A new approach to breast cancer therapy: targeted nanocarrier systems
Year 2022,
, 81 - 92, 31.12.2022
Nazan Gökşen Tosun
,
Özlem Kaplan
,
Seçil Erden Tayhan
,
Cemil Alkan
,
İsa Gökçe
Abstract
Cancer is one of the most prevalent diseases in the world. Breast cancer is the second most deadly cancer type after lung cancer. Surgical intervention, chemotherapy and radiotherapy are the most used conventional methods in the treatment of breast cancer. The non-targeted approach of conventional treatments causes serious side effects in healthy cells and tissues, and often mortality is due to the side effects of these conventional treatments. In recent years, nano-sized particles called drug delivery systems targeting cancer cells have attracted attention as a new approach in cancer treatment. The fact that these nanocarrier systems target tumor cells without damaging healthy tissues has been a hope for breast cancer. Moreover, nanocarriers are unique biomaterials that may exhibit low toxicity, high biocompatibility, biodegradability, ease of use, high dose drug loading, and adjustable surface functionalities. In the present study, we summarize recent studies of nanocarriers that offer a critical review of an alternative strategy to breast cancer therapy.
References
- DeSantis, C. E.; Fedewa, S. A.; Goding Sauer, A.; Kramer, J. L.; Smith, R. A.; Jemal, A. Breast Cancer Statistics, 2015: Convergence of Incidence Rates between Black and White Women. CA: a cancer journal for clinicians 2016, 66 (1), 31–42. https://doi.org/10.3322/caac.21320.
- Roberto, P.-B.; F., F. M.; Gemma, C.-V.; Denis, W.; Beatriz, P.-G.; Javier, L.; M., V. C.; ... Marina, P. Total Effective Xenoestrogen Burden in Serum Samples and Risk for Breast Cancer in a Population-Based Multicase–Control Study in Spain. Environmental Health Perspectives 2016, 124 (10), 1575–1582. https://doi.org/10.1289/EHP157.
- Wang, X.; Li, L.; Gao, J.; Liu, J.; Guo, M.; Liu, L.; Wang, W.; Wang, J.; Xing, Z.; Yu, Z.; Wang, X. The Association Between Body Size and Breast Cancer in Han Women in Northern and Eastern China. The Oncologist 2016, 21 (11), 1362–1368. https://doi.org/https://doi.org/10.1634/theoncologist.2016-0147.
- Wielsøe, M.; Gudmundsdottir, S.; Bonefeld-Jørgensen, E. C. Reproductive History and Dietary Habits and Breast Cancer Risk in Greenlandic Inuit: A Case Control Study. Public Health 2016, 137, 50–58. https://doi.org/https://doi.org/10.1016/j.puhe.2016.06.016.
- Namiranian, N.; Moradi-Lakeh, M.; Razavi-Ratki, S. K.; Doayie, M.; Nojomi, M. Risk Factors of Breast Cancer in the Eastern Mediterranean Region: A Systematic Review and Meta-Analysis. Asian Pacific Journal of Cancer Prevention 2014, 15 (21), 9535–9541. https://doi.org/10.7314/APJCP.2014.15.21.9535.
- Shield, K. D.; Soerjomataram, I.; Rehm, J. Alcohol Use and Breast Cancer: A Critical Review. Alcoholism: Clinical and Experimental Research 2016, 40 (6), 1166–1181. https://doi.org/https://doi.org/10.1111/acer.13071.
- Hanf, V.; Hanf, D. Reproduction and Breast Cancer Risk. Breast Care 2014, 9 (6), 398–405. https://doi.org/10.1159/000369570.
- Senapati, S.; Mahanta, A. K.; Kumar, S.; Maiti, P. Controlled Drug Delivery Vehicles for Cancer Treatment and Their Performance. Signal Transduction and Targeted Therapy 2018, 3 (1), 1–19. https://doi.org/10.1038/s41392-017-0004-3.
- Prihantono; Faruk, M. Breast Cancer Resistance to Chemotherapy: When Should We Suspect It and How Can We Prevent It? Annals of Medicine and Surgery 2021, 70, 102793. https://doi.org/https://doi.org/10.1016/j.amsu.2021.102793.
- Tharkar, P.; Varanasi, R.; Wong, W. S. F.; Jin, C. T.; Chrzanowski, W. Nano-Enhanced Drug Delivery and Therapeutic Ultrasound for Cancer Treatment and Beyond. Frontiers in Bioengineering and Biotechnology 2019, 7. https://doi.org/10.3389/fbioe.2019.00324.
- Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The Different Mechanisms of Cancer Drug Resistance: A Brief Review. Advanced pharmaceutical bulletin 2017, 7 (3), 339–348. https://doi.org/10.15171/apb.2017.041.
- Fang, X.; Cao, J.; Shen, A. Advances in Anti-Breast Cancer Drugs and the Application of Nano-Drug Delivery Systems in Breast Cancer Therapy. Journal of Drug Delivery Science and Technology 2020, 57 (February), 101662. https://doi.org/10.1016/j.jddst.2020.101662.
- Kaushik, N.; Borkar, S. B.; Nandanwar, S. K.; Panda, P. K.; Choi, E. H.; Kaushik, N. K. Nanocarrier Cancer Therapeutics with Functional Stimuli-Responsive Mechanisms. Journal of nanobiotechnology 2022, 20 (1), 152. https://doi.org/10.1186/s12951-022-01364-2.
- Ruman, U.; Fakurazi, S.; Masarudin, M. J.; Hussein, M. Z. Nanocarrier-Based Therapeutics and Theranostics Drug Delivery Systems for Next Generation of Liver Cancer Nanodrug Modalities. International journal of nanomedicine 2020, 15, 1437–1456. https://doi.org/10.2147/IJN.S236927.
- Ke, X.; Ng, V. W. L.; Ono, R. J.; Chan, J. M. W.; Krishnamurthy, S.; Wang, Y.; Hedrick, J. L.; Yang, Y. Y. Role of Non-Covalent and Covalent Interactions in Cargo Loading Capacity and Stability of Polymeric Micelles. Journal of Controlled Release 2014, 193, 9–26. https://doi.org/https://doi.org/10.1016/j.jconrel.2014.06.061.
- Montané, X.; Bajek, A.; Roszkowski, K.; Montornés, J. M.; Giamberini, M.; Roszkowski, S.; Kowalczyk, O.; Garcia-Valls, R.; Tylkowski, B. Encapsulation for Cancer Therapy. Molecules (Basel, Switzerland) 2020, 25 (7). https://doi.org/10.3390/molecules25071605.
- Yao, Y.; Zhou, Y.; Liu, L.; Xu, Y.; Chen, Q.; Wang, Y.; Wu, S.; Deng, Y.; Zhang, J.; Shao, A. Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. Frontiers in molecular biosciences 2020, 7, 193. https://doi.org/10.3389/fmolb.2020.00193.
- Karahaliloğlu, Z.; Kilicay, E.; Alpaslan, P.; Hazer, B.; Baki Denkbas, E. Enhanced Antitumor Activity of Epigallocatechin Gallate–Conjugated Dual-Drug-Loaded Polystyrene–Polysoyaoil–Diethanol Amine Nanoparticles for Breast Cancer Therapy. Journal of Bioactive and Compatible Polymers 2017, 33 (1), 38–62. https://doi.org/10.1177/0883911517710811.
- Deng, Z. J.; Morton, S. W.; Ben-Akiva, E.; Dreaden, E. C.; Shopsowitz, K. E.; Hammond, P. T. Layer-by-Layer Nanoparticles for Systemic Codelivery of an Anticancer Drug and SiRNA for Potential Triple-Negative Breast Cancer Treatment. ACS Nano 2013, 7 (11), 9571–9584. https://doi.org/10.1021/nn4047925.
- Singh, S. K.; Singh, S.; Lillard, J. W. J.; Singh, R. Drug Delivery Approaches for Breast Cancer. International journal of nanomedicine 2017, 12, 6205–6218. https://doi.org/10.2147/IJN.S140325.
- You, Y.; Xu, Z.; Chen, Y. Doxorubicin Conjugated with a Trastuzumab Epitope and an MMP-2 Sensitive Peptide Linker for the Treatment of HER2-Positive Breast Cancer. Drug Delivery 2018, 25 (1), 448–460. https://doi.org/10.1080/10717544.2018.1435746.
- Xu, R.; Sui, J.; Zhao, M.; Yang, Y.; Tong, L.; Liu, Y.; Sun, Y.; Fan, Y.; Liang, J.; Zhang, X. Targeted Inhibition of HER-2 Positive Breast Cancer Cells by Trastuzumab Functionalized Pullulan-Doxorubicin Nanoparticles. Polymer Testing 2022, 113, 107669. https://doi.org/https://doi.org/10.1016/j.polymertesting.2022.107669.
- Pourradi, N. M. A.; Babaei, H.; Hamishehkar, H.; Baradaran, B.; ... Ghorbani, M.; Azarmi, Y. Targeted Delivery of Doxorubicin by Thermo/PH-Responsive Magnetic Nanoparticles in a Rat Model of Breast Cancer. Toxicology and Applied Pharmacology 2022, 446, 116036. https://doi.org/https://doi.org/10.1016/j.taap.2022.116036.
- Khan, N.; Ruchika; Dhritlahre, R. K.; Saneja, A. Recent Advances in Dual-Ligand Targeted Nanocarriers for Cancer Therapy. Drug Discovery Today 2022, 27 (8), 2288–2299. https://doi.org/https://doi.org/10.1016/j.drudis.2022.04.011.
- Colomer, R.; Aranda-López, I.; Albanell, J.; ...F.; Martín, M.; Palacios-Calvo, J. Biomarkers in Breast Cancer: A Consensus Statement by the Spanish Society of Medical Oncology and the Spanish Society of Pathology. Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico 2018, 20 (7), 815–826. https://doi.org/10.1007/s12094-017-1800-5.
- Jin, S.; Ye, K. Targeted Drug Delivery for Breast Cancer Treatment. Recent patents on anti-cancer drug discovery 2013, 8 (2), 143–153.
- Mao, J. J.; Chung, A.; Benton, A.; Hill, S.; Ungar, L.; Leonard, C. E.; Hennessy, S.; Holmes, J. H. Online Discussion of Drug Side Effects and Discontinuation among Breast Cancer Survivors. Pharmacoepidemiology and drug safety 2013, 22 (3), 256–262. https://doi.org/10.1002/pds.3365.
- Tai, W.; Mahato, R.; Cheng, K. The Role of HER2 in Cancer Therapy and Targeted Drug Delivery. Journal of controlled release : official journal of the Controlled Release Society 2010, 146 (3), 264–275. https://doi.org/10.1016/j.jconrel.2010.04.009.
- Hurst, D. R.; Welch, D. R. Unraveling the Enigmatic Complexities of BRMS1-Mediated Metastasis Suppression. FEBS Letters 2011, 585 (20), 3185–3190. https://doi.org/https://doi.org/10.1016/j.febslet.2011.07.045.
- Rivera-Guevara, C.; Camacho, J. Tamoxifen and Its New Derivatives in Cancer Research. Recent patents on anti-cancer drug discovery 2011, 6 (2), 237–245. https://doi.org/10.2174/157489211795328486.
- Dreaden, E. C.; Mwakwari, S. C.; Sodji, Q. H.; Oyelere, A. K.; El-Sayed, M. A. Tamoxifen-Poly(Ethylene Glycol)-Thiol Gold Nanoparticle Conjugates: Enhanced Potency and Selective Delivery for Breast Cancer Treatment. Bioconjugate chemistry 2009, 20 (12), 2247–2253. https://doi.org/10.1021/bc9002212.
- Li, Y.; Humphries, B.; Yang, C.; Wang, Z. Nanoparticle-Mediated Therapeutic Agent Delivery for Treating Metastatic Breast Cancer-Challenges and Opportunities. Nanomaterials (Basel, Switzerland) 2018, 8 (6). https://doi.org/10.3390/nano8060361.
- Duffy, M. J.; Harbeck, N.; Nap, M.; Molina, R.; Nicolini, A.; Senkus, E.; Cardoso, F. Clinical Use of Biomarkers in Breast Cancer: Updated Guidelines from the European Group on Tumor Markers (EGTM). European journal of cancer (Oxford, England : 1990) 2017, 75, 284–298. https://doi.org/10.1016/j.ejca.2017.01.017.
