Research Article
BibTex RIS Cite

Structural transition of LiBeH3 under high pressure

Year 2022, , 129 - 134, 31.12.2022
https://doi.org/10.32571/ijct.1190931

Abstract

LiBeH3 has been considered as a solid-state hydrogen storage material. This study investigated Pnma orthorhombic phase of LiBeH3 under pressure. Ab initio constant pressure molecular dynamic simulation under pressure was adopted. The results depicted a phase transition from Pnma orthorhombic phase to P21/m monoclinic phase at 270 GPa simulation pressure. The stability of each phase was examined using elastic constants. Based on the well-known Born stability criteria, both phases showed mechanical stability. Several moduli have been computed via elastic constants. The B/G ratios, Cauchy pressures and Poisson’s ratios investigation revealed that LiBeH3 is brittle at Pnma phase whereas it is ductile at P21/m phase. The electronic band structures and partial and total density of states of phases were also obtained. A 2.058 eV band gap was seen for Pnma phase, and 3 eV band gap was seen for P21/m phase.

References

  • References
  • Ajanovic, A.; Sayer, M.; Haas, R., The economics and the environmental benignity of different colors of hydrogen. Int. J. Hydrogen Energy 2022, 47 (57), 24136-24154.
  • Dawood, F.; Anda, M.; Shafiullah, G. M., Hydrogen production for energy: An overview. Int. J. Hydrogen Energy 2020, 45 (7), 3847-3869.
  • Andersson, J.; Grönkvist, S., Large-scale storage of hydrogen. Int. J. Hydrogen Energy 2019, 44 (23), 11901-11919.
  • Wolverton, C.; Ozoliņš, V.; Asta, M., Hydrogen in aluminum: First-principles calculations of structure and thermodynamics. PhRvB 2004, 69 (14), 144109.
  • Züttel, A., Materials for hydrogen storage. Mater. Today 2003, 6 (9), 24-33.
  • Andreasen, A., Hydrogenation properties of Mg–Al alloys. Int. J. Hydrogen Energy 2008, 33 (24), 7489-7497.
  • Rehmat, B.; Rafiq, M. A.; Javed, Y.; Irshad, Z.; Ahmed, N.; Mirza, S. M., Elastic properties of perovskite-type hydrides LiBeH3 and NaBeH3 for hydrogen storage. Int. J. Hydrogen Energy 2017, 42 (15), 10038-10046.
  • Reshak, A. H., Photocatalytic water splitting solar-to-hydrogen energy conversion: Perovskite-type hydride XBeH3 (X=Li or Na) as active photocatalysts. J. Catal. 2017, 351, 119-129.
  • Xiao-Jiao, S.; Zhi, H.; Yan-Ming, M.; Tian, C.; Bing-Bing, L.; Guang-Tian, Z., Electronic structure and optical properties of LiXH3 and XLiH3 (X= Be, B or C). Chinese Physics B 2008, 17 (6), 2222-2228.
  • Santhosh, M.; Rajeswarapalanichamy, R.; Priyanga, G. S.; Kanagaprabha, S.; Murugan, A.; Iyakutti, K., A first principles study of structural stability, electronic structure and mechanical properties of ABeH3 (A = Li, Na). 2015, 1665 (1), 090015.
  • Vajeeston, P.; Ravindran, P.; Fjellvåg, H., Structural Phase Stability Studies on MBeH3 (M = Li, Na, K, Rb, Cs) from Density Functional Calculations. lnorg. Chem. 2008, 47 (2), 508-514.
  • Ordejón, P.; Artacho, E.; Soler, J. M., Self-consistent order-N density-functional calculations for very large systems. PhRvB 1996, 53 (16), R10441.
  • Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77 (18), 3865-3868.
  • Yamcicier, C.; Merdan, Z.; Kurkcu, C., Investigation of the structural and electronic properties of CdS under high pressure: an ab initio study. Can. J. Phys. 2017, 96 (2), 216-224.
  • Kürkçü, C.; Selgin, A.; Merdan, Z.; Yamçiçier, Ç.; Öztürk, H., Investigation of structural and electronic properties of β-HgS: Molecular dynamics simulations. ChJPh 2018, 56 (3), 783-792.
  • Durandurdu, M., Orthorhombic intermediate phases for the wurtzite-to-rocksalt phase transformation of CdSe: An ab initio constant pressure study. Chem. Phys. 2010, 369 (2-3), 55-58.
  • Kürkçü, C.; Merdan, Z.; Öztürk, H., Theoretical calculations of high-pressure phases of NiF2: An ab initio constant-pressure study. Russian Journal of Physical Chemistry A 2016, 90 (13), 2550-2555.
  • Kürkçü, C.; Merdan, Z.; Öztürk, H., Pressure-induced phase transitions and structural properties of CoF2: An ab-initio molecular dynamics study. Solid State Communications 2016, 231, 17-25.
