Research Article
BibTex RIS Cite

3D TiO2 modified with reduced graphene embed into polyvinyl alcohol: photoanode electrode for oxygen evolution reaction

Year 2023, , 189 - 196, 31.12.2023
https://doi.org/10.32571/ijct.1247384

Abstract

The photocatalytic hydrogen production from water splitting using solar energy is one of the promising trend research topics within the scope of green energy production. A photoelectrochemical set up consists of photoelectrode materials that directly uses photon energy convers water to hydrogen and oxygen. The photoelectrodes are photoanode and photocathode materials n-type and p-type semiconductor, respectively. In this study, the 3D TiO2 photoanode surface was modified by coating it with reduced graphene (rG) added polyvinyl alcohol (PVA) gel. PVA synthetic polymer with thermal stability, mechanical stability and low cost was preferred to provide distribution of rG material on 3D TiO2 active surfaces. In this context, different amounts of rG (2.5, 5, 10 and 20%, based on polymer weight) impregnated with PVA gel coated on the 3D TiO2 semiconductor surface were investigated. The solar light absorption behaviour and molecular interactions of the different amounts of rG in PVA on 3D TiO2 semiconductor were monitored by UV-vis and Raman spectrometer. A photocatalytic performance of photoelectrodes were conducted by Electrochemical Impedance spectroscopy (EIS), linear sweep voltammetry (LSV) and chronoamperometric measurement under 100 mW cm-2 solar light. Raman spectrum showed dispersion of RG in PVA. EIS measurement showed that the polarization resistance (Rp) increased in 3D TiO2 with only PVA coating, while the addition of rG to PVA caused a decrease in Rp at the semiconductor/electrolyte interface under sunlight. Furthermore, LSV and chronoamperometric measurement concluded that the increased amount of rG added to PVA increased the photoresponse of 3D TiO2 up to the limit rG value.

Supporting Institution

Tarsus University

Project Number

OSB.22.002

Thanks

The authors are grateful to the Scientific Research Projects Unit (OSB.22.002) of Tarsus University for their financial support and Prof. Dr. Gülfeza KARDAŞ for her valuable contributions.