- Rugo, H. S.; Rumble, R. B.; Macrae, E.; Barton, D. L.; ...; Burstein, H. J. Endocrine Therapy for Hormone Receptor-Positive Metastatic Breast Cancer: American Society of Clinical Oncology Guideline. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2016, 34 (25), 3069–3103. https://doi.org/10.1200/JCO.2016.67.1487.
- Parvani, J. G.; Gujrati, M. D.; Mack, M. A.; Schiemann, W. P.; Lu, Z.-R. Silencing Β3 Integrin by Targeted ECO/SiRNA Nanoparticles Inhibits EMT and Metastasis of Triple-Negative Breast Cancer. Cancer research 2015, 75 (11), 2316–2325. https://doi.org/10.1158/0008-5472.CAN-14-3485.
- Wu, X.; Han, Z.; Schur, R. M.; Lu, Z.-R. Targeted Mesoporous Silica Nanoparticles Delivering Arsenic Trioxide with Environment Sensitive Drug Release for Effective Treatment of Triple Negative Breast Cancer. ACS biomaterials science & engineering 2016, 2 (4), 501–507. https://doi.org/10.1021/acsbiomaterials.5b00398.
- Deng, X.; Cao, M.; Zhang, J.; Hu, K.; Yin, Z.; Zhou, Z.; Xiao, X.; Yang, Y.; Sheng, W.; Wu, Y.; Zeng, Y. Hyaluronic Acid-Chitosan Nanoparticles for Co-Delivery of MiR-34a and Doxorubicin in Therapy against Triple Negative Breast Cancer. Biomaterials 2014, 35 (14), 4333–4344. https://doi.org/10.1016/j.biomaterials.2014.02.006.
- Devulapally, R.; Sekar, N. M.; Sekar, T. V; Foygel, K.; Massoud, T. F.; Willmann, J. K.; Paulmurugan, R. Polymer Nanoparticles Mediated Codelivery of AntimiR-10b and AntimiR-21 for Achieving Triple Negative Breast Cancer Therapy. ACS nano 2015, 9 (3), 2290–2302. https://doi.org/10.1021/nn507465d.
- Kostryukova, L. V; Tereshkina, Y. A.; Korotkevich, E. I.; Prozorovsky, V. N.; Torkhovskaya, T. I.; Morozevich, G. E.; Toropygin, I. Y.; Konstantinov, M. A.; Tikhonova, E. G. [Targeted drug delivery system for doxorubicin based on a specific peptide and phospholipid nanoparticles]. Biomeditsinskaia khimiia 2020, 66 (6), 464–468. https://doi.org/10.18097/PBMC20206606464.
- Jafari, M.; Sriram, V.; Xu, Z.; Harris, G. M.; Lee, J.-Y. Fucoidan-Doxorubicin Nanoparticles Targeting P-Selectin for Effective Breast Cancer Therapy. Carbohydrate polymers 2020, 249, 116837. https://doi.org/10.1016/j.carbpol.2020.116837.
- Chowdhury, N.; Chaudhry, S.; Hall, N.; Olverson, G.; Zhang, Q.-J.; Mandal, T.; Dash, S.; Kundu, A. Targeted Delivery of Doxorubicin Liposomes for Her-2+ Breast Cancer Treatment. AAPS PharmSciTech 2020, 21 (6), 202. https://doi.org/10.1208/s12249-020-01743-8.
- Sui, J.; He, M.; Yang, Y.; Ma, M.; Guo, Z.; Zhao, M.; Liang, J.; Sun, Y.; Fan, Y.; Zhang, X. Reversing P-Glycoprotein-Associated Multidrug Resistance of Breast Cancer by Targeted Acid-Cleavable Polysaccharide Nanoparticles with Lapatinib Sensitization. ACS applied materials & interfaces 2020, 12 (46), 51198–51211. https://doi.org/10.1021/acsami.0c13986.
- Kim, B.; Shin, J.; Wu, J.; Omstead, D. T.; Kiziltepe, T.; Littlepage, L. E.; Bilgicer, B. Engineering Peptide-Targeted Liposomal Nanoparticles Optimized for Improved Selectivity for HER2-Positive Breast Cancer Cells to Achieve Enhanced in Vivo Efficacy. Journal of controlled release : official journal of the Controlled Release Society 2020, 322, 530–541. https://doi.org/10.1016/j.jconrel.2020.04.010.
- Shieh, M.-J.; Hsu, C.-Y.; Huang, L.-Y.; Chen, H.-Y.; Huang, F.-H.; Lai, P.-S. Reversal of Doxorubicin-Resistance by Multifunctional Nanoparticles in MCF-7/ADR Cells. Journal of controlled release : official journal of the Controlled Release Society 2011, 152 (3), 418–425. https://doi.org/10.1016/j.jconrel.2011.03.017.
- Yalcin, S.; Unsoy, G.; Mutlu, P.; Khodadust, R.; Gunduz, U. Polyhydroxybutyrate-Coated Magnetic Nanoparticles for Doxorubicin Delivery: Cytotoxic Effect against Doxorubicin-Resistant Breast Cancer Cell Line. American journal of therapeutics 2014, 21 (6), 453–461. https://doi.org/10.1097/MJT.0000000000000066.
- Bazylińska, U.; Zieliński, W.; Kulbacka, J.; Samoć, M.; Wilk, K. A. New Diamidequat-Type Surfactants in Fabrication of Long-Sustained Theranostic Nanocapsules: Colloidal Stability, Drug Delivery and Bioimaging. Colloids and surfaces. B, Biointerfaces 2016, 137, 121–132. https://doi.org/10.1016/j.colsurfb.2015.06.043.
- Mamnoon, B.; Loganathan, J.; Confeld, M. I.; De Fonseka, N.; Feng, L.; Froberg, J.; Choi, Y.; Tuvin, D. M.; Sathish, V.; Mallik, S. Targeted Polymeric Nanoparticles for Drug Delivery to Hypoxic, Triple-Negative Breast Tumors. ACS applied bio materials 2021, 4 (2), 1450–1460. https://doi.org/10.1021/acsabm.0c01336.
- Liao, W.-S.; Ho, Y.; Lin, Y.-W.; Naveen Raj, E.; Liu, K.-K.; Chen, C.; Zhou, X.-Z.; Lu, K.-P.; Chao, J.-I. Targeting EGFR of Triple-Negative Breast Cancer Enhances the Therapeutic Efficacy of Paclitaxel- and Cetuximab-Conjugated Nanodiamond Nanocomposite. Acta biomaterialia 2019, 86, 395–405. https://doi.org/10.1016/j.actbio.2019.01.025.
- Cristofolini, T.; Dalmina, M.; Sierra, J. A.; Silva, A. H.; Pasa, A. A.; Pittella, F.; Creczynski-Pasa, T. B. Multifunctional Hybrid Nanoparticles as Magnetic Delivery Systems for SiRNA Targeting the HER2 Gene in Breast Cancer Cells. Materials science & engineering. C, Materials for biological applications 2020, 109, 110555. https://doi.org/10.1016/j.msec.2019.110555.7
- Tade, R. S.; Patil, P. O. Theranostic Prospects of Graphene Quantum Dots in Breast Cancer. ACS biomaterials science & engineering 2020, 6 (11), 5987–6008. https://doi.org/10.1021/acsbiomaterials.0c01045.
- Tampaki, E. C.; Tampakis, A.; Alifieris, C. E.; Krikelis, D.; Pazaiti, A.; Kontos, M.; Trafalis, D. T. Efficacy and Safety of Neoadjuvant Treatment with Bevacizumab, Liposomal Doxorubicin, Cyclophosphamide and Paclitaxel Combination in Locally/Regionally Advanced, HER2-Negative, Grade III at Premenopausal Status Breast Cancer: A Phase II Study. Clinical drug investigation 2018, 38 (7), 639–648. https://doi.org/10.1007/s40261-018-0655-z.
- Nakajima, M.; Sakoda, Y.; Adachi, K.; Nagano, H.; Tamada, K. Improved Survival of Chimeric Antigen Receptor-Engineered T (CAR-T) and Tumor-Specific T Cells Caused by Anti-Programmed Cell Death Protein 1 Single-Chain Variable Fragment-Producing CAR-T Cells. Cancer science 2019, 110 (10), 3079–3088. https://doi.org/10.1111/cas.14169.
- Zhang, N.; Zhang, J.; Wang, P.; Liu, X.; Huo, P.; Xu, Y.; Chen, W.; Xu, H.; Tian, Q. Investigation of an Antitumor Drug-Delivery System Based on Anti-HER2 Antibody-Conjugated BSA Nanoparticles. Anti-cancer drugs 2018, 29 (4), 307–322. https://doi.org/10.1097/CAD.0000000000000586.
- Mohammadinejad, A.; Taghdisi, S. M.; Es’haghi, Z.; Abnous, K.; Mohajeri, S. A. Targeted Imaging of Breast Cancer Cells Using Two Different Kinds of Aptamers -Functionalized Nanoparticles. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences 2019, 134, 60–68. https://doi.org/10.1016/j.ejps.2019.04.012.
- Hanafi-Bojd, M. Y.; Jaafari, M. R.; Ramezanian, N.; .. Malaekeh-Nikouei, B. Surface Functionalized Mesoporous Silica Nanoparticles as an Effective Carrier for Epirubicin Delivery to Cancer Cells. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V 2015, 89, 248–258. https://doi.org/10.1016/j.ejpb.2014.12.009.
- Fang, J.; Nakamura, H.; Maeda, H. The EPR Effect: Unique Features of Tumor Blood Vessels for Drug Delivery, Factors Involved, and Limitations and Augmentation of the Effect. Advanced drug delivery reviews 2011, 63 (3), 136–151. https://doi.org/10.1016/j.addr.2010.04.009.
- Cheng, R.; Meng, F.; Deng, C.; Klok, H.-A.; Zhong, Z. Dual and Multi-Stimuli Responsive Polymeric Nanoparticles for Programmed Site-Specific Drug Delivery. Biomaterials 2013, 34 (14), 3647–3657. https://doi.org/10.1016/j.biomaterials.2013.01.084.
- Torchilin, V. Tumor Delivery of Macromolecular Drugs Based on the EPR Effect. Advanced drug delivery reviews 2011, 63 (3), 131–135. https://doi.org/10.1016/j.addr.2010.03.011.
- Godlewski, M. M.; Kaszewski, J.; Kielbik, P.; Olszewski, J.; Lipinski, W.; Slonska-Zielonka, A.; Rosowska, J.; Witkowski, B. S.; Gralak, M. A.; Gajewski, Z.; Godlewski, M. New Generation of Oxide-Based Nanoparticles for the Applications in Early Cancer Detection and Diagnostics. Nanotechnology Reviews 2020, 9 (1), 274–302. https://doi.org/doi:10.1515/ntrev-2020-0022.
- Vines, J. B.; Yoon, J.-H.; Ryu, N.-E.; Lim, D.-J.; Park, H. Gold Nanoparticles for Photothermal Cancer Therapy. Frontiers in Chemistry 2019, 7. https://doi.org/10.3389/fchem.2019.00167.
- Moore, J. A.; Chow, J. C. L. Recent Progress and Applications of Gold Nanotechnology in Medical Biophysics Using Artificial Intelligence and Mathematical Modeling. Nano Express 2021, 2 (2), 22001. https://doi.org/10.1088/2632-959x/abddd3.
- Siddique, S.; Chow, J. C. L. Gold Nanoparticles for Drug Delivery and Cancer Therapy. Applied Sciences . 2020. https://doi.org/10.3390/app10113824.
- Su, X.-Y.; Liu, P.-D.; Wu, H.; Gu, N. Enhancement of Radiosensitization by Metal-Based Nanoparticles in Cancer Radiation Therapy. Cancer biology & medicine 2014, 11 (2), 86–91. https://doi.org/10.7497/j.issn.2095-3941.2014.02.003.
- Liu, P.; Huang, Z.; Chen, Z.; Xu, R.; Wu, H.; Zang, F.; Wang, C.; Gu, N. Silver Nanoparticles: A Novel Radiation Sensitizer for Glioma? Nanoscale 2013, 5 (23), 11829–11836. https://doi.org/10.1039/c3nr01351k.
