L.; Kooh, M. R. R.; Dahri, M. K.; Zaidi, N. A. H. M.; Lu, Y.; Lim, L. B. L. Appl. Water Sci. 2020. 10(12), 1-13.
  • https://www.sigmaaldrich.com/TR/en/product/sigma/c0775?gclid=Cj0KCQjwgYSTBhMİNARIsAB8KukvGmjuXjJqdMZkmH2JbB_WtR9h1hY4x87gB6GomcfyBE2wSVDdsNXIaAnlCEALw_wcB.
  • Behnamfard, A.; Salarirad, M. M. J. Hazard. Mater. 2009, 170(1), 127-133.
  • Sulyman, M.; Namieśnik, J.; Gierak, A. Inżynieria i Ochrona Środowiska. 2016, 19.
  • El-Sayed, G. O. Desalination. 2011, 272(1-3), 225-232.
  • Sultana, S.; Islam, K.; Hasan, M. A.; Khan, H. J.; Khan, M. A. R.; Deb, A.; Raihan, M.A.; Rahman, M. W. Environ. Nanotechnol. Monit. Manag. 2022, 17, 100651.
  • Rani, S.; Chaudhary, S. Materials Today: Proceedings. 2022, 60, 336-344.
  • Kumbhar, P.; Narale, D.; Bhosale, R.; Jambhale, C.; Kim, J. H.; Kolekar, S. J. Environ. Chem. 2022, 107893.
  • Alshabanat, M.; Alsenani, G.; Almufarij, R. J. Chem. 2013, 4.
  • Dabagh, A.; Bagui, A.; Abali, M. H.; Aziam, R.; Chiban, M.; Sinan, F.; Zerbet, M. Materials Today: Proceedings. 2021, 37, 3980-3986.
  • Kyi, P. P.; Quansah, J. O.; Lee, C. G.; Moon, J. K. Applied Sciences. 2020, 10(7), 2251.
  • Gök, O.; Çimen Mesutoğlu, Ö. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2017, 32:2, 507-516.

The usage of palm (Washingtonia filifera) fibers for the removal of crystal violet from synthetic dye solution by adsorption

Year 2022, , 66 - 75, 06.07.2022
https://doi.org/10.32571/ijct.1131313

Abstract

The objective to obtain cheap and easily synthesized adsorbents from natural materials is gaining importance day by day. Adsorbents should be environmentally friendly, non-toxic, easily produced, insoluble in water, have a porous structure, have a large surface area, and be scientifically accepted. In this study, the removal of crystal violet dye from synthetic dyestuff solution was investigated using palm tree (Washingtonia filifera) fibers. In order to determine the contact time, the first set of experiments employed 0.5 g of palm fibers and initial dye concentrations between 2.5-160 mg/L. As a result of the study, it was determined that the crystal violet removal was 87.96% at the end of the 180-minute contact time at equilibrium, and the removal complied with the pseudo-second-order kinetic model type 1. The equilibrium time for the highest initial adsorbate concentration (160 mg/L) was 2880 minutes (2 days) in stationary phase systems while it was 180 minutes (3 hours) in mobile phase systems. It was also understood that palm fiber, which is an environmentally advantageous material, can be used in the removal of crystal violet dyestuff.