References

  • Li, H. X.; Moore, T.; Huang, J.; Zhang, P.; Costin, G. Ener. Stra. Rev. 2022, 40, 100802.
  • Herrador, M.; de Jong, W.; Nasu, K.; Granrath, L. Sci. Tot. Env. 2022, 820, 153274.
  • Chen, Q.; Kuang, Z.; Liu, X.; Zhang, T. Appl. Ener. 2022, 312, 118744.
  • Acar, C.; Dincer, I. Int. J. Hyd. Ener. 2016, 41, 7950-7959.
  • Hassan, N. S.; Jalil, A. A.; Khusnun, N. F.; Ahmad, A.; Abdullah, T. A. T.; Kasmani, R. M.; Norazahar, N.; Kamaroddin, M. F. A.; Vo, D. V. N. Env. Chem. Let. 2022, 1, 23.
  • 6. Grimm, A.; de Jong, W. A.; Kramer, G. J. Int. J. Hyd. Ener. 2020, 45, 22545-22555.
  • Chiu, Y. H.; Lai, T. H.; Kuo, M. Y.; Hsieh, P. Y.; Hsu, Y. J. APL. Mater. 2019, 7, 8.
  • Fujishima, A.; Honda, K. Nature. 1972, 238, 37-38.
  • Bashiri, R.; Samsudin, M. F. R.; Mohamed, N. M.; Suhaimi, N. A.; Ling, L. Y.; Sufian, S.; Kait, C. F. Appl. Surf. Sci. 2020, 510, 145482 .
  • Bashiri, R.; Irfan, M. S.; Mohamed, N. M.; Sufian, S.; Ling, L. Y.; Suhaimi, N. A.; Samsudin, M. F. R. Int J Hyd. Ener. 2021, 46, 24607-24619.
  • Wolcott, A.; Smith, W. A.; Kuykendall, T. R.; Zhao, Y.; Zhang, J. Z. Small. 2009, 5, 104-111.
  • Dholam, R.; Patel, N.; Adami, M.; Miotello, A. Int J Hyd. Ener. 2008, 33, 6896-6903.
  • Sun, Z.; Chang, H. ACS. Nano. 2014, 8, 4133-4156.
  • Zhu, S.; Song, Y.; Zhao, X.; Shao, J.; Zhang, J.; Yang, B. Nano. Research. 2015, 8, 355-381.
  • Hidayat, R.; Wahyuningsih, S.; Fadillah, G.; Ramelan, A. H. J. Inorg. Organomet. Polym. Mater. 2022, 32, 1-9.
  • Li, W.; Zhang, H.; Chen, T.; Yang, L.; Sheng, C.; Wu, H.; Mao, N. Tex. Res. J. 2022, 92, 5–6.
  • van Le, C.; Nguyen, M. T. T.; Le, N. T. T.; Le, H. K.; Bui, T. M.; Ho, D. H.; Le, V. H.; Ho, T. T. N.; Pham, T. L. C.; Huynh, L. T. N.; Nguyen, T. H.; Mai, T. P.; Hoang, N. M.; Nguyen, H. H. Arab. J. Sci. Eng. 2022, 47, 1.
  • Kaur, H.; Kaur, S.; Kumar, S.; Singh, J.; Rawat, M. J. Clust. Sci. 2021, 32, 1191-1204.
  • Pei, F.; Liu, Y.; Zhang, L.; Wang, S.; Xu, S.; Cao, S. Mater. Res. Bull. 2013, 48, 2824-2831.
  • Nada, A. A.; Tantawy, H. R.; Elsayed, M. A.; Bechelany, M.; Elmowafy, M. E. Solid. State. Sci. 2018, 78, 116-125.
  • Zhang, X. Y.; Li, H. P.; Cui, X. L.; Lin, Y. J. Mater. Chem. 2010, 20, 2801-2806.
  • Pei, F.; Xu, S.; Zuo, W.; Zhang, Z.; Liu, Y.; Cao, S. Int. J. Hyd. Ener. 2014, 39, 6845-6852.
  • Park, Y.; Kang, S. H.; Choi, W. Phy. Chem. 2011, 13, 9425-9431.