- Wahab, R.; Siddiqui, M. A.; Saquib, Q.; Dwivedi, S.; Ahmad, J.; Musarrat, J.; Al-Khedhairy, A. A.; Shin, H.-S. ZnO Nanoparticles Induced Oxidative Stress and Apoptosis in HepG2 and MCF-7 Cancer Cells and Their Antibacterial Activity. Colloids and surfaces. B, Biointerfaces 2014, 117, 267–276. https://doi.org/10.1016/j.colsurfb.2014.02.038.
- Wang, Y.; Yang, F.; Zhang, H. X.; Zi, X. Y.; Pan, X. H.; Chen, F.; Luo, W. D.; Li, J. X.; Zhu, H. Y.; Hu, Y. P. Cuprous Oxide Nanoparticles Inhibit the Growth and Metastasis of Melanoma by Targeting Mitochondria. Cell death & disease 2013, 4 (8), e783. https://doi.org/10.1038/cddis.2013.314.
- Pešić, M.; Podolski-Renić, A.; Stojković, S.; Matović, B.; Zmejkoski, D.; Kojić, V.; Bogdanović, G.; Pavićević, A.; Mojović, M.; Savić, A.; Milenković, I.; Kalauzi, A.; Radotić, K. Anti-Cancer Effects of Cerium Oxide Nanoparticles and Its Intracellular Redox Activity. Chemico-biological interactions 2015, 232, 85–93. https://doi.org/10.1016/j.cbi.2015.03.013.
- Yeh, Y.-C.; Creran, B.; Rotello, V. M. Gold Nanoparticles: Preparation, Properties, and Applications in Bionanotechnology. Nanoscale 2012, 4 (6), 1871–1880. https://doi.org/10.1039/C1NR11188D.
- Ghosh, P.; Han, G.; De, M.; Kim, C. K.; Rotello, V. M. Gold Nanoparticles in Delivery Applications. Advanced drug delivery reviews 2008, 60 (11), 1307–1315. https://doi.org/10.1016/j.addr.2008.03.016.
- Zhao, Y.; Detering, L.; Sultan, D.; Cooper, M. L.; You, M.; Cho, S.; Meier, S. L.; Luehmann, H.; Sun, G.; Rettig, M.; Dehdashti, F.; Wooley, K. L.; DiPersio, J. F.; Liu, Y. Gold Nanoclusters Doped with (64)Cu for CXCR4 Positron Emission Tomography Imaging of Breast Cancer and Metastasis. ACS nano 2016, 10 (6), 5959–5970. https://doi.org/10.1021/acsnano.6b01326.
- Chen, B.; Wu, W.; Wang, X. Magnetic Iron Oxide Nanoparticles for Tumor-Targeted Therapy. Current cancer drug targets 2011, 11 (2), 184–189. https://doi.org/10.2174/156800911794328475.
- Wang, Y.-X. J.; Xuan, S.; Port, M.; Idee, J.-M. Recent Advances in Superparamagnetic Iron Oxide Nanoparticles for Cellular Imaging and Targeted Therapy Research. Current pharmaceutical design 2013, 19 (37), 6575–6593. https://doi.org/10.2174/1381612811319370003.
- Gupta, A. K.; Gupta, M. Synthesis and Surface Engineering of Iron Oxide Nanoparticles for Biomedical Applications. Biomaterials 2005, 26 (18), 3995–4021. https://doi.org/10.1016/j.biomaterials.2004.10.012.
- Kumar, A. V. P.; Dubey, S. K.; Tiwari, S.; Puri, A.; Hejmady, S.; Gorain, B.; Kesharwani, P. Recent Advances in Nanoparticles Mediated Photothermal Therapy Induced Tumor Regression. International journal of pharmaceutics 2021, 606, 120848. https://doi.org/10.1016/j.ijpharm.2021.120848.
- Jeon, M.; Lin, G.; Stephen, Z. R.; Kato, F. L.; Zhang, M. Paclitaxel-Loaded Iron Oxide Nanoparticles for Targeted Breast Cancer Therapy. Advanced Therapeutics 2019, 2 (12), 1900081. https://doi.org/https://doi.org/10.1002/adtp.201900081.
- Attari, E.; Nosrati, H.; Danafar, H.; Kheiri Manjili, H. Methotrexate Anticancer Drug Delivery to Breast Cancer Cell Lines by Iron Oxide Magnetic Based Nanocarrier. Journal of Biomedical Materials Research Part A 2019, 107 (11), 2492–2500. https://doi.org/https://doi.org/10.1002/jbm.a.36755.
- Soleymani, M.; Khalighfard, S.; Khodayari, S.; Khodayari, H.; Kalhori, M. R.; Hadjighassem, M. R.; Shaterabadi, Z.; Alizadeh, A. M. Effects of Multiple Injections on the Efficacy and Cytotoxicity of Folate-Targeted Magnetite Nanoparticles as Theranostic Agents for MRI Detection and Magnetic Hyperthermia Therapy of Tumor Cells. Scientific reports 2020, 10 (1), 1695. https://doi.org/10.1038/s41598-020-58605-3.
- Kairdolf, B. A.; Smith, A. M.; Stokes, T. H.; Wang, M. D.; Young, A. N.; Nie, S. Semiconductor Quantum Dots for Bioimaging and Biodiagnostic Applications. Annual review of analytical chemistry (Palo Alto, Calif.) 2013, 6 (1), 143–162. https://doi.org/10.1146/annurev-anchem-060908-155136.
- Yaghini, E.; Pirker, K. F.; Kay, C. W. M.; Seifalian, A. M.; MacRobert, A. J. Quantification of Reactive Oxygen Species Generation by Photoexcitation of PEGylated Quantum Dots. Small (Weinheim an der Bergstrasse, Germany) 2014, 10 (24), 5106–5115. https://doi.org/10.1002/smll.201401209.
- Yezhelyev, M. V.; Al-Hajj, A.; Morris, C.; Marcus, A. I.; Liu, T.; Lewis, M.; Cohen, C.; Zrazhevskiy, P.; Simons, J. W.; Rogatko, A.; Nie, S.; Gao, X.; O’Regan, R. M. In Situ Molecular Profiling of Breast Cancer Biomarkers with Multicolor Quantum Dots. Advanced Materials 2007, 19 (20), 3146–3151. https://doi.org/https://doi.org/10.1002/adma.200701983.
- Samimi, S.; Ardestani, M. S.; Dorkoosh, F. A. Preparation of Carbon Quantum Dots- Quinic Acid for Drug Delivery of Gemcitabine to Breast Cancer Cells. Journal of Drug Delivery Science and Technology 2021, 61, 102287. https://doi.org/https://doi.org/10.1016/j.jddst.2020.102287.
- Chung, S.; Revia, R. A.; Zhang, M. Graphene Quantum Dots and Their Applications in Bioimaging, Biosensing, and Therapy. Advanced Materials 2021, 33 (22), 1904362. https://doi.org/https://doi.org/10.1002/adma.201904362.
- Gao, Y.; Gao, D.; Shen, J.; Wang, Q. A Review of Mesoporous Silica Nanoparticle Delivery Systems in Chemo-Based Combination Cancer Therapies. Frontiers in Chemistry 2020, 8. https://doi.org/10.3389/fchem.2020.598722.
- Tsai, C.-P.; Chen, C.-Y.; Hung, Y.; Chang, F.-H.; Mou, C.-Y. Monoclonal Antibody-Functionalized Mesoporous Silica Nanoparticles (MSN) for Selective Targeting Breast Cancer Cells. Journal of Materials Chemistry 2009, 19 (32), 5737–5743. https://doi.org/10.1039/B905158A.
- Meng, H.; Mai, W. X.; Zhang, H.; Xue, M.; Xia, T.; Lin, S.; Wang, X.; Zhao, Y.; Ji, Z.; Zink, J. I.; Nel, A. E. Codelivery of an Optimal Drug/SiRNA Combination Using Mesoporous Silica Nanoparticles to Overcome Drug Resistance in Breast Cancer in Vitro and in Vivo. ACS nano 2013, 7 (2), 994–1005. https://doi.org/10.1021/nn3044066.
- Milgroom, A.; Intrator, M.; Madhavan, K.; Mazzaro, L.; Shandas, R.; Liu, B.; Park, D. Mesoporous Silica Nanoparticles as a Breast-Cancer Targeting Ultrasound Contrast Agent. Colloids and surfaces. B, Biointerfaces 2014, 116, 652–657. https://doi.org/10.1016/j.colsurfb.2013.10.038.
- Fortuni, B.; Inose, T.; Ricci, M.; Fujita, Y.; Van Zundert, I.; Masuhara, A.; Fron, E.; Mizuno, H.; Latterini, L.; Rocha, S.; Uji-I, H. Polymeric Engineering of Nanoparticles for Highly Efficient Multifunctional Drug Delivery Systems. Scientific reports 2019, 9 (1), 2666. https://doi.org/10.1038/s41598-019-39107-3.
- Moodley, T.; Singh, M. Sterically Stabilised Polymeric Mesoporous Silica Nanoparticles Improve Doxorubicin Efficiency: Tailored Cancer Therapy. Molecules (Basel, Switzerland) 2020, 25 (3). https://doi.org/10.3390/molecules25030742.
- Augustine, S.; Singh, J.; Srivastava, M.; Sharma, M.; Das, A.; Malhotra, B. D. Recent Advances in Carbon Based Nanosystems for Cancer Theranostics. Biomaterials science 2017, 5 (5), 901–952. https://doi.org/10.1039/c7bm00008a.
- Chadar, R.; Afzal, O.; Alqahtani, S. M.; Kesharwani, P. Carbon Nanotubes as an Emerging Nanocarrier for the Delivery of Doxorubicin for Improved Chemotherapy. Colloids and surfaces. B, Biointerfaces 2021, 208, 112044. https://doi.org/10.1016/j.colsurfb.2021.112044.
- Xiao, Y.; Gao, X.; Taratula, O.; Treado, S.; Urbas, A.; Holbrook, R. D.; Cavicchi, R. E.; Avedisian, C. T.; Mitra, S.; Savla, R.; Wagner, P. D.; Srivastava, S.; He, H. Anti-HER2 IgY Antibody-Functionalized Single-Walled Carbon Nanotubes for Detection and Selective Destruction of Breast Cancer Cells. BMC cancer 2009, 9, 351. https://doi.org/10.1186/1471-2407-9-351.
- Hampel, S.; Kunze, D.; Haase, D.; Krämer, K.; Rauschenbach, M.; Ritschel, M.; Leonhardt, A.; Thomas, J.; Oswald, S.; Hoffmann, V.; Büchner, B. Carbon Nanotubes Filled with a Chemotherapeutic Agent: A Nanocarrier Mediates Inhibition of Tumor Cell Growth. Nanomedicine (London, England) 2008, 3 (2), 175–182. https://doi.org/10.2217/17435889.3.2.175.
- Liu, Z.; Sun, X.; Nakayama-Ratchford, N.; Dai, H. Supramolecular Chemistry on Water-Soluble Carbon Nanotubes for Drug Loading and Delivery. ACS nano 2007, 1 (1), 50–56. https://doi.org/10.1021/nn700040t.
- Liu, Z.; Chen, K.; Davis, C.; Sherlock, S.; Cao, Q.; Chen, X.; Dai, H. Drug Delivery with Carbon Nanotubes for in Vivo Cancer Treatment. Cancer research 2008, 68 (16), 6652–6660. https://doi.org/10.1158/0008-5472.CAN-08-1468.
- Shao, W.; Paul, A.; Zhao, B.; Lee, C.; Rodes, L.; Prakash, S. Carbon Nanotube Lipid Drug Approach for Targeted Delivery of a Chemotherapy Drug in a Human Breast Cancer Xenograft Animal Model. Biomaterials 2013, 34 (38), 10109–10119. https://doi.org/10.1016/j.biomaterials.2013.09.007.
- Casais-Molina, M. L.; Cab, C.; Canto, G.; Medina, J.; Tapia, A. Carbon Nanomaterials for Breast Cancer Treatment. Journal of Nanomaterials 2018, 2018, 2058613. https://doi.org/10.1155/2018/2058613.