  • Al, S.; Kurkcu, C.; Yamcicier, C., Structural evolution, mechanical, electronic and vibrational properties of high capacity hydrogen storage TiH4. Int. J. Hydrogen Energy 2020, 45 (55), 30783-30791.
  • Bougherara, K.; Litimein, F.; Khenata, R.; Uçgun, E.; Ocak, H.; Uğur, Ş.; Uğur, G.; Reshak, A. H.; Soyalp, F.; Omran, S. B., Structural, elastic, electronic and optical properties of Cu3TMSe4 (TM= V, Nb and Ta) sulvanite compounds via first-principles calculations. J Science of Advanced Materials 2013, 5 (1), 97-106.
  • Benzoudji, F.; Abid, O. M.; Seddik, T.; Yakoubi, A.; Khenata, R.; Meradji, H.; Uğur, G.; Uğur, S.; Ocak, H. Y., Insight into the structural, elastic, electronic, thermoelectric, thermodynamic and optical properties of MRhSb (M= Ti, Zr, Hf) half-Heuslers from ab initio calculations. J Chinese Journal of Physics 2019, 59, 434-448.
  • Li, P.; Zhang, J.; Ma, S.; Zhang, Y.; Jin, H.; Mao, S., First-principles investigations on structural stability, elastic and electronic properties of Co7M6 (M= W, Mo, Nb) µ phases. MoSim 2019, 45 (9), 752-758.
  • Subhan, F.; Azam, S.; Khan, G.; Irfan, M.; Muhammad, S.; Al-Sehemi, A. G.; Naqib, S. H.; Khenata, R.; Khan, S.; Kityk, I. V.; Amin, B., Elastic and optoelectronic properties of CaTa2O6 compounds: Cubic and orthorhombic phases. J. Alloys Compd. 2019, 785, 232-239.
  • Ali, I. O. A.; Joubert, D. P.; Suleiman, M. S. H., A theoretical investigation of structural, mechanical, electronic and thermoelectric properties of orthorhombic CH3NH3PbI3. The European Physical Journal B 2018, 91 (10), 263.
  • Rahmani, R.; Amrani, B.; Driss Khodja, K.; Boukhachem, A.; Aubert, P., Systematic study of elastic, electronic, and magnetic properties of lanthanum cobaltite oxide. Journal of Computational Electronics 2018, 17 (3), 920-925.
  • Liu, Q.-J.; Liu, F.-S.; Liu, Z.-T., Structural, Mechanical, and Electronic Properties of Monoclinic N2H5N3 Under Pressure. BrJPh 2015, 45 (4), 399-403.
  • Edrees, S. J.; Shukur, M. M.; Obeid, M. M., First-principle analysis of the structural, mechanical, optical and electronic properties of wollastonite monoclinic polymorph. Computational Condensed Matter 2018, 14, 20-26.
  • Weck, P. F.; Kim, E.; Buck, E. C., On the mechanical stability of uranyl peroxide hydrates: implications for nuclear fuel degradation. RSC Advances 2015, 5 (96), 79090-79097.
  • Nan-Xi, M.; Chun-Ying, P.; Chao-Zheng, H.; Fei-Wu, Z.; Cheng, L.; Zhi-Wen, L.; Da-Wei, Z., Mechanical and thermodynamic properties of the monoclinic and orthorhombic phases of SiC2N4 under high pressure from first principles. Chinese Physics B 2014, 23 (12), 127101.
  • Arıkan, N.; Örnek, O.; Charifi, Z.; Baaziz, H.; Uğur, Ş.; Uğur, G., A first-principle study of Os-based compounds: Electronic structure and vibrational properties. J Journal of Physics Chemistry of Solids 2016, 96, 121-127.
  • Al, S., Investigations of Physical Properties of XTiH3 and Implications for Solid State Hydrogen Storage. In Zeitschrift für Naturforschung A, 2019; Vol. 74, p 1023.
  • Pettifor, D., Theoretical predictions of structure and related properties of intermetallics. J Materials Science and Technology 1992, 8 (4), 345-349.
  • Liu, L.; Wu, X.; Wang, R.; Nie, X.; He, Y.; Zou, X., First-principles investigations on structural and elastic properties of orthorhombic TiAl under pressure. Crystals 2017, 7 (4), 111.
  • Ran, Z.; Zou, C.; Wei, Z.; Wang, H., VELAS: An open-source toolbox for visualization and analysis of elastic anisotropy. Comput. Phys. Commun. 2022, 108540.
  • I.N. Frantsevich, F. F. V., S.A. Bokuta, Elastic constants and elastic moduli of metals and insulators. Naukova Dumka: Kiev, 1983.
  • Wang, S.-L.; Pan, Y., Insight into the structures, melting points, and mechanical properties of NbSi2 from first-principles calculations. 2019, 102 (8), 4822-4834.
  • Chen, H.; Yang, L.; Long, J., First-principles investigation of the elastic, Vickers hardness and thermodynamic properties of Al–Cu intermetallic compounds. Superlattices Microstruct. 2015, 79, 156-165.
Year 2022, , 129 - 134, 31.12.2022
https://doi.org/10.32571/ijct.1190931