References

  • Chowdhury, M. F.; Khandaker, S.; Sarker, F.; Islam, A.; Rahman, M. T.; Awual, M. R. J. Mol. Liq. 2020, 114061.
  • Roa, K.; Oyarce, E.; Boulett, A.; ALSamman, M.; Oyarzún, D.; Pizarro, G. D. C.; Sánchez, J. SM&T. 2021, 29, e00320.
  • Sirajudheen, P.; Poovathumkuzhi, N. C.; Vigneshwaran, S.; Chelaveettil, B. M.; Meenakshi, S. Carbohydrate Polymers. 2021, 273, 118604.
  • Bagotia, N.; Sharma, A. K.; Kumar, S. Chemosphere. 2020, 129309.
  • Lan, D.; Zhu, H.; Zhang, J.; Li, S.; Chen, Q.; Wang, C.; Wu, T.; Xu, M. Chemosphere. 2021, 133464.
  • Januário, E. F. D.; Vidovix, T. B.; Beluci, N. D. C. L.; Paixão, R. M.; da Silva, L.H.B.R.; Homem, N. C.; Bergamasco, R.; Vieira, A. M. S. Sci. Total. Environ. 2021,789, 147957-147957.
  • Abu-Nada, A.; Abdala, A.; McKay, G. J. Environ. Chem. 2021, 9(5), 105858.
  • Demir, E.; Yalçın, H. Türk Bilimsel Derlemeler Dergisi, 2014, 2(7), 70-79.
  • Reynolds, T.D.; Richards, P.A.; Çeviri Editörü: Ülker Bakır Öğütveren. Efil Yayınevi, Ankara. 2011.
  • Wong, Y.C.; Szeto, Y.S.; Cheung, W.H.; McKay, G. Process Biochemistry. 2004, 39/6, 695-704.
  • Eckenfelder W. W. McGraw-Hill international editions, New York. 1898.
  • Waranusantigul, P.; Pokethitiyook P.; Kruatrachue, M.; Upatham, E.S. Environmental Pollution. 2003, 125/3, 385-392.
  • Saravanan, P.; Josephraj, J.; Pushpa, B.; Thillainayagam, B. P. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100560.
  • Koyuncu, H.; Kul, A. R. Applied Water Science. 2020, 10(2), 1-14.
  • Fawzy, M. A. Adv. Powder Technol. 2020, 31(9), 3724-3735.
  • Rajesh, Y.; Jeeru, L. R. Materials Today: Proceedings. 2022, 57, 34-37.
  • Srinivasulu, D. Acta Ecologica Sinica. 2021.
  • Wang, Q.; Wang, Y.; Tang, J.; Yang, Z.; Zhang, L.; Huang, X. Chemosphere. 2022,135048.
  • Dey, S.; Basha, S. R.; Babu, G. V.; Nagendra, T. Cleaner Materials. 2021, 1, 100001.
  • Giri, D. D.; Alhazmi, A.; Mohammad, A.; Haque, S.; Srivastava, N.; Thakur, V. K.; Gupta, V.K.; Pal, D. B. Chemosphere. 2022, 287, 132016.
  • Kachangoon, R.; Vichapong, J.; Santaladchaiyakit, Y.; Srijaranai, S. Microchemical Journal. 2022, 107194.
  • Wang, Q.; Wang, Y.; Yang, Z.; Han, W.; Yuan, L.; Zhang, L.; Huang, X. Chemical Engineering Journal Advances. 2022, 11, 100295.
  • dos Santos Escobar, O.; de Azevedo, C. F.; Swarowsky, A.; Adebayo, M. A.; Netto, M. S.; Machado, F. M. J. Environ. Chem. 2021, 9(4), 105553.
  • Kua, T. L.; Kooh, M. R. R.; Dahri, M. K.; Zaidi, N. A. H. M.; Lu, Y.; Lim, L. B. L. Appl. Water Sci. 2020. 10(12), 1-13.
  • https://www.sigmaaldrich.com/TR/en/product/sigma/c0775?gclid=Cj0KCQjwgYSTBhMİNARIsAB8KukvGmjuXjJqdMZkmH2JbB_WtR9h1hY4x87gB6GomcfyBE2wSVDdsNXIaAnlCEALw_wcB.
  • Behnamfard, A.; Salarirad, M. M. J. Hazard. Mater. 2009, 170(1), 127-133.
  • Sulyman, M.; Namieśnik, J.; Gierak, A. Inżynieria i Ochrona Środowiska. 2016, 19.
  • El-Sayed, G. O. Desalination. 2011, 272(1-3), 225-232.
  • Sultana, S.; Islam, K.; Hasan, M. A.; Khan, H. J.; Khan, M. A. R.; Deb, A.; Raihan, M.A.; Rahman, M. W. Environ. Nanotechnol. Monit. Manag. 2022, 17, 100651.
  • Rani, S.; Chaudhary, S. Materials Today: Proceedings. 2022, 60, 336-344.
  • Kumbhar, P.; Narale, D.; Bhosale, R.; Jambhale, C.; Kim, J. H.; Kolekar, S. J. Environ. Chem. 2022, 107893.
  • Alshabanat, M.; Alsenani, G.; Almufarij, R. J. Chem. 2013, 4.
  • Dabagh, A.; Bagui, A.; Abali, M. H.; Aziam, R.; Chiban, M.; Sinan, F.; Zerbet, M. Materials Today: Proceedings. 2021, 37, 3980-3986.
  • Kyi, P. P.; Quansah, J. O.; Lee, C. G.; Moon, J. K. Applied Sciences. 2020, 10(7), 2251.
  • Gök, O.; Çimen Mesutoğlu, Ö. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2017, 32:2, 507-516.
There are 35 citations in total.