- Raza, K.; Thotakura, N.; Kumar, P.; Joshi, M.; Bhushan, S.; Bhatia, A.; Kumar, V.; Malik, R.; Sharma, G.; Guru, S. K.; Katare, O. P. C60-Fullerenes for Delivery of Docetaxel to Breast Cancer Cells: A Promising Approach for Enhanced Efficacy and Better Pharmacokinetic Profile. International journal of pharmaceutics 2015, 495 (1), 551–559. https://doi.org/10.1016/j.ijpharm.2015.09.016.
- Mehra, N. K.; Jain, A. K.; Lodhi, N.; Raj, R.; Dubey, V.; Mishra, D.; Nahar, M.; Jain, N. K. Challenges in the Use of Carbon Nanotubes for Biomedical Applications. Critical reviews in therapeutic drug carrier systems 2008, 25 (2), 169–206. https://doi.org/10.1615/critrevtherdrugcarriersyst.v25.i2.20.
- Kong, T.; Hao, L.; Wei, Y.; Cai, X.; Zhu, B. Doxorubicin Conjugated Carbon Dots as a Drug Delivery System for Human Breast Cancer Therapy. Cell proliferation 2018, 51 (5), e12488. https://doi.org/10.1111/cpr.12488.
- Esfandiari, N.; Arzanani, M. K.; Soleimani, M.; Kohi-Habibi, M.; Svendsen, W. E. A New Application of Plant Virus Nanoparticles as Drug Delivery in Breast Cancer. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 2016, 37 (1), 1229–1236. https://doi.org/10.1007/s13277-015-3867-3.
- Le, D. H. T.; Lee, K. L.; Shukla, S.; Commandeur, U.; Steinmetz, N. F. Potato Virus X, a Filamentous Plant Viral Nanoparticle for Doxorubicin Delivery in Cancer Therapy. Nanoscale 2017, 9 (6), 2348–2357. https://doi.org/10.1039/c6nr09099k.
- Steinmetz, N. F. Viral Nanoparticles as Platforms for Next-Generation Therapeutics and Imaging Devices. Nanomedicine : nanotechnology, biology, and medicine 2010, 6 (5), 634–641. https://doi.org/10.1016/j.nano.2010.04.005.
- Fritze, A.; Hens, F.; Kimpfler, A.; Schubert, R.; Peschka-Süss, R. Remote Loading of Doxorubicin into Liposomes Driven by a Transmembrane Phosphate Gradient. Biochimica et Biophysica Acta (BBA) - Biomembranes 2006, 1758 (10), 1633–1640. https://doi.org/https://doi.org/10.1016/j.bbamem.2006.05.028.
- Boman, N. L.; Masin, D.; Mayer, L. D.; Cullis, P. R.; Bally, M. B. Liposomal Vincristine Which Exhibits Increased Drug Retention and Increased Circulation Longevity Cures Mice Bearing P388 Tumors. Cancer research 1994, 54 (11), 2830–2833.
- Marcial, S. P. S.; Carneiro, G.; Leite, E. A. Lipid-Based Nanoparticles as Drug Delivery System for Paclitaxel in Breast Cancer Treatment. Journal of Nanoparticle Research 2017, 19, 1–11.
- Yang, T.; Cui, F.-D.; Choi, M.-K.; Cho, J.-W.; Chung, S.-J.; Shim, C.-K.; Kim, D.-D. Enhanced Solubility and Stability of PEGylated Liposomal Paclitaxel: In Vitro and in Vivo Evaluation. International Journal of Pharmaceutics 2007, 338 (1), 317–326. https://doi.org/https://doi.org/10.1016/j.ijpharm.2007.02.011.
- Wong, M.-Y.; Chiu, G. N. C. Liposome Formulation of Co-Encapsulated Vincristine and Quercetin Enhanced Antitumor Activity in a Trastuzumab-Insensitive Breast Tumor Xenograft Model. Nanomedicine: Nanotechnology, Biology and Medicine 2011, 7 (6), 834–840. https://doi.org/https://doi.org/10.1016/j.nano.2011.02.001.
- Dhankhar, R.; Vyas, S. P.; Jain, A. K.; Arora, S.; Rath, G.; Goyal, A. K. Advances in Novel Drug Delivery Strategies for Breast Cancer Therapy. Artificial Cells, Blood Substitutes, and Biotechnology 2010, 38 (5), 230–249. https://doi.org/10.3109/10731199.2010.494578.
- Hayes, M. E.; Drummond, D. C.; Kirpotin, D. B.; Zheng, W. W.; Noble, C. O.; Park, J. W.; Marks, J. D.; Benz, C. C.; Hong, K. Genospheres: Self-Assembling Nucleic Acid-Lipid Nanoparticles Suitable for Targeted Gene Delivery. Gene Therapy 2006, 13 (7), 646–651. https://doi.org/10.1038/sj.gt.3302699.
- Hortobagyi, G. N.; Ueno, N. T.; Xia, W.; Zhang, S.;...; Hung, M. C. Cationic Liposome-Mediated E1A Gene Transfer to Human Breast and Ovarian Cancer Cells and Its Biologic Effects: A Phase I Clinical Trial. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2001, 19 (14), 3422–3433. https://doi.org/10.1200/JCO.2001.19.14.3422.
- Cao, J.; Wang, R.; Gao, N.; Li, M.; Tian, X.; Yang, W.; Ruan, Y.; Zhou, C.; Wang, G.; Liu, X.; Tang, S.; Yu, Y.; Liu, Y.; Sun, G.; Peng, H.; Wang, Q. A7RC Peptide Modified Paclitaxel Liposomes Dually Target Breast Cancer. Biomaterials Science 2015, 3 (12), 1545–1554. https://doi.org/10.1039/C5BM00161G.
- Şalva, E.; Turan, S. Ö.; Eren, F.; Akbuğa, J. The Enhancement of Gene Silencing Efficiency with Chitosan-Coated Liposome Formulations of SiRNAs Targeting HIF-1α and VEGF. International Journal of Pharmaceutics 2015, 478 (1), 147–154. https://doi.org/https://doi.org/10.1016/j.ijpharm.2014.10.065.
- Nishimura, Y.; Mieda, H.; Ishii, J.; Ogino, C.; Fujiwara, T.; Kondo, A. Targeting Cancer Cell-Specific RNA Interference by SiRNA Delivery Using a Complex Carrier of Affibody-Displaying Bio-Nanocapsules and Liposomes. Journal of Nanobiotechnology 2013, 11 (1), 19. https://doi.org/10.1186/1477-3155-11-19.
- Chen, Y.; Bathula, S. R.; Li, J.; Huang, L. Multifunctional Nanoparticles Delivering Small Interfering RNA and Doxorubicin Overcome Drug Resistance in Cancer*. Journal of Biological Chemistry 2010, 285 (29), 22639–22650. https://doi.org/https://doi.org/10.1074/jbc.M110.125906.
- Dhanjal, D. S.; Mehta, M.; Chopra, C.; ..; Satija, S. Chapter 15 - Novel Controlled Release Pulmonary Drug Delivery Systems: Current Updates and Challenges; Azar, A. T. B. T.-M. and C. of D. D. S., Ed.; Academic Press, 2021; pp 253–272. https://doi.org/https://doi.org/10.1016/B978-0-12-821185-4.00001-4.
- Pandey, A.; Jain, R. Polymer-Based Biomaterials: An Emerging Electrochemical Sensor BT - Handbook of Polymer and Ceramic Nanotechnology; Hussain, C. M., Thomas, S., Eds.; Springer International Publishing: Cham, 2020; pp 1–19. https://doi.org/10.1007/978-3-030-10614-0_60-1.
- Pulingam, T.; Foroozandeh, P.; Chuah, J.-A.; Sudesh, K. Exploring Various Techniques for the Chemical and Biological Synthesis of Polymeric Nanoparticles. Nanomaterials (Basel, Switzerland) 2022, 12 (3). https://doi.org/10.3390/nano12030576.
- Wang, B.; Wang, S.; Zhang, Q.; Deng, Y.; Li, X.; Peng, L.; Zuo, X.; Piao, M.; Kuang, X.; Sheng, S.; Yu, Y. Recent Advances in Polymer-Based Drug Delivery Systems for Local Anesthetics. Acta Biomaterialia 2019, 96, 55–67. https://doi.org/https://doi.org/10.1016/j.actbio.2019.05.044.
- Jin, H.; Pi, J.; Zhao, Y.; Jiang, J.; Li, T.; Zeng, X.; Yang, P.; Evans, C. E.; Cai, J. EGFR-Targeting PLGA-PEG Nanoparticles as a Curcumin Delivery System for Breast Cancer Therapy. Nanoscale 2017, 9 (42), 16365–16374. https://doi.org/10.1039/c7nr06898k.
- Masood, F. Polymeric Nanoparticles for Targeted Drug Delivery System for Cancer Therapy. Materials Science and Engineering: C 2016, 60, 569–578. https://doi.org/https://doi.org/10.1016/j.msec.2015.11.067.
- Shenoy, D. B.; Amiji, M. M. Poly(Ethylene Oxide)-Modified Poly(ɛ-Caprolactone) Nanoparticles for Targeted Delivery of Tamoxifen in Breast Cancer. International Journal of Pharmaceutics 2005, 293 (1), 261–270. https://doi.org/https://doi.org/10.1016/j.ijpharm.2004.12.010.
- Lee, J. H.; Nan, A. Combination Drug Delivery Approaches in Metastatic Breast Cancer. Journal of drug delivery 2012, 2012, 915375. https://doi.org/10.1155/2012/915375.
- Jin, G.; He, R.; Liu, Q.; Dong, Y.; Lin, M.; Li, W.; Xu, F. Theranostics of Triple-Negative Breast Cancer Based on Conjugated Polymer Nanoparticles. ACS Applied Materials & Interfaces 2018, 10 (13), 10634–10646. https://doi.org/10.1021/acsami.7b14603.
- Pandey, S. K.; Patel, D. K.; Maurya, A. K.; Thakur, R.; Mishra, D. P.; Vinayak, M.; Haldar, C.; Maiti, P. Controlled Release of Drug and Better Bioavailability Using Poly(Lactic Acid-Co-Glycolic Acid) Nanoparticles. International Journal of Biological Macromolecules 2016, 89, 99–110. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2016.04.065.
- Alexis, F.; Pridgen, E.; Molnar, L. K.; Farokhzad, O. C. Factors Affecting the Clearance and Biodistribution of Polymeric Nanoparticles. Molecular Pharmaceutics 2008, 5 (4), 505–515. https://doi.org/10.1021/mp800051m.
- Sedghi, R.; Shaabani, A.; Mohammadi, Z.; Samadi, F. Y.; Isaei, E. Biocompatible Electrospinning Chitosan Nanofibers: A Novel Delivery System with Superior Local Cancer Therapy. Carbohydrate Polymers 2017, 159, 1–10. https://doi.org/https://doi.org/10.1016/j.carbpol.2016.12.011.
- Zahmatkeshan, M.; Adel, M.; Bahrami, S.; Esmaeili, F.; Rezayat, S. M.; Saeedi, Y.; Mehravi, B.; Jameie, S. B.; Ashtari, K. Polymer Based Nanofibers: Preparation, Fabrication, and Applications BT - Handbook of Nanofibers; Barhoum, A., Bechelany, M., Makhlouf, A., Eds.; Springer International Publishing: Cham, 2018; pp 1–47. https://doi.org/10.1007/978-3-319-42789-8_29-2.
- Jayakumar, R.; Prabaharan, M.; Nair, S. V; Tamura, H. Novel Chitin and Chitosan Nanofibers in Biomedical Applications. Biotechnology Advances 2010, 28 (1), 142–150. https://doi.org/https://doi.org/10.1016/j.biotechadv.2009.11.001.
- Marty, M.; Cognetti, F.; Maraninchi, D.; Snyder, R.; Mauriac, L.; ..., K.; Extra, J.-M. Randomized Phase II Trial of the Efficacy and Safety of Trastuzumab Combined With Docetaxel in Patients With Human Epidermal Growth Factor Receptor 2–Positive Metastatic Breast Cancer Administered As First-Line Treatment: The M77001 Study Group. Journal of Clinical Oncology 2005, 23 (19), 4265–4274.