Abstract

References

  • References
  • Ajanovic, A.; Sayer, M.; Haas, R., The economics and the environmental benignity of different colors of hydrogen. Int. J. Hydrogen Energy 2022, 47 (57), 24136-24154.
  • Dawood, F.; Anda, M.; Shafiullah, G. M., Hydrogen production for energy: An overview. Int. J. Hydrogen Energy 2020, 45 (7), 3847-3869.
  • Andersson, J.; Grönkvist, S., Large-scale storage of hydrogen. Int. J. Hydrogen Energy 2019, 44 (23), 11901-11919.
  • Wolverton, C.; Ozoliņš, V.; Asta, M., Hydrogen in aluminum: First-principles calculations of structure and thermodynamics. PhRvB 2004, 69 (14), 144109.
  • Züttel, A., Materials for hydrogen storage. Mater. Today 2003, 6 (9), 24-33.
  • Andreasen, A., Hydrogenation properties of Mg–Al alloys. Int. J. Hydrogen Energy 2008, 33 (24), 7489-7497.
  • Rehmat, B.; Rafiq, M. A.; Javed, Y.; Irshad, Z.; Ahmed, N.; Mirza, S. M., Elastic properties of perovskite-type hydrides LiBeH3 and NaBeH3 for hydrogen storage. Int. J. Hydrogen Energy 2017, 42 (15), 10038-10046.
  • Reshak, A. H., Photocatalytic water splitting solar-to-hydrogen energy conversion: Perovskite-type hydride XBeH3 (X=Li or Na) as active photocatalysts. J. Catal. 2017, 351, 119-129.
  • Xiao-Jiao, S.; Zhi, H.; Yan-Ming, M.; Tian, C.; Bing-Bing, L.; Guang-Tian, Z., Electronic structure and optical properties of LiXH3 and XLiH3 (X= Be, B or C). Chinese Physics B 2008, 17 (6), 2222-2228.
  • Santhosh, M.; Rajeswarapalanichamy, R.; Priyanga, G. S.; Kanagaprabha, S.; Murugan, A.; Iyakutti, K., A first principles study of structural stability, electronic structure and mechanical properties of ABeH3 (A = Li, Na). 2015, 1665 (1), 090015.
  • Vajeeston, P.; Ravindran, P.; Fjellvåg, H., Structural Phase Stability Studies on MBeH3 (M = Li, Na, K, Rb, Cs) from Density Functional Calculations. lnorg. Chem. 2008, 47 (2), 508-514.
  • Ordejón, P.; Artacho, E.; Soler, J. M., Self-consistent order-N density-functional calculations for very large systems. PhRvB 1996, 53 (16), R10441.
  • Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77 (18), 3865-3868.
  • Yamcicier, C.; Merdan, Z.; Kurkcu, C., Investigation of the structural and electronic properties of CdS under high pressure: an ab initio study. Can. J. Phys. 2017, 96 (2), 216-224.
  • Kürkçü, C.; Selgin, A.; Merdan, Z.; Yamçiçier, Ç.; Öztürk, H., Investigation of structural and electronic properties of β-HgS: Molecular dynamics simulations. ChJPh 2018, 56 (3), 783-792.
  • Durandurdu, M., Orthorhombic intermediate phases for the wurtzite-to-rocksalt phase transformation of CdSe: An ab initio constant pressure study. Chem. Phys. 2010, 369 (2-3), 55-58.
  • Kürkçü, C.; Merdan, Z.; Öztürk, H., Theoretical calculations of high-pressure phases of NiF2: An ab initio constant-pressure study. Russian Journal of Physical Chemistry A 2016, 90 (13), 2550-2555.
  • Kürkçü, C.; Merdan, Z.; Öztürk, H., Pressure-induced phase transitions and structural properties of CoF2: An ab-initio molecular dynamics study. Solid State Communications 2016, 231, 17-25.
  • Al, S.; Kurkcu, C.; Yamcicier, C., Structural evolution, mechanical, electronic and vibrational properties of high capacity hydrogen storage TiH4. Int. J. Hydrogen Energy 2020, 45 (55), 30783-30791.
  • Bougherara, K.; Litimein, F.; Khenata, R.; Uçgun, E.; Ocak, H.; Uğur, Ş.; Uğur, G.; Reshak, A. H.; Soyalp, F.; Omran, S. B., Structural, elastic, electronic and optical properties of Cu3TMSe4 (TM= V, Nb and Ta) sulvanite compounds via first-principles calculations. J Science of Advanced Materials 2013, 5 (1), 97-106.