  • Zhao, X.; Zhang, Q.; Chen, D.; Lu, P. Macro. 2011, 44, 2392-2392.
  • Baig, U.; Uddin, M. K.; Sajid, M. Mater. To. Commun. 2020, 25, 101534.
  • Pareek, A.; Paik, P.; Joardar, J.; Murugan, K.; Borse, P. H. T. So. Fil. 2018, 661, 84-91.
  • Yang, X.; Li, L.; Shang, S.; Tao, X. Polymer. 2010, 51, 3431-3435.
  • Liu, W.; Song, N.; Wu, Y.; Gai, Y.; Zhao, Y. Vacuum. 2017, 138, 39-47.
  • Zhao, N.; Yang, M.; Zhao, Q.; Gao, W.; Xie, T.; Bai, H. Inter. Arch. Eng. 2017, 11, 4777-4784.
  • Liu, B.; Enache-Pommer, E.; Aydil, E. S. J. A.n Chem. Soc. 2009, 131, 3985-3990.
  • Alcudia-Ramos, M. A.; Fuentez-Torres, M. O.; Ortiz-Chi, F.; Espinosa-González, C. G.; Hernández‐Como, N.; García-Zaleta, D. S.; Kesarla, M. K.; Torres-Torres, J. G.; Collins-Martínez, V.; Godavarthi, S. Ceram. Int. 2020, 46, 38-45.
  • Liu, Y.; Li, R.; Yang, H.; Song, J.; Hu, J.; Yang, C.; Zheng, Z. Int. J. Hyd. Ener. 2022, 47, 14563-14569.
  • Abdelghany, A. M.; Meikhail, M. S.; Abdelraheem, G. E. A.; Badr, S. I.; Elsheshtawy, N. Int. J. Env. Stu. 2018, 75, 965-977.
  • Gao, X.; Liu, X.; Zhu, Z.; Wang, X.; Xie, Z. Sci. Rep. 2016, 6, 30543.
  • Sun, Z.; Kim, J. H.; Zhao, Y.; Bijarbooneh, F.; Malgras, V.; Lee, Y.; Kang, Y.-M.; Dou, S. X. J. Am. Chem. Soc. 2011, 48, 19314–19317.
  • Zubair, N. A.; Rahman, N. A.; Lim, H. N.; Zawawi, R. M.; Sulaiman, Y. RSC. Adv. 2016, 21, 17720–17727.
  • Sharma, M.; Rani, S.; Pathak, D. K.; Bhatia, R.; Kumar, R.; Sameera, I. Carbon. N. Y. 2021, 184, 437-444.
  • Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K. Phys. Rev. Lett. 2006, 97, 187401.
  • Chen, J.; Song, W.; Hou, H.; Zhang, Y.; Jing, M.; Jia, X.; Ji, X. Adv. Funct. Mater. 2015, 25, 6793-6801.
  • Zhang, L. Z.; Wang, Y. Y.; Wang, C. L.; Xiang, H. J. Memb. Sci. 2008, 308, 198-206.
  • Shi, Y.; Xiong, D.; Li, J.; Wang, K.; Wang, N. RSC. Adv. 2017, 7, 1045-1055.
  • Gupta, B.; Kumar, N.; Panda, K.; Kanan, V.; Joshi, S.; Visoly-Fisher, I. Sci. Rep. 2017, 7, 45030.
  • Abu Hurayra–Lizu, K. M.; Bari, M. W.; Gulshan, F.; Islam, M. R. Heliyon. 2021, 7, 5.
  • Anantharaj, S.; Noda, S. Chem. Electro. Chem. 2020, 7, 2297-2308.
  • Bredar, A. R. C.; Chown, A. L.; Burton, A. R.; Farnum, B. H. ACS. App. Ener. Mater.2020, 3, 66-98.
  • Yang, W.; Moehl, T.; Service, E.; Tilley, S. D. Adv. Ener. Mater. 2021, 11, 2003569.
Year 2023, , 189 - 196, 31.12.2023
https://doi.org/10.32571/ijct.1247384