Meme kanseri tedavisinde yeni bir yaklaşım: hedefledirilmiş nanotaşıyıcı sistemler
Year 2022,
, 81 - 92, 31.12.2022
Nazan Gökşen Tosun
,
Özlem Kaplan
,
Seçil Erden Tayhan
,
Cemil Alkan
,
İsa Gökçe
Abstract
Kanser, dünyadaki en yaygın hastalıklardan biridir. Meme kanseri, akciğer kanserinden sonra ikinci en ölümcül kanser türüdür. Cerrahi müdahale, kemoterapi ve radyoterapi meme kanseri tedavisinde en çok kullanılan geleneksel yöntemlerdir. Konvansiyonel tedavilerin hedefe yönelik olmayan yaklaşımı, sağlıklı hücrelerde ve dokularda ciddi yan etkilere neden olur ve mortalite genellikle bu geleneksel tedavilerin yan etkilerinden dolayı gerçekleşmektedir. Son yıllarda kanser hücrelerini hedef alan ilaç taşıyıcı sistemler adı verilen nano boyutlu partiküller kanser tedavisinde yeni bir yaklaşım olarak dikkatleri üzerine çekmektedir. Bu nanotaşıyıcı sistemlerin sağlıklı dokulara zarar vermeden tümör hücrelerini hedef alması meme kanseri tedavisi için umut verici bir yaklaşımdır. Ayrıca nanotaşıyıcılar, düşük toksisite, yüksek biyouyumluluk, biyobozunurluk, kullanım kolaylığı, yüksek doz ilaç yükleme ve ayarlanabilir yüzey işlevleri gösterebilen benzersiz biyomalzemelerdir. Bu çalışmada, meme kanseri tedavisine alternatif bir yaklaşım sunan nanotaşıyıcıların son çalışmalarını eleştirel bir analizle özetledik.
References
- DeSantis, C. E.; Fedewa, S. A.; Goding Sauer, A.; Kramer, J. L.; Smith, R. A.; Jemal, A. Breast Cancer Statistics, 2015: Convergence of Incidence Rates between Black and White Women. CA: a cancer journal for clinicians 2016, 66 (1), 31–42. https://doi.org/10.3322/caac.21320.
- Roberto, P.-B.; F., F. M.; Gemma, C.-V.; Denis, W.; Beatriz, P.-G.; Javier, L.; M., V. C.; ... Marina, P. Total Effective Xenoestrogen Burden in Serum Samples and Risk for Breast Cancer in a Population-Based Multicase–Control Study in Spain. Environmental Health Perspectives 2016, 124 (10), 1575–1582. https://doi.org/10.1289/EHP157.
- Wang, X.; Li, L.; Gao, J.; Liu, J.; Guo, M.; Liu, L.; Wang, W.; Wang, J.; Xing, Z.; Yu, Z.; Wang, X. The Association Between Body Size and Breast Cancer in Han Women in Northern and Eastern China. The Oncologist 2016, 21 (11), 1362–1368. https://doi.org/https://doi.org/10.1634/theoncologist.2016-0147.
- Wielsøe, M.; Gudmundsdottir, S.; Bonefeld-Jørgensen, E. C. Reproductive History and Dietary Habits and Breast Cancer Risk in Greenlandic Inuit: A Case Control Study. Public Health 2016, 137, 50–58. https://doi.org/https://doi.org/10.1016/j.puhe.2016.06.016.
- Namiranian, N.; Moradi-Lakeh, M.; Razavi-Ratki, S. K.; Doayie, M.; Nojomi, M. Risk Factors of Breast Cancer in the Eastern Mediterranean Region: A Systematic Review and Meta-Analysis. Asian Pacific Journal of Cancer Prevention 2014, 15 (21), 9535–9541. https://doi.org/10.7314/APJCP.2014.15.21.9535.
- Shield, K. D.; Soerjomataram, I.; Rehm, J. Alcohol Use and Breast Cancer: A Critical Review. Alcoholism: Clinical and Experimental Research 2016, 40 (6), 1166–1181. https://doi.org/https://doi.org/10.1111/acer.13071.
- Hanf, V.; Hanf, D. Reproduction and Breast Cancer Risk. Breast Care 2014, 9 (6), 398–405. https://doi.org/10.1159/000369570.
- Senapati, S.; Mahanta, A. K.; Kumar, S.; Maiti, P. Controlled Drug Delivery Vehicles for Cancer Treatment and Their Performance. Signal Transduction and Targeted Therapy 2018, 3 (1), 1–19. https://doi.org/10.1038/s41392-017-0004-3.
- Prihantono; Faruk, M. Breast Cancer Resistance to Chemotherapy: When Should We Suspect It and How Can We Prevent It? Annals of Medicine and Surgery 2021, 70, 102793. https://doi.org/https://doi.org/10.1016/j.amsu.2021.102793.
- Tharkar, P.; Varanasi, R.; Wong, W. S. F.; Jin, C. T.; Chrzanowski, W. Nano-Enhanced Drug Delivery and Therapeutic Ultrasound for Cancer Treatment and Beyond. Frontiers in Bioengineering and Biotechnology 2019, 7. https://doi.org/10.3389/fbioe.2019.00324.
- Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The Different Mechanisms of Cancer Drug Resistance: A Brief Review. Advanced pharmaceutical bulletin 2017, 7 (3), 339–348. https://doi.org/10.15171/apb.2017.041.
- Fang, X.; Cao, J.; Shen, A. Advances in Anti-Breast Cancer Drugs and the Application of Nano-Drug Delivery Systems in Breast Cancer Therapy. Journal of Drug Delivery Science and Technology 2020, 57 (February), 101662. https://doi.org/10.1016/j.jddst.2020.101662.
- Kaushik, N.; Borkar, S. B.; Nandanwar, S. K.; Panda, P. K.; Choi, E. H.; Kaushik, N. K. Nanocarrier Cancer Therapeutics with Functional Stimuli-Responsive Mechanisms. Journal of nanobiotechnology 2022, 20 (1), 152. https://doi.org/10.1186/s12951-022-01364-2.
- Ruman, U.; Fakurazi, S.; Masarudin, M. J.; Hussein, M. Z. Nanocarrier-Based Therapeutics and Theranostics Drug Delivery Systems for Next Generation of Liver Cancer Nanodrug Modalities. International journal of nanomedicine 2020, 15, 1437–1456. https://doi.org/10.2147/IJN.S236927.
- Ke, X.; Ng, V. W. L.; Ono, R. J.; Chan, J. M. W.; Krishnamurthy, S.; Wang, Y.; Hedrick, J. L.; Yang, Y. Y. Role of Non-Covalent and Covalent Interactions in Cargo Loading Capacity and Stability of Polymeric Micelles. Journal of Controlled Release 2014, 193, 9–26. https://doi.org/https://doi.org/10.1016/j.jconrel.2014.06.061.
- Montané, X.; Bajek, A.; Roszkowski, K.; Montornés, J. M.; Giamberini, M.; Roszkowski, S.; Kowalczyk, O.; Garcia-Valls, R.; Tylkowski, B. Encapsulation for Cancer Therapy. Molecules (Basel, Switzerland) 2020, 25 (7). https://doi.org/10.3390/molecules25071605.
- Yao, Y.; Zhou, Y.; Liu, L.; Xu, Y.; Chen, Q.; Wang, Y.; Wu, S.; Deng, Y.; Zhang, J.; Shao, A. Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. Frontiers in molecular biosciences 2020, 7, 193. https://doi.org/10.3389/fmolb.2020.00193.
- Karahaliloğlu, Z.; Kilicay, E.; Alpaslan, P.; Hazer, B.; Baki Denkbas, E. Enhanced Antitumor Activity of Epigallocatechin Gallate–Conjugated Dual-Drug-Loaded Polystyrene–Polysoyaoil–Diethanol Amine Nanoparticles for Breast Cancer Therapy. Journal of Bioactive and Compatible Polymers 2017, 33 (1), 38–62. https://doi.org/10.1177/0883911517710811.
- Deng, Z. J.; Morton, S. W.; Ben-Akiva, E.; Dreaden, E. C.; Shopsowitz, K. E.; Hammond, P. T. Layer-by-Layer Nanoparticles for Systemic Codelivery of an Anticancer Drug and SiRNA for Potential Triple-Negative Breast Cancer Treatment. ACS Nano 2013, 7 (11), 9571–9584. https://doi.org/10.1021/nn4047925.
- Singh, S. K.; Singh, S.; Lillard, J. W. J.; Singh, R. Drug Delivery Approaches for Breast Cancer. International journal of nanomedicine 2017, 12, 6205–6218. https://doi.org/10.2147/IJN.S140325.
- You, Y.; Xu, Z.; Chen, Y. Doxorubicin Conjugated with a Trastuzumab Epitope and an MMP-2 Sensitive Peptide Linker for the Treatment of HER2-Positive Breast Cancer. Drug Delivery 2018, 25 (1), 448–460. https://doi.org/10.1080/10717544.2018.1435746.
- Xu, R.; Sui, J.; Zhao, M.; Yang, Y.; Tong, L.; Liu, Y.; Sun, Y.; Fan, Y.; Liang, J.; Zhang, X. Targeted Inhibition of HER-2 Positive Breast Cancer Cells by Trastuzumab Functionalized Pullulan-Doxorubicin Nanoparticles. Polymer Testing 2022, 113, 107669. https://doi.org/https://doi.org/10.1016/j.polymertesting.2022.107669.
- Pourradi, N. M. A.; Babaei, H.; Hamishehkar, H.; Baradaran, B.; ... Ghorbani, M.; Azarmi, Y. Targeted Delivery of Doxorubicin by Thermo/PH-Responsive Magnetic Nanoparticles in a Rat Model of Breast Cancer. Toxicology and Applied Pharmacology 2022, 446, 116036. https://doi.org/https://doi.org/10.1016/j.taap.2022.116036.
- Khan, N.; Ruchika; Dhritlahre, R. K.; Saneja, A. Recent Advances in Dual-Ligand Targeted Nanocarriers for Cancer Therapy. Drug Discovery Today 2022, 27 (8), 2288–2299. https://doi.org/https://doi.org/10.1016/j.drudis.2022.04.011.
- Colomer, R.; Aranda-López, I.; Albanell, J.; ...F.; Martín, M.; Palacios-Calvo, J. Biomarkers in Breast Cancer: A Consensus Statement by the Spanish Society of Medical Oncology and the Spanish Society of Pathology. Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico 2018, 20 (7), 815–826. https://doi.org/10.1007/s12094-017-1800-5.
- Jin, S.; Ye, K. Targeted Drug Delivery for Breast Cancer Treatment. Recent patents on anti-cancer drug discovery 2013, 8 (2), 143–153.
- Mao, J. J.; Chung, A.; Benton, A.; Hill, S.; Ungar, L.; Leonard, C. E.; Hennessy, S.; Holmes, J. H. Online Discussion of Drug Side Effects and Discontinuation among Breast Cancer Survivors. Pharmacoepidemiology and drug safety 2013, 22 (3), 256–262. https://doi.org/10.1002/pds.3365.
- Tai, W.; Mahato, R.; Cheng, K. The Role of HER2 in Cancer Therapy and Targeted Drug Delivery. Journal of controlled release : official journal of the Controlled Release Society 2010, 146 (3), 264–275. https://doi.org/10.1016/j.jconrel.2010.04.009.
- Hurst, D. R.; Welch, D. R. Unraveling the Enigmatic Complexities of BRMS1-Mediated Metastasis Suppression. FEBS Letters 2011, 585 (20), 3185–3190. https://doi.org/https://doi.org/10.1016/j.febslet.2011.07.045.
- Rivera-Guevara, C.; Camacho, J. Tamoxifen and Its New Derivatives in Cancer Research. Recent patents on anti-cancer drug discovery 2011, 6 (2), 237–245. https://doi.org/10.2174/157489211795328486.
- Dreaden, E. C.; Mwakwari, S. C.; Sodji, Q. H.; Oyelere, A. K.; El-Sayed, M. A. Tamoxifen-Poly(Ethylene Glycol)-Thiol Gold Nanoparticle Conjugates: Enhanced Potency and Selective Delivery for Breast Cancer Treatment. Bioconjugate chemistry 2009, 20 (12), 2247–2253. https://doi.org/10.1021/bc9002212.
- Li, Y.; Humphries, B.; Yang, C.; Wang, Z. Nanoparticle-Mediated Therapeutic Agent Delivery for Treating Metastatic Breast Cancer-Challenges and Opportunities. Nanomaterials (Basel, Switzerland) 2018, 8 (6). https://doi.org/10.3390/nano8060361.
