Research Article
BibTex RIS Cite
Year 2023, , 67 - 74, 30.06.2023
https://doi.org/10.32571/ijct.1279701

Abstract

References

  • 1. Sapci, Z.; Ustun, B. Elec. J. Env. Agricult. Food Chem. 2003, 2(2), 286-290.
  • 2. Samarghandi, M. R.; Zarrabi, M.; Amrane, A.; Safari, G. H.; Bashiri, S. Iran. J. Environ. Health Sci. Eng. 2012, 9(1), 1-10.
  • 3. Ahmad, A.; Banat, F.; Alsafar, H.; Hasan, S. W. Sci. Total Environ. 2022, 806, 150585.
  • 4. Okoro, H. K.; Pandey, S.; Ogunkunle, C. O.; Ngila, C. J.; Zvinowanda, C.; Jimoh, I., Lawal, I. A.; Orosun, M. M.; Adeniyi, A. G. Emerg. Contam. 2022, 8, 46-58.
  • 5. Derakhshan, Z.; Baghapour, M. A.; Ranjbar, M.; Faramarzian, M. Health. Scope. 2013, 2(3), 136-144.
  • 6. Kasbaji, M.; Mennani, M.; Boussetta, A.; Grimi, N.; Barba, F. J.; Mbarki, M.; Moubarik, A. Sep. Sci. Technol. 2023, 58(2), 221-240.
  • 7. Wang, J.; Xu, J.; Wu, N. J. Exp. Nanosci. 2017a 12(1), 297-307.
  • 8. Thakur, S.; Pandey, S.; Arotiba, O. A. Carbohydr. Polym. 2016, 153, 34-46.
  • 9. Guarin, J. R.; Moreno-Pirajan, J. C.; Giraldo, L. J. Chem. 2018, vol. 2018, Article ID 2124845, 12 pages.
  • 10. Liu, X.; Ma, S.; He, P.; Wang, M.; Duan, X.; Jia, D.; Colombo, P.; Zhou, Y. J. Phys. Chem. Solids. 2023, 174, 111158.
  • 11. Wang, H.; Yang, L.; Qin, Y.; Chen, Z.; Wang, T.; Sun, W.; Wang, C. Colloids Surf. A: Physicochem. Eng. Asp. 2023, 656, 130290.
  • 12. Luo, M.; Wang, L.; Li, H.; Bu, Y.; Zhao, Y.; Cai, J. Bioresour. Technol. 2023, 372, 128676.
  • 13. Gürses, A.; Doğar, Ç.; Yalçın, M.; Açıkyıldız, M.; Bayrak, R.; Karaca, S. J. Hazard. Mater. 2006, 131(1-3), 217-228.
  • 14. Belaid, K. D.; Kacha, S.; Kameche, M.; Derriche, Z. J. Environ. Chem. Eng., 2013, 1(3), 496-503.
  • 15. Gong, R.; Li, M.; Yang, C.; Sun, Y.; Chen, J. J. Hazard. Mater. 2005, 121(1-3), 247-250.
  • 16. Gürses, A.; Karaca, S.; Aksakal, F.; Acikyildiz, M. Desalination, 2010, 264(1-2), 165-172.
  • 17. Nkosi, N.; Basson, A.; Ntombela, Z.; Dlamini, N.; Maliehe, T.; Pullabhotla, R. Pure Appl. Chem. 2023, 18. Zhafiri, S.; Ali, B. T. I.; Gunawan, T.; Widiastuti, N. Mater. Today Proc. 2023, 74, 471-475.
  • 19. Luo, X. P.; Fu, S. Y.; Du, Y. M.; Guo, J. Z.; Li, B. Microporous Mesoporous Mater. 2017, 237, 268-274. 20. Alverez-Gallegos, A.; Pletcher, D. Electrochim. Acta. 1999, 44(14), 2483-2492.
  • 21. Aysan, H.; Edebali, S.; Ozdemir, C.; Karakaya, M. C.; Karakaya, N. Microporous Mesoporous Mater. 2016, 235, 78-86.
  • 22. Wang, F.; Zhang, L.; Wang, Y.; Liu, X.; Rohani, S.; Lu, J. Appl. Surf. Sci. 2017b, 420, 970-981.
  • 23. Bhattacharjee, A.; Ahmaruzzaman, M.; Sinha, T. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 136, 751-760.
  • 24. Fei, P.; Zhong, M.; Lei, Z.; Su, B. Mater. Lett. 2013, 108, 72-74.