  • Benzoudji, F.; Abid, O. M.; Seddik, T.; Yakoubi, A.; Khenata, R.; Meradji, H.; Uğur, G.; Uğur, S.; Ocak, H. Y., Insight into the structural, elastic, electronic, thermoelectric, thermodynamic and optical properties of MRhSb (M= Ti, Zr, Hf) half-Heuslers from ab initio calculations. J Chinese Journal of Physics 2019, 59, 434-448.
  • Li, P.; Zhang, J.; Ma, S.; Zhang, Y.; Jin, H.; Mao, S., First-principles investigations on structural stability, elastic and electronic properties of Co7M6 (M= W, Mo, Nb) µ phases. MoSim 2019, 45 (9), 752-758.
  • Subhan, F.; Azam, S.; Khan, G.; Irfan, M.; Muhammad, S.; Al-Sehemi, A. G.; Naqib, S. H.; Khenata, R.; Khan, S.; Kityk, I. V.; Amin, B., Elastic and optoelectronic properties of CaTa2O6 compounds: Cubic and orthorhombic phases. J. Alloys Compd. 2019, 785, 232-239.
  • Ali, I. O. A.; Joubert, D. P.; Suleiman, M. S. H., A theoretical investigation of structural, mechanical, electronic and thermoelectric properties of orthorhombic CH3NH3PbI3. The European Physical Journal B 2018, 91 (10), 263.
  • Rahmani, R.; Amrani, B.; Driss Khodja, K.; Boukhachem, A.; Aubert, P., Systematic study of elastic, electronic, and magnetic properties of lanthanum cobaltite oxide. Journal of Computational Electronics 2018, 17 (3), 920-925.
  • Liu, Q.-J.; Liu, F.-S.; Liu, Z.-T., Structural, Mechanical, and Electronic Properties of Monoclinic N2H5N3 Under Pressure. BrJPh 2015, 45 (4), 399-403.
  • Edrees, S. J.; Shukur, M. M.; Obeid, M. M., First-principle analysis of the structural, mechanical, optical and electronic properties of wollastonite monoclinic polymorph. Computational Condensed Matter 2018, 14, 20-26.
  • Weck, P. F.; Kim, E.; Buck, E. C., On the mechanical stability of uranyl peroxide hydrates: implications for nuclear fuel degradation. RSC Advances 2015, 5 (96), 79090-79097.
  • Nan-Xi, M.; Chun-Ying, P.; Chao-Zheng, H.; Fei-Wu, Z.; Cheng, L.; Zhi-Wen, L.; Da-Wei, Z., Mechanical and thermodynamic properties of the monoclinic and orthorhombic phases of SiC2N4 under high pressure from first principles. Chinese Physics B 2014, 23 (12), 127101.
  • Arıkan, N.; Örnek, O.; Charifi, Z.; Baaziz, H.; Uğur, Ş.; Uğur, G., A first-principle study of Os-based compounds: Electronic structure and vibrational properties. J Journal of Physics Chemistry of Solids 2016, 96, 121-127.
  • Al, S., Investigations of Physical Properties of XTiH3 and Implications for Solid State Hydrogen Storage. In Zeitschrift für Naturforschung A, 2019; Vol. 74, p 1023.
  • Pettifor, D., Theoretical predictions of structure and related properties of intermetallics. J Materials Science and Technology 1992, 8 (4), 345-349.
  • Liu, L.; Wu, X.; Wang, R.; Nie, X.; He, Y.; Zou, X., First-principles investigations on structural and elastic properties of orthorhombic TiAl under pressure. Crystals 2017, 7 (4), 111.
  • Ran, Z.; Zou, C.; Wei, Z.; Wang, H., VELAS: An open-source toolbox for visualization and analysis of elastic anisotropy. Comput. Phys. Commun. 2022, 108540.
  • I.N. Frantsevich, F. F. V., S.A. Bokuta, Elastic constants and elastic moduli of metals and insulators. Naukova Dumka: Kiev, 1983.
  • Wang, S.-L.; Pan, Y., Insight into the structures, melting points, and mechanical properties of NbSi2 from first-principles calculations. 2019, 102 (8), 4822-4834.
  • Chen, H.; Yang, L.; Long, J., First-principles investigation of the elastic, Vickers hardness and thermodynamic properties of Al–Cu intermetallic compounds. Superlattices Microstruct. 2015, 79, 156-165.
There are 38 citations in total.