- Duffy, M. J.; Harbeck, N.; Nap, M.; Molina, R.; Nicolini, A.; Senkus, E.; Cardoso, F. Clinical Use of Biomarkers in Breast Cancer: Updated Guidelines from the European Group on Tumor Markers (EGTM). European journal of cancer (Oxford, England : 1990) 2017, 75, 284–298. https://doi.org/10.1016/j.ejca.2017.01.017.
- Rugo, H. S.; Rumble, R. B.; Macrae, E.; Barton, D. L.; ...; Burstein, H. J. Endocrine Therapy for Hormone Receptor-Positive Metastatic Breast Cancer: American Society of Clinical Oncology Guideline. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2016, 34 (25), 3069–3103. https://doi.org/10.1200/JCO.2016.67.1487.
- Parvani, J. G.; Gujrati, M. D.; Mack, M. A.; Schiemann, W. P.; Lu, Z.-R. Silencing Β3 Integrin by Targeted ECO/SiRNA Nanoparticles Inhibits EMT and Metastasis of Triple-Negative Breast Cancer. Cancer research 2015, 75 (11), 2316–2325. https://doi.org/10.1158/0008-5472.CAN-14-3485.
- Wu, X.; Han, Z.; Schur, R. M.; Lu, Z.-R. Targeted Mesoporous Silica Nanoparticles Delivering Arsenic Trioxide with Environment Sensitive Drug Release for Effective Treatment of Triple Negative Breast Cancer. ACS biomaterials science & engineering 2016, 2 (4), 501–507. https://doi.org/10.1021/acsbiomaterials.5b00398.
- Deng, X.; Cao, M.; Zhang, J.; Hu, K.; Yin, Z.; Zhou, Z.; Xiao, X.; Yang, Y.; Sheng, W.; Wu, Y.; Zeng, Y. Hyaluronic Acid-Chitosan Nanoparticles for Co-Delivery of MiR-34a and Doxorubicin in Therapy against Triple Negative Breast Cancer. Biomaterials 2014, 35 (14), 4333–4344. https://doi.org/10.1016/j.biomaterials.2014.02.006.
- Devulapally, R.; Sekar, N. M.; Sekar, T. V; Foygel, K.; Massoud, T. F.; Willmann, J. K.; Paulmurugan, R. Polymer Nanoparticles Mediated Codelivery of AntimiR-10b and AntimiR-21 for Achieving Triple Negative Breast Cancer Therapy. ACS nano 2015, 9 (3), 2290–2302. https://doi.org/10.1021/nn507465d.
- Kostryukova, L. V; Tereshkina, Y. A.; Korotkevich, E. I.; Prozorovsky, V. N.; Torkhovskaya, T. I.; Morozevich, G. E.; Toropygin, I. Y.; Konstantinov, M. A.; Tikhonova, E. G. [Targeted drug delivery system for doxorubicin based on a specific peptide and phospholipid nanoparticles]. Biomeditsinskaia khimiia 2020, 66 (6), 464–468. https://doi.org/10.18097/PBMC20206606464.
- Jafari, M.; Sriram, V.; Xu, Z.; Harris, G. M.; Lee, J.-Y. Fucoidan-Doxorubicin Nanoparticles Targeting P-Selectin for Effective Breast Cancer Therapy. Carbohydrate polymers 2020, 249, 116837. https://doi.org/10.1016/j.carbpol.2020.116837.
- Chowdhury, N.; Chaudhry, S.; Hall, N.; Olverson, G.; Zhang, Q.-J.; Mandal, T.; Dash, S.; Kundu, A. Targeted Delivery of Doxorubicin Liposomes for Her-2+ Breast Cancer Treatment. AAPS PharmSciTech 2020, 21 (6), 202. https://doi.org/10.1208/s12249-020-01743-8.
- Sui, J.; He, M.; Yang, Y.; Ma, M.; Guo, Z.; Zhao, M.; Liang, J.; Sun, Y.; Fan, Y.; Zhang, X. Reversing P-Glycoprotein-Associated Multidrug Resistance of Breast Cancer by Targeted Acid-Cleavable Polysaccharide Nanoparticles with Lapatinib Sensitization. ACS applied materials & interfaces 2020, 12 (46), 51198–51211. https://doi.org/10.1021/acsami.0c13986.
- Kim, B.; Shin, J.; Wu, J.; Omstead, D. T.; Kiziltepe, T.; Littlepage, L. E.; Bilgicer, B. Engineering Peptide-Targeted Liposomal Nanoparticles Optimized for Improved Selectivity for HER2-Positive Breast Cancer Cells to Achieve Enhanced in Vivo Efficacy. Journal of controlled release : official journal of the Controlled Release Society 2020, 322, 530–541. https://doi.org/10.1016/j.jconrel.2020.04.010.
- Shieh, M.-J.; Hsu, C.-Y.; Huang, L.-Y.; Chen, H.-Y.; Huang, F.-H.; Lai, P.-S. Reversal of Doxorubicin-Resistance by Multifunctional Nanoparticles in MCF-7/ADR Cells. Journal of controlled release : official journal of the Controlled Release Society 2011, 152 (3), 418–425. https://doi.org/10.1016/j.jconrel.2011.03.017.
- Yalcin, S.; Unsoy, G.; Mutlu, P.; Khodadust, R.; Gunduz, U. Polyhydroxybutyrate-Coated Magnetic Nanoparticles for Doxorubicin Delivery: Cytotoxic Effect against Doxorubicin-Resistant Breast Cancer Cell Line. American journal of therapeutics 2014, 21 (6), 453–461. https://doi.org/10.1097/MJT.0000000000000066.
- Bazylińska, U.; Zieliński, W.; Kulbacka, J.; Samoć, M.; Wilk, K. A. New Diamidequat-Type Surfactants in Fabrication of Long-Sustained Theranostic Nanocapsules: Colloidal Stability, Drug Delivery and Bioimaging. Colloids and surfaces. B, Biointerfaces 2016, 137, 121–132. https://doi.org/10.1016/j.colsurfb.2015.06.043.
- Mamnoon, B.; Loganathan, J.; Confeld, M. I.; De Fonseka, N.; Feng, L.; Froberg, J.; Choi, Y.; Tuvin, D. M.; Sathish, V.; Mallik, S. Targeted Polymeric Nanoparticles for Drug Delivery to Hypoxic, Triple-Negative Breast Tumors. ACS applied bio materials 2021, 4 (2), 1450–1460. https://doi.org/10.1021/acsabm.0c01336.
- Liao, W.-S.; Ho, Y.; Lin, Y.-W.; Naveen Raj, E.; Liu, K.-K.; Chen, C.; Zhou, X.-Z.; Lu, K.-P.; Chao, J.-I. Targeting EGFR of Triple-Negative Breast Cancer Enhances the Therapeutic Efficacy of Paclitaxel- and Cetuximab-Conjugated Nanodiamond Nanocomposite. Acta biomaterialia 2019, 86, 395–405. https://doi.org/10.1016/j.actbio.2019.01.025.
- Cristofolini, T.; Dalmina, M.; Sierra, J. A.; Silva, A. H.; Pasa, A. A.; Pittella, F.; Creczynski-Pasa, T. B. Multifunctional Hybrid Nanoparticles as Magnetic Delivery Systems for SiRNA Targeting the HER2 Gene in Breast Cancer Cells. Materials science & engineering. C, Materials for biological applications 2020, 109, 110555. https://doi.org/10.1016/j.msec.2019.110555.7
- Tade, R. S.; Patil, P. O. Theranostic Prospects of Graphene Quantum Dots in Breast Cancer. ACS biomaterials science & engineering 2020, 6 (11), 5987–6008. https://doi.org/10.1021/acsbiomaterials.0c01045.
- Tampaki, E. C.; Tampakis, A.; Alifieris, C. E.; Krikelis, D.; Pazaiti, A.; Kontos, M.; Trafalis, D. T. Efficacy and Safety of Neoadjuvant Treatment with Bevacizumab, Liposomal Doxorubicin, Cyclophosphamide and Paclitaxel Combination in Locally/Regionally Advanced, HER2-Negative, Grade III at Premenopausal Status Breast Cancer: A Phase II Study. Clinical drug investigation 2018, 38 (7), 639–648. https://doi.org/10.1007/s40261-018-0655-z.
- Nakajima, M.; Sakoda, Y.; Adachi, K.; Nagano, H.; Tamada, K. Improved Survival of Chimeric Antigen Receptor-Engineered T (CAR-T) and Tumor-Specific T Cells Caused by Anti-Programmed Cell Death Protein 1 Single-Chain Variable Fragment-Producing CAR-T Cells. Cancer science 2019, 110 (10), 3079–3088. https://doi.org/10.1111/cas.14169.
- Zhang, N.; Zhang, J.; Wang, P.; Liu, X.; Huo, P.; Xu, Y.; Chen, W.; Xu, H.; Tian, Q. Investigation of an Antitumor Drug-Delivery System Based on Anti-HER2 Antibody-Conjugated BSA Nanoparticles. Anti-cancer drugs 2018, 29 (4), 307–322. https://doi.org/10.1097/CAD.0000000000000586.
- Mohammadinejad, A.; Taghdisi, S. M.; Es’haghi, Z.; Abnous, K.; Mohajeri, S. A. Targeted Imaging of Breast Cancer Cells Using Two Different Kinds of Aptamers -Functionalized Nanoparticles. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences 2019, 134, 60–68. https://doi.org/10.1016/j.ejps.2019.04.012.
- Hanafi-Bojd, M. Y.; Jaafari, M. R.; Ramezanian, N.; .. Malaekeh-Nikouei, B. Surface Functionalized Mesoporous Silica Nanoparticles as an Effective Carrier for Epirubicin Delivery to Cancer Cells. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V 2015, 89, 248–258. https://doi.org/10.1016/j.ejpb.2014.12.009.
- Fang, J.; Nakamura, H.; Maeda, H. The EPR Effect: Unique Features of Tumor Blood Vessels for Drug Delivery, Factors Involved, and Limitations and Augmentation of the Effect. Advanced drug delivery reviews 2011, 63 (3), 136–151. https://doi.org/10.1016/j.addr.2010.04.009.
- Cheng, R.; Meng, F.; Deng, C.; Klok, H.-A.; Zhong, Z. Dual and Multi-Stimuli Responsive Polymeric Nanoparticles for Programmed Site-Specific Drug Delivery. Biomaterials 2013, 34 (14), 3647–3657. https://doi.org/10.1016/j.biomaterials.2013.01.084.
- Torchilin, V. Tumor Delivery of Macromolecular Drugs Based on the EPR Effect. Advanced drug delivery reviews 2011, 63 (3), 131–135. https://doi.org/10.1016/j.addr.2010.03.011.
- Godlewski, M. M.; Kaszewski, J.; Kielbik, P.; Olszewski, J.; Lipinski, W.; Slonska-Zielonka, A.; Rosowska, J.; Witkowski, B. S.; Gralak, M. A.; Gajewski, Z.; Godlewski, M. New Generation of Oxide-Based Nanoparticles for the Applications in Early Cancer Detection and Diagnostics. Nanotechnology Reviews 2020, 9 (1), 274–302. https://doi.org/doi:10.1515/ntrev-2020-0022.
- Vines, J. B.; Yoon, J.-H.; Ryu, N.-E.; Lim, D.-J.; Park, H. Gold Nanoparticles for Photothermal Cancer Therapy. Frontiers in Chemistry 2019, 7. https://doi.org/10.3389/fchem.2019.00167.
- Moore, J. A.; Chow, J. C. L. Recent Progress and Applications of Gold Nanotechnology in Medical Biophysics Using Artificial Intelligence and Mathematical Modeling. Nano Express 2021, 2 (2), 22001. https://doi.org/10.1088/2632-959x/abddd3.
- Siddique, S.; Chow, J. C. L. Gold Nanoparticles for Drug Delivery and Cancer Therapy. Applied Sciences . 2020. https://doi.org/10.3390/app10113824.
- Su, X.-Y.; Liu, P.-D.; Wu, H.; Gu, N. Enhancement of Radiosensitization by Metal-Based Nanoparticles in Cancer Radiation Therapy. Cancer biology & medicine 2014, 11 (2), 86–91. https://doi.org/10.7497/j.issn.2095-3941.2014.02.003.