  • 25. Zhang, J.; Li, B.; Yang, W.; Liu, J. Ind. Eng. Chem. Res. 2014, 53(26), 10629-10636.
  • 26. Yang, J.; Qiu, K. Chem. Eng. J. 2010, 165(1), 209-217.
  • 27. Santhy, K.; Selvapathy, P. Bioresour. Technol. 2006, 97(11), 1329-1336.
  • 28. Bereket, G.; Arog, A. Z.; Özel, M. Z. J. Colloid Interface Sci. 1997, 187(2), 338-343.
  • 29. Mohamed, M. M. Colloids Surf. A: Physicochem. Eng. Asp. 1996, 108(1), 39-48.
  • 30. Mohan, D.; Singh, K. P.; Singh, G.; Kumar, K. Ind. Eng. Chem. Res. 2002, 41(15), 3688-3695.
  • 31. Ho, Y. S.; McKay, G. Chem. Eng. J. 1998, 70(2), 115-124.
  • 32. Mckay, G.; Otterburn, M. S.; Sweeney, A. G. Water Res. 1981, 15(3), 327-331.
  • 33. Kalantaryan, M. A.; Abrahamyan, G. E.; Hoveyan, H. A. J. Archit. Eng. Res. 2022, 2, 36-40.
  • 34. Sharafi, K.; Mansouri, A. M.; Zinatizadeh, A. A.; Pirsaheb, M. Environ. Eng. Manag. J. 2015, 14(5), 1067-1078.
  • 35. Soleimani, H.; Sharafi, K.; Parian, J. A.; Jaafari, J.; Ebrahimzadeh, G. Heliyon, 2023, 9(4), e14743. 36. Liu, L.; Luo, X. B.; Ding, L.; Luo, S. L. In Nanomaterials for the removal of pollutants and resource reutilization; Luo, X.; Deng, F., Eds.; Elsevier; London, 2019; pp 83-147.
  • 37. Koochakzadeh, F.; Norouzbeigi, R.; Shayesteh, H. Environ. Sci. Pollut. Res. 2023, 30(7), 19167-19181.
  • 38. Akbal, F. J. Colloid Interface Sci. 2005, 286(2), 455-458.
  • 39. Yalçın, M.; Gürses, A.; Doğar, Ç.; Sözbilir, M. Adsorption, 2004, 10(4), 339-348.
  • 40. Kul, A. R.; Elik, H.; Benek, V. Erciyes University Journal of Institue of Science and Technology, 2019, 35(2), 26-31.
  • 41. Ugurlu, M.; Gurses, A.; Yalcin, M.; Dogar, C. Adsorption, 2005, 11(1), 87-97.
  • 42. Jain, C. K.; Sharma, M. K. Water Air Soil Pollut. 2002, 137(1), 1-19.
  • 43. Basibuyuk, M.; Forster, C. F. Process Biochem. 2003, 38(9), 1311-1316.
  • 44. Sivaraj, R.; Namasivayam, C.; Kadirvelu, K. Waste manag. 2001, 21(1), 105-110.
  • 45. Soltanian, M.; Almasi, A.; Moradi, M.; Sharafi, K.; Soltanian, S. J. Toloo Behdasht. 2016, 14(5), 50-63.
  • 46. Cho, D.-W.; Jeon, B.-H.; Chon, C.-M.; Schwartz, F. W.; Jeong, Y.; Song, H. J. Ind. Eng. Chem. 2015, 28, 60-66.
  • 47. Fan, L.; Luo, C.; Sun, M.; Li, X.; Lu, F.; Qiu, H. Bioresour.Technol. 2012,114, 703-706.
  • 48. Duman, O.; Polat, T. G.; Diker, C. Ö.; Tunç, S. Int. J. Biol. Macromol. 2020, 160, 823-835.
  • 49. Shayesteh, H.; Rahbar-Kelishami, A.; Norouzbeigi, R. J. Mol. Liq. 2016, 221, 1-11.
  • 50. Ling, C.; Wang, Z.; Ni, Y.; Zhu, Z.; Cheng, Z.; Liu, R. Environ. Prog. Sustain. Energy. 2022, 41(6), e13923.
  • 51. Linh, H. X.; Trung, N. T.; Van Thanh, D.; Huy, N. N.; Dung, N. Q.; Toan, T. Q.; Mai, N. T.; Thuy, N. T.; Khai, N. M. Vietnam J. Chem. 2022, 60, 41-45.
  • 52. Gürses, A.; Güneş, K.; Şahin, E.; Açıkyıldız, M. Front. Chem. 2023, 11, 