Abstract

Project Number

OSB.22.002

References

  • Li, H. X.; Moore, T.; Huang, J.; Zhang, P.; Costin, G. Ener. Stra. Rev. 2022, 40, 100802.
  • Herrador, M.; de Jong, W.; Nasu, K.; Granrath, L. Sci. Tot. Env. 2022, 820, 153274.
  • Chen, Q.; Kuang, Z.; Liu, X.; Zhang, T. Appl. Ener. 2022, 312, 118744.
  • Acar, C.; Dincer, I. Int. J. Hyd. Ener. 2016, 41, 7950-7959.
  • Hassan, N. S.; Jalil, A. A.; Khusnun, N. F.; Ahmad, A.; Abdullah, T. A. T.; Kasmani, R. M.; Norazahar, N.; Kamaroddin, M. F. A.; Vo, D. V. N. Env. Chem. Let. 2022, 1, 23.
  • 6. Grimm, A.; de Jong, W. A.; Kramer, G. J. Int. J. Hyd. Ener. 2020, 45, 22545-22555.
  • Chiu, Y. H.; Lai, T. H.; Kuo, M. Y.; Hsieh, P. Y.; Hsu, Y. J. APL. Mater. 2019, 7, 8.
  • Fujishima, A.; Honda, K. Nature. 1972, 238, 37-38.
  • Bashiri, R.; Samsudin, M. F. R.; Mohamed, N. M.; Suhaimi, N. A.; Ling, L. Y.; Sufian, S.; Kait, C. F. Appl. Surf. Sci. 2020, 510, 145482 .
  • Bashiri, R.; Irfan, M. S.; Mohamed, N. M.; Sufian, S.; Ling, L. Y.; Suhaimi, N. A.; Samsudin, M. F. R. Int J Hyd. Ener. 2021, 46, 24607-24619.
  • Wolcott, A.; Smith, W. A.; Kuykendall, T. R.; Zhao, Y.; Zhang, J. Z. Small. 2009, 5, 104-111.
  • Dholam, R.; Patel, N.; Adami, M.; Miotello, A. Int J Hyd. Ener. 2008, 33, 6896-6903.
  • Sun, Z.; Chang, H. ACS. Nano. 2014, 8, 4133-4156.
  • Zhu, S.; Song, Y.; Zhao, X.; Shao, J.; Zhang, J.; Yang, B. Nano. Research. 2015, 8, 355-381.
  • Hidayat, R.; Wahyuningsih, S.; Fadillah, G.; Ramelan, A. H. J. Inorg. Organomet. Polym. Mater. 2022, 32, 1-9.
  • Li, W.; Zhang, H.; Chen, T.; Yang, L.; Sheng, C.; Wu, H.; Mao, N. Tex. Res. J. 2022, 92, 5–6.
  • van Le, C.; Nguyen, M. T. T.; Le, N. T. T.; Le, H. K.; Bui, T. M.; Ho, D. H.; Le, V. H.; Ho, T. T. N.; Pham, T. L. C.; Huynh, L. T. N.; Nguyen, T. H.; Mai, T. P.; Hoang, N. M.; Nguyen, H. H. Arab. J. Sci. Eng. 2022, 47, 1.
  • Kaur, H.; Kaur, S.; Kumar, S.; Singh, J.; Rawat, M. J. Clust. Sci. 2021, 32, 1191-1204.
  • Pei, F.; Liu, Y.; Zhang, L.; Wang, S.; Xu, S.; Cao, S. Mater. Res. Bull. 2013, 48, 2824-2831.
  • Nada, A. A.; Tantawy, H. R.; Elsayed, M. A.; Bechelany, M.; Elmowafy, M. E. Solid. State. Sci. 2018, 78, 116-125.
  • Zhang, X. Y.; Li, H. P.; Cui, X. L.; Lin, Y. J. Mater. Chem. 2010, 20, 2801-2806.
  • Pei, F.; Xu, S.; Zuo, W.; Zhang, Z.; Liu, Y.; Cao, S. Int. J. Hyd. Ener. 2014, 39, 6845-6852.
  • Park, Y.; Kang, S. H.; Choi, W. Phy. Chem. 2011, 13, 9425-9431.
  • Zhao, X.; Zhang, Q.; Chen, D.; Lu, P. Macro. 2011, 44, 2392-2392.
  • Baig, U.; Uddin, M. K.; Sajid, M. Mater. To. Commun. 2020, 25, 101534.
  • Pareek, A.; Paik, P.; Joardar, J.; Murugan, K.; Borse, P. H. T. So. Fil. 2018, 661, 84-91.
  • Yang, X.; Li, L.; Shang, S.; Tao, X. Polymer. 2010, 51, 3431-3435.
  • Liu, W.; Song, N.; Wu, Y.; Gai, Y.; Zhao, Y. Vacuum. 2017, 138, 39-47.
  • Zhao, N.; Yang, M.; Zhao, Q.; Gao, W.; Xie, T.; Bai, H. Inter. Arch. Eng. 2017, 11, 4777-4784.
  • Liu, B.; Enache-Pommer, E.; Aydil, E. S. J. A.n Chem. Soc. 2009, 131, 3985-3990.
  • Alcudia-Ramos, M. A.; Fuentez-Torres, M. O.; Ortiz-Chi, F.; Espinosa-González, C. G.; Hernández‐Como, N.; García-Zaleta, D. S.; Kesarla, M. K.; Torres-Torres, J. G.; Collins-Martínez, V.; Godavarthi, S. Ceram. Int. 2020, 46, 38-45.
  • Liu, Y.; Li, R.; Yang, H.; Song, J.; Hu, J.; Yang, C.; Zheng, Z. Int. J. Hyd. Ener. 2022, 47, 14563-14569.
  • Abdelghany, A. M.; Meikhail, M. S.; Abdelraheem, G. E. A.; Badr, S. I.; Elsheshtawy, N. Int. J. Env. Stu. 2018, 75, 965-977.
  • Gao, X.; Liu, X.; Zhu, Z.; Wang, X.; Xie, Z. Sci. Rep. 2016, 6, 30543.
  • Sun, Z.; Kim, J. H.; Zhao, Y.; Bijarbooneh, F.; Malgras, V.; Lee, Y.; Kang, Y.-M.; Dou, S. X. J. Am. Chem. Soc. 2011, 48, 19314–19317.
  • Zubair, N. A.; Rahman, N. A.; Lim, H. N.; Zawawi, R. M.; Sulaiman, Y. RSC. Adv. 2016, 21, 17720–17727.
  • Sharma, M.; Rani, S.; Pathak, D. K.; Bhatia, R.; Kumar, R.; Sameera, I. Carbon. N. Y. 2021, 184, 437-444.
  • Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K. Phys. Rev. Lett. 2006, 97, 187401.
  • Chen, J.; Song, W.; Hou, H.; Zhang, Y.; Jing, M.; Jia, X.; Ji, X. Adv. Funct. Mater. 2015, 25, 6793-6801.
  • Zhang, L. Z.; Wang, Y. Y.; Wang, C. L.; Xiang, H. J. Memb. Sci. 2008, 308, 198-206.
  • Shi, Y.; Xiong, D.; Li, J.; Wang, K.; Wang, N. RSC. Adv. 2017, 7, 1045-1055.
  • Gupta, B.; Kumar, N.; Panda, K.; Kanan, V.; Joshi, S.; Visoly-Fisher, I. Sci. Rep. 2017, 7, 45030.
  • Abu Hurayra–Lizu, K. M.; Bari, M. W.; Gulshan, F.; Islam, M. R. Heliyon. 2021, 7, 5.
  • Anantharaj, S.; Noda, S. Chem. Electro. Chem. 2020, 7, 2297-2308.
  • Bredar, A. R. C.; Chown, A. L.; Burton, A. R.; Farnum, B. H. ACS. App. Ener. Mater.2020, 3, 66-98.
  • Yang, W.; Moehl, T.; Service, E.; Tilley, S. D. Adv. Ener. Mater. 2021, 11, 2003569.
There are 46 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Research Articles
Authors