- Liu, P.; Huang, Z.; Chen, Z.; Xu, R.; Wu, H.; Zang, F.; Wang, C.; Gu, N. Silver Nanoparticles: A Novel Radiation Sensitizer for Glioma? Nanoscale 2013, 5 (23), 11829–11836. https://doi.org/10.1039/c3nr01351k.
- Wahab, R.; Siddiqui, M. A.; Saquib, Q.; Dwivedi, S.; Ahmad, J.; Musarrat, J.; Al-Khedhairy, A. A.; Shin, H.-S. ZnO Nanoparticles Induced Oxidative Stress and Apoptosis in HepG2 and MCF-7 Cancer Cells and Their Antibacterial Activity. Colloids and surfaces. B, Biointerfaces 2014, 117, 267–276. https://doi.org/10.1016/j.colsurfb.2014.02.038.
- Wang, Y.; Yang, F.; Zhang, H. X.; Zi, X. Y.; Pan, X. H.; Chen, F.; Luo, W. D.; Li, J. X.; Zhu, H. Y.; Hu, Y. P. Cuprous Oxide Nanoparticles Inhibit the Growth and Metastasis of Melanoma by Targeting Mitochondria. Cell death & disease 2013, 4 (8), e783. https://doi.org/10.1038/cddis.2013.314.
- Pešić, M.; Podolski-Renić, A.; Stojković, S.; Matović, B.; Zmejkoski, D.; Kojić, V.; Bogdanović, G.; Pavićević, A.; Mojović, M.; Savić, A.; Milenković, I.; Kalauzi, A.; Radotić, K. Anti-Cancer Effects of Cerium Oxide Nanoparticles and Its Intracellular Redox Activity. Chemico-biological interactions 2015, 232, 85–93. https://doi.org/10.1016/j.cbi.2015.03.013.
- Yeh, Y.-C.; Creran, B.; Rotello, V. M. Gold Nanoparticles: Preparation, Properties, and Applications in Bionanotechnology. Nanoscale 2012, 4 (6), 1871–1880. https://doi.org/10.1039/C1NR11188D.
- Ghosh, P.; Han, G.; De, M.; Kim, C. K.; Rotello, V. M. Gold Nanoparticles in Delivery Applications. Advanced drug delivery reviews 2008, 60 (11), 1307–1315. https://doi.org/10.1016/j.addr.2008.03.016.
- Zhao, Y.; Detering, L.; Sultan, D.; Cooper, M. L.; You, M.; Cho, S.; Meier, S. L.; Luehmann, H.; Sun, G.; Rettig, M.; Dehdashti, F.; Wooley, K. L.; DiPersio, J. F.; Liu, Y. Gold Nanoclusters Doped with (64)Cu for CXCR4 Positron Emission Tomography Imaging of Breast Cancer and Metastasis. ACS nano 2016, 10 (6), 5959–5970. https://doi.org/10.1021/acsnano.6b01326.
- Chen, B.; Wu, W.; Wang, X. Magnetic Iron Oxide Nanoparticles for Tumor-Targeted Therapy. Current cancer drug targets 2011, 11 (2), 184–189. https://doi.org/10.2174/156800911794328475.
- Wang, Y.-X. J.; Xuan, S.; Port, M.; Idee, J.-M. Recent Advances in Superparamagnetic Iron Oxide Nanoparticles for Cellular Imaging and Targeted Therapy Research. Current pharmaceutical design 2013, 19 (37), 6575–6593. https://doi.org/10.2174/1381612811319370003.
- Gupta, A. K.; Gupta, M. Synthesis and Surface Engineering of Iron Oxide Nanoparticles for Biomedical Applications. Biomaterials 2005, 26 (18), 3995–4021. https://doi.org/10.1016/j.biomaterials.2004.10.012.
- Kumar, A. V. P.; Dubey, S. K.; Tiwari, S.; Puri, A.; Hejmady, S.; Gorain, B.; Kesharwani, P. Recent Advances in Nanoparticles Mediated Photothermal Therapy Induced Tumor Regression. International journal of pharmaceutics 2021, 606, 120848. https://doi.org/10.1016/j.ijpharm.2021.120848.
- Jeon, M.; Lin, G.; Stephen, Z. R.; Kato, F. L.; Zhang, M. Paclitaxel-Loaded Iron Oxide Nanoparticles for Targeted Breast Cancer Therapy. Advanced Therapeutics 2019, 2 (12), 1900081. https://doi.org/https://doi.org/10.1002/adtp.201900081.
- Attari, E.; Nosrati, H.; Danafar, H.; Kheiri Manjili, H. Methotrexate Anticancer Drug Delivery to Breast Cancer Cell Lines by Iron Oxide Magnetic Based Nanocarrier. Journal of Biomedical Materials Research Part A 2019, 107 (11), 2492–2500. https://doi.org/https://doi.org/10.1002/jbm.a.36755.
- Soleymani, M.; Khalighfard, S.; Khodayari, S.; Khodayari, H.; Kalhori, M. R.; Hadjighassem, M. R.; Shaterabadi, Z.; Alizadeh, A. M. Effects of Multiple Injections on the Efficacy and Cytotoxicity of Folate-Targeted Magnetite Nanoparticles as Theranostic Agents for MRI Detection and Magnetic Hyperthermia Therapy of Tumor Cells. Scientific reports 2020, 10 (1), 1695. https://doi.org/10.1038/s41598-020-58605-3.
- Kairdolf, B. A.; Smith, A. M.; Stokes, T. H.; Wang, M. D.; Young, A. N.; Nie, S. Semiconductor Quantum Dots for Bioimaging and Biodiagnostic Applications. Annual review of analytical chemistry (Palo Alto, Calif.) 2013, 6 (1), 143–162. https://doi.org/10.1146/annurev-anchem-060908-155136.
- Yaghini, E.; Pirker, K. F.; Kay, C. W. M.; Seifalian, A. M.; MacRobert, A. J. Quantification of Reactive Oxygen Species Generation by Photoexcitation of PEGylated Quantum Dots. Small (Weinheim an der Bergstrasse, Germany) 2014, 10 (24), 5106–5115. https://doi.org/10.1002/smll.201401209.
- Yezhelyev, M. V.; Al-Hajj, A.; Morris, C.; Marcus, A. I.; Liu, T.; Lewis, M.; Cohen, C.; Zrazhevskiy, P.; Simons, J. W.; Rogatko, A.; Nie, S.; Gao, X.; O’Regan, R. M. In Situ Molecular Profiling of Breast Cancer Biomarkers with Multicolor Quantum Dots. Advanced Materials 2007, 19 (20), 3146–3151. https://doi.org/https://doi.org/10.1002/adma.200701983.
- Samimi, S.; Ardestani, M. S.; Dorkoosh, F. A. Preparation of Carbon Quantum Dots- Quinic Acid for Drug Delivery of Gemcitabine to Breast Cancer Cells. Journal of Drug Delivery Science and Technology 2021, 61, 102287. https://doi.org/https://doi.org/10.1016/j.jddst.2020.102287.
- Chung, S.; Revia, R. A.; Zhang, M. Graphene Quantum Dots and Their Applications in Bioimaging, Biosensing, and Therapy. Advanced Materials 2021, 33 (22), 1904362. https://doi.org/https://doi.org/10.1002/adma.201904362.
- Gao, Y.; Gao, D.; Shen, J.; Wang, Q. A Review of Mesoporous Silica Nanoparticle Delivery Systems in Chemo-Based Combination Cancer Therapies. Frontiers in Chemistry 2020, 8. https://doi.org/10.3389/fchem.2020.598722.
- Tsai, C.-P.; Chen, C.-Y.; Hung, Y.; Chang, F.-H.; Mou, C.-Y. Monoclonal Antibody-Functionalized Mesoporous Silica Nanoparticles (MSN) for Selective Targeting Breast Cancer Cells. Journal of Materials Chemistry 2009, 19 (32), 5737–5743. https://doi.org/10.1039/B905158A.
- Meng, H.; Mai, W. X.; Zhang, H.; Xue, M.; Xia, T.; Lin, S.; Wang, X.; Zhao, Y.; Ji, Z.; Zink, J. I.; Nel, A. E. Codelivery of an Optimal Drug/SiRNA Combination Using Mesoporous Silica Nanoparticles to Overcome Drug Resistance in Breast Cancer in Vitro and in Vivo. ACS nano 2013, 7 (2), 994–1005. https://doi.org/10.1021/nn3044066.
- Milgroom, A.; Intrator, M.; Madhavan, K.; Mazzaro, L.; Shandas, R.; Liu, B.; Park, D. Mesoporous Silica Nanoparticles as a Breast-Cancer Targeting Ultrasound Contrast Agent. Colloids and surfaces. B, Biointerfaces 2014, 116, 652–657. https://doi.org/10.1016/j.colsurfb.2013.10.038.
- Fortuni, B.; Inose, T.; Ricci, M.; Fujita, Y.; Van Zundert, I.; Masuhara, A.; Fron, E.; Mizuno, H.; Latterini, L.; Rocha, S.; Uji-I, H. Polymeric Engineering of Nanoparticles for Highly Efficient Multifunctional Drug Delivery Systems. Scientific reports 2019, 9 (1), 2666. https://doi.org/10.1038/s41598-019-39107-3.
- Moodley, T.; Singh, M. Sterically Stabilised Polymeric Mesoporous Silica Nanoparticles Improve Doxorubicin Efficiency: Tailored Cancer Therapy. Molecules (Basel, Switzerland) 2020, 25 (3). https://doi.org/10.3390/molecules25030742.
- Augustine, S.; Singh, J.; Srivastava, M.; Sharma, M.; Das, A.; Malhotra, B. D. Recent Advances in Carbon Based Nanosystems for Cancer Theranostics. Biomaterials science 2017, 5 (5), 901–952. https://doi.org/10.1039/c7bm00008a.
- Chadar, R.; Afzal, O.; Alqahtani, S. M.; Kesharwani, P. Carbon Nanotubes as an Emerging Nanocarrier for the Delivery of Doxorubicin for Improved Chemotherapy. Colloids and surfaces. B, Biointerfaces 2021, 208, 112044. https://doi.org/10.1016/j.colsurfb.2021.112044.
- Xiao, Y.; Gao, X.; Taratula, O.; Treado, S.; Urbas, A.; Holbrook, R. D.; Cavicchi, R. E.; Avedisian, C. T.; Mitra, S.; Savla, R.; Wagner, P. D.; Srivastava, S.; He, H. Anti-HER2 IgY Antibody-Functionalized Single-Walled Carbon Nanotubes for Detection and Selective Destruction of Breast Cancer Cells. BMC cancer 2009, 9, 351. https://doi.org/10.1186/1471-2407-9-351.
- Hampel, S.; Kunze, D.; Haase, D.; Krämer, K.; Rauschenbach, M.; Ritschel, M.; Leonhardt, A.; Thomas, J.; Oswald, S.; Hoffmann, V.; Büchner, B. Carbon Nanotubes Filled with a Chemotherapeutic Agent: A Nanocarrier Mediates Inhibition of Tumor Cell Growth. Nanomedicine (London, England) 2008, 3 (2), 175–182. https://doi.org/10.2217/17435889.3.2.175.
- Liu, Z.; Sun, X.; Nakayama-Ratchford, N.; Dai, H. Supramolecular Chemistry on Water-Soluble Carbon Nanotubes for Drug Loading and Delivery. ACS nano 2007, 1 (1), 50–56. https://doi.org/10.1021/nn700040t.
- Liu, Z.; Chen, K.; Davis, C.; Sherlock, S.; Cao, Q.; Chen, X.; Dai, H. Drug Delivery with Carbon Nanotubes for in Vivo Cancer Treatment. Cancer research 2008, 68 (16), 6652–6660. https://doi.org/10.1158/0008-5472.CAN-08-1468.
- Shao, W.; Paul, A.; Zhao, B.; Lee, C.; Rodes, L.; Prakash, S. Carbon Nanotube Lipid Drug Approach for Targeted Delivery of a Chemotherapy Drug in a Human Breast Cancer Xenograft Animal Model. Biomaterials 2013, 34 (38), 10109–10119. https://doi.org/10.1016/j.biomaterials.2013.09.007.
- Casais-Molina, M. L.; Cab, C.; Canto, G.; Medina, J.; Tapia, A. Carbon Nanomaterials for Breast Cancer Treatment. Journal of Nanomaterials 2018, 2018, 2058613. https://doi.org/10.1155/2018/2058613.