Details

Primary Language English
Subjects Environmental Engineering
Journal Section Research Articles
Authors

Buket Karabaş 0000-0003-2612-9737

Olcayto Keskinkan 0000-0001-8995-756X

Bülent Sarı 0000-0002-5171-9491

Hasan Kıvanç Yeşiltaş 0000-0003-3331-3209

Çağatayhan Bekir Ersü 0000-0001-6289-6947

Publication Date July 6, 2022
Published in Issue Year 2022

Cite

APA Karabaş, B., Keskinkan, O., Sarı, B., Yeşiltaş, H. K., et al. (2022). The usage of palm (Washingtonia filifera) fibers for the removal of crystal violet from synthetic dye solution by adsorption. International Journal of Chemistry and Technology, 6(1), 66-75. https://doi.org/10.32571/ijct.1131313
AMA Karabaş B, Keskinkan O, Sarı B, Yeşiltaş HK, Ersü ÇB. The usage of palm (Washingtonia filifera) fibers for the removal of crystal violet from synthetic dye solution by adsorption. Int. J. Chem. Technol. July 2022;6(1):66-75. doi:10.32571/ijct.1131313
Chicago Karabaş, Buket, Olcayto Keskinkan, Bülent Sarı, Hasan Kıvanç Yeşiltaş, and Çağatayhan Bekir Ersü. “The Usage of Palm (Washingtonia Filifera) Fibers for the Removal of Crystal Violet from Synthetic Dye Solution by Adsorption”. International Journal of Chemistry and Technology 6, no. 1 (July 2022): 66-75. https://doi.org/10.32571/ijct.1131313.
EndNote Karabaş B, Keskinkan O, Sarı B, Yeşiltaş HK, Ersü ÇB (July 1, 2022) The usage of palm (Washingtonia filifera) fibers for the removal of crystal violet from synthetic dye solution by adsorption. International Journal of Chemistry and Technology 6 1 66–75.
IEEE B. Karabaş, O. Keskinkan, B. Sarı, H. K. Yeşiltaş, and Ç. B. Ersü, “The usage of palm (Washingtonia filifera) fibers for the removal of crystal violet from synthetic dye solution by adsorption”, Int. J. Chem. Technol., vol. 6, no. 1, pp. 66–75, 2022, doi: 10.32571/ijct.1131313.
ISNAD Karabaş, Buket et al. “The Usage of Palm (Washingtonia Filifera) Fibers for the Removal of Crystal Violet from Synthetic Dye Solution by Adsorption”. International Journal of Chemistry and Technology 6/1 (July 2022), 66-75. https://doi.org/10.32571/ijct.1131313.
JAMA Karabaş B, Keskinkan O, Sarı B, Yeşiltaş HK, Ersü ÇB. The usage of palm (Washingtonia filifera) fibers for the removal of crystal violet from synthetic dye solution by adsorption. Int. J. Chem. Technol. 2022;6:66–75.
MLA Karabaş, Buket et al. “The Usage of Palm (Washingtonia Filifera) Fibers for the Removal of Crystal Violet from Synthetic Dye Solution by Adsorption”. International Journal of Chemistry and Technology, vol. 6, no. 1, 2022, pp. 66-75, doi:10.32571/ijct.1131313.
Vancouver Karabaş B, Keskinkan O, Sarı B, Yeşiltaş HK, Ersü ÇB. The usage of palm (Washingtonia filifera) fibers for the removal of crystal violet from synthetic dye solution by adsorption. Int. J. Chem. Technol. 2022;6(1):66-75.