Fatih Tezcan 0000-0001-7656-3529

Didem Demir 0000-0002-2977-2077

Project Number OSB.22.002
Early Pub Date January 10, 2024
Publication Date December 31, 2023
Published in Issue Year 2023

Cite

APA Tezcan, F., & Demir, D. (2023). 3D TiO2 modified with reduced graphene embed into polyvinyl alcohol: photoanode electrode for oxygen evolution reaction. International Journal of Chemistry and Technology, 7(2), 189-196. https://doi.org/10.32571/ijct.1247384
AMA Tezcan F, Demir D. 3D TiO2 modified with reduced graphene embed into polyvinyl alcohol: photoanode electrode for oxygen evolution reaction. Int. J. Chem. Technol. December 2023;7(2):189-196. doi:10.32571/ijct.1247384
Chicago Tezcan, Fatih, and Didem Demir. “3D TiO2 Modified With Reduced Graphene Embed into Polyvinyl Alcohol: Photoanode Electrode for Oxygen Evolution Reaction”. International Journal of Chemistry and Technology 7, no. 2 (December 2023): 189-96. https://doi.org/10.32571/ijct.1247384.
EndNote Tezcan F, Demir D (December 1, 2023) 3D TiO2 modified with reduced graphene embed into polyvinyl alcohol: photoanode electrode for oxygen evolution reaction. International Journal of Chemistry and Technology 7 2 189–196.
IEEE F. Tezcan and D. Demir, “3D TiO2 modified with reduced graphene embed into polyvinyl alcohol: photoanode electrode for oxygen evolution reaction”, Int. J. Chem. Technol., vol. 7, no. 2, pp. 189–196, 2023, doi: 10.32571/ijct.1247384.
ISNAD Tezcan, Fatih - Demir, Didem. “3D TiO2 Modified With Reduced Graphene Embed into Polyvinyl Alcohol: Photoanode Electrode for Oxygen Evolution Reaction”. International Journal of Chemistry and Technology 7/2 (December 2023), 189-196. https://doi.org/10.32571/ijct.1247384.
JAMA Tezcan F, Demir D. 3D TiO2 modified with reduced graphene embed into polyvinyl alcohol: photoanode electrode for oxygen evolution reaction. Int. J. Chem. Technol. 2023;7:189–196.
MLA Tezcan, Fatih and Didem Demir. “3D TiO2 Modified With Reduced Graphene Embed into Polyvinyl Alcohol: Photoanode Electrode for Oxygen Evolution Reaction”. International Journal of Chemistry and Technology, vol. 7, no. 2, 2023, pp. 189-96, doi:10.32571/ijct.1247384.
Vancouver Tezcan F, Demir D. 3D TiO2 modified with reduced graphene embed into polyvinyl alcohol: photoanode electrode for oxygen evolution reaction. Int. J. Chem. Technol. 2023;7(2):189-96.