Details

Primary Language English
Subjects Material Production Technologies
Journal Section Research Articles
Authors

Çağatay Yamçıçıer 0000-0003-3033-168X

Selgin Al 0000-0003-2496-1300

Publication Date December 31, 2022
Published in Issue Year 2022

Cite

APA Yamçıçıer, Ç., & Al, S. (2022). Structural transition of LiBeH3 under high pressure. International Journal of Chemistry and Technology, 6(2), 129-134. https://doi.org/10.32571/ijct.1190931
AMA Yamçıçıer Ç, Al S. Structural transition of LiBeH3 under high pressure. Int. J. Chem. Technol. December 2022;6(2):129-134. doi:10.32571/ijct.1190931
Chicago Yamçıçıer, Çağatay, and Selgin Al. “Structural Transition of LiBeH3 under High Pressure”. International Journal of Chemistry and Technology 6, no. 2 (December 2022): 129-34. https://doi.org/10.32571/ijct.1190931.
EndNote Yamçıçıer Ç, Al S (December 1, 2022) Structural transition of LiBeH3 under high pressure. International Journal of Chemistry and Technology 6 2 129–134.
IEEE Ç. Yamçıçıer and S. Al, “Structural transition of LiBeH3 under high pressure”, Int. J. Chem. Technol., vol. 6, no. 2, pp. 129–134, 2022, doi: 10.32571/ijct.1190931.
ISNAD Yamçıçıer, Çağatay - Al, Selgin. “Structural Transition of LiBeH3 under High Pressure”. International Journal of Chemistry and Technology 6/2 (December 2022), 129-134. https://doi.org/10.32571/ijct.1190931.
JAMA Yamçıçıer Ç, Al S. Structural transition of LiBeH3 under high pressure. Int. J. Chem. Technol. 2022;6:129–134.
MLA Yamçıçıer, Çağatay and Selgin Al. “Structural Transition of LiBeH3 under High Pressure”. International Journal of Chemistry and Technology, vol. 6, no. 2, 2022, pp. 129-34, doi:10.32571/ijct.1190931.
Vancouver Yamçıçıer Ç, Al S. Structural transition of LiBeH3 under high pressure. Int. J. Chem. Technol. 2022;6(2):129-34.