- Raza, K.; Thotakura, N.; Kumar, P.; Joshi, M.; Bhushan, S.; Bhatia, A.; Kumar, V.; Malik, R.; Sharma, G.; Guru, S. K.; Katare, O. P. C60-Fullerenes for Delivery of Docetaxel to Breast Cancer Cells: A Promising Approach for Enhanced Efficacy and Better Pharmacokinetic Profile. International journal of pharmaceutics 2015, 495 (1), 551–559. https://doi.org/10.1016/j.ijpharm.2015.09.016.
- Mehra, N. K.; Jain, A. K.; Lodhi, N.; Raj, R.; Dubey, V.; Mishra, D.; Nahar, M.; Jain, N. K. Challenges in the Use of Carbon Nanotubes for Biomedical Applications. Critical reviews in therapeutic drug carrier systems 2008, 25 (2), 169–206. https://doi.org/10.1615/critrevtherdrugcarriersyst.v25.i2.20.
- Kong, T.; Hao, L.; Wei, Y.; Cai, X.; Zhu, B. Doxorubicin Conjugated Carbon Dots as a Drug Delivery System for Human Breast Cancer Therapy. Cell proliferation 2018, 51 (5), e12488. https://doi.org/10.1111/cpr.12488.
- Esfandiari, N.; Arzanani, M. K.; Soleimani, M.; Kohi-Habibi, M.; Svendsen, W. E. A New Application of Plant Virus Nanoparticles as Drug Delivery in Breast Cancer. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 2016, 37 (1), 1229–1236. https://doi.org/10.1007/s13277-015-3867-3.
- Le, D. H. T.; Lee, K. L.; Shukla, S.; Commandeur, U.; Steinmetz, N. F. Potato Virus X, a Filamentous Plant Viral Nanoparticle for Doxorubicin Delivery in Cancer Therapy. Nanoscale 2017, 9 (6), 2348–2357. https://doi.org/10.1039/c6nr09099k.
- Steinmetz, N. F. Viral Nanoparticles as Platforms for Next-Generation Therapeutics and Imaging Devices. Nanomedicine : nanotechnology, biology, and medicine 2010, 6 (5), 634–641. https://doi.org/10.1016/j.nano.2010.04.005.
- Fritze, A.; Hens, F.; Kimpfler, A.; Schubert, R.; Peschka-Süss, R. Remote Loading of Doxorubicin into Liposomes Driven by a Transmembrane Phosphate Gradient. Biochimica et Biophysica Acta (BBA) - Biomembranes 2006, 1758 (10), 1633–1640. https://doi.org/https://doi.org/10.1016/j.bbamem.2006.05.028.
- Boman, N. L.; Masin, D.; Mayer, L. D.; Cullis, P. R.; Bally, M. B. Liposomal Vincristine Which Exhibits Increased Drug Retention and Increased Circulation Longevity Cures Mice Bearing P388 Tumors. Cancer research 1994, 54 (11), 2830–2833.
- Marcial, S. P. S.; Carneiro, G.; Leite, E. A. Lipid-Based Nanoparticles as Drug Delivery System for Paclitaxel in Breast Cancer Treatment. Journal of Nanoparticle Research 2017, 19, 1–11.
- Yang, T.; Cui, F.-D.; Choi, M.-K.; Cho, J.-W.; Chung, S.-J.; Shim, C.-K.; Kim, D.-D. Enhanced Solubility and Stability of PEGylated Liposomal Paclitaxel: In Vitro and in Vivo Evaluation. International Journal of Pharmaceutics 2007, 338 (1), 317–326. https://doi.org/https://doi.org/10.1016/j.ijpharm.2007.02.011.
- Wong, M.-Y.; Chiu, G. N. C. Liposome Formulation of Co-Encapsulated Vincristine and Quercetin Enhanced Antitumor Activity in a Trastuzumab-Insensitive Breast Tumor Xenograft Model. Nanomedicine: Nanotechnology, Biology and Medicine 2011, 7 (6), 834–840. https://doi.org/https://doi.org/10.1016/j.nano.2011.02.001.
- Dhankhar, R.; Vyas, S. P.; Jain, A. K.; Arora, S.; Rath, G.; Goyal, A. K. Advances in Novel Drug Delivery Strategies for Breast Cancer Therapy. Artificial Cells, Blood Substitutes, and Biotechnology 2010, 38 (5), 230–249. https://doi.org/10.3109/10731199.2010.494578.
- Hayes, M. E.; Drummond, D. C.; Kirpotin, D. B.; Zheng, W. W.; Noble, C. O.; Park, J. W.; Marks, J. D.; Benz, C. C.; Hong, K. Genospheres: Self-Assembling Nucleic Acid-Lipid Nanoparticles Suitable for Targeted Gene Delivery. Gene Therapy 2006, 13 (7), 646–651. https://doi.org/10.1038/sj.gt.3302699.
- Hortobagyi, G. N.; Ueno, N. T.; Xia, W.; Zhang, S.;...; Hung, M. C. Cationic Liposome-Mediated E1A Gene Transfer to Human Breast and Ovarian Cancer Cells and Its Biologic Effects: A Phase I Clinical Trial. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2001, 19 (14), 3422–3433. https://doi.org/10.1200/JCO.2001.19.14.3422.
- Cao, J.; Wang, R.; Gao, N.; Li, M.; Tian, X.; Yang, W.; Ruan, Y.; Zhou, C.; Wang, G.; Liu, X.; Tang, S.; Yu, Y.; Liu, Y.; Sun, G.; Peng, H.; Wang, Q. A7RC Peptide Modified Paclitaxel Liposomes Dually Target Breast Cancer. Biomaterials Science 2015, 3 (12), 1545–1554. https://doi.org/10.1039/C5BM00161G.
- Şalva, E.; Turan, S. Ö.; Eren, F.; Akbuğa, J. The Enhancement of Gene Silencing Efficiency with Chitosan-Coated Liposome Formulations of SiRNAs Targeting HIF-1α and VEGF. International Journal of Pharmaceutics 2015, 478 (1), 147–154. https://doi.org/https://doi.org/10.1016/j.ijpharm.2014.10.065.
- Nishimura, Y.; Mieda, H.; Ishii, J.; Ogino, C.; Fujiwara, T.; Kondo, A. Targeting Cancer Cell-Specific RNA Interference by SiRNA Delivery Using a Complex Carrier of Affibody-Displaying Bio-Nanocapsules and Liposomes. Journal of Nanobiotechnology 2013, 11 (1), 19. https://doi.org/10.1186/1477-3155-11-19.
- Chen, Y.; Bathula, S. R.; Li, J.; Huang, L. Multifunctional Nanoparticles Delivering Small Interfering RNA and Doxorubicin Overcome Drug Resistance in Cancer*. Journal of Biological Chemistry 2010, 285 (29), 22639–22650. https://doi.org/https://doi.org/10.1074/jbc.M110.125906.
- Dhanjal, D. S.; Mehta, M.; Chopra, C.; ..; Satija, S. Chapter 15 - Novel Controlled Release Pulmonary Drug Delivery Systems: Current Updates and Challenges; Azar, A. T. B. T.-M. and C. of D. D. S., Ed.; Academic Press, 2021; pp 253–272. https://doi.org/https://doi.org/10.1016/B978-0-12-821185-4.00001-4.
- Pandey, A.; Jain, R. Polymer-Based Biomaterials: An Emerging Electrochemical Sensor BT - Handbook of Polymer and Ceramic Nanotechnology; Hussain, C. M., Thomas, S., Eds.; Springer International Publishing: Cham, 2020; pp 1–19. https://doi.org/10.1007/978-3-030-10614-0_60-1.
- Pulingam, T.; Foroozandeh, P.; Chuah, J.-A.; Sudesh, K. Exploring Various Techniques for the Chemical and Biological Synthesis of Polymeric Nanoparticles. Nanomaterials (Basel, Switzerland) 2022, 12 (3). https://doi.org/10.3390/nano12030576.
- Wang, B.; Wang, S.; Zhang, Q.; Deng, Y.; Li, X.; Peng, L.; Zuo, X.; Piao, M.; Kuang, X.; Sheng, S.; Yu, Y. Recent Advances in Polymer-Based Drug Delivery Systems for Local Anesthetics. Acta Biomaterialia 2019, 96, 55–67. https://doi.org/https://doi.org/10.1016/j.actbio.2019.05.044.
- Jin, H.; Pi, J.; Zhao, Y.; Jiang, J.; Li, T.; Zeng, X.; Yang, P.; Evans, C. E.; Cai, J. EGFR-Targeting PLGA-PEG Nanoparticles as a Curcumin Delivery System for Breast Cancer Therapy. Nanoscale 2017, 9 (42), 16365–16374. https://doi.org/10.1039/c7nr06898k.
- Masood, F. Polymeric Nanoparticles for Targeted Drug Delivery System for Cancer Therapy. Materials Science and Engineering: C 2016, 60, 569–578. https://doi.org/https://doi.org/10.1016/j.msec.2015.11.067.
- Shenoy, D. B.; Amiji, M. M. Poly(Ethylene Oxide)-Modified Poly(ɛ-Caprolactone) Nanoparticles for Targeted Delivery of Tamoxifen in Breast Cancer. International Journal of Pharmaceutics 2005, 293 (1), 261–270. https://doi.org/https://doi.org/10.1016/j.ijpharm.2004.12.010.
- Lee, J. H.; Nan, A. Combination Drug Delivery Approaches in Metastatic Breast Cancer. Journal of drug delivery 2012, 2012, 915375. https://doi.org/10.1155/2012/915375.
- Jin, G.; He, R.; Liu, Q.; Dong, Y.; Lin, M.; Li, W.; Xu, F. Theranostics of Triple-Negative Breast Cancer Based on Conjugated Polymer Nanoparticles. ACS Applied Materials & Interfaces 2018, 10 (13), 10634–10646. https://doi.org/10.1021/acsami.7b14603.
- Pandey, S. K.; Patel, D. K.; Maurya, A. K.; Thakur, R.; Mishra, D. P.; Vinayak, M.; Haldar, C.; Maiti, P. Controlled Release of Drug and Better Bioavailability Using Poly(Lactic Acid-Co-Glycolic Acid) Nanoparticles. International Journal of Biological Macromolecules 2016, 89, 99–110. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2016.04.065.
- Alexis, F.; Pridgen, E.; Molnar, L. K.; Farokhzad, O. C. Factors Affecting the Clearance and Biodistribution of Polymeric Nanoparticles. Molecular Pharmaceutics 2008, 5 (4), 505–515. https://doi.org/10.1021/mp800051m.
- Sedghi, R.; Shaabani, A.; Mohammadi, Z.; Samadi, F. Y.; Isaei, E. Biocompatible Electrospinning Chitosan Nanofibers: A Novel Delivery System with Superior Local Cancer Therapy. Carbohydrate Polymers 2017, 159, 1–10. https://doi.org/https://doi.org/10.1016/j.carbpol.2016.12.011.
- Zahmatkeshan, M.; Adel, M.; Bahrami, S.; Esmaeili, F.; Rezayat, S. M.; Saeedi, Y.; Mehravi, B.; Jameie, S. B.; Ashtari, K. Polymer Based Nanofibers: Preparation, Fabrication, and Applications BT - Handbook of Nanofibers; Barhoum, A., Bechelany, M., Makhlouf, A., Eds.; Springer International Publishing: Cham, 2018; pp 1–47. https://doi.org/10.1007/978-3-319-42789-8_29-2.
- Jayakumar, R.; Prabaharan, M.; Nair, S. V; Tamura, H. Novel Chitin and Chitosan Nanofibers in Biomedical Applications. Biotechnology Advances 2010, 28 (1), 142–150. https://doi.org/https://doi.org/10.1016/j.biotechadv.2009.11.001.
- Marty, M.; Cognetti, F.; Maraninchi, D.; Snyder, R.; Mauriac, L.; ..., K.; Extra, J.-M. Randomized Phase II Trial of the Efficacy and Safety of Trastuzumab Combined With Docetaxel in Patients With Human Epidermal Growth Factor Receptor 2–Positive Metastatic Breast Cancer Administered As First-Line Treatment: The M77001 Study Group. Journal of Clinical Oncology 2005, 23 (19), 4265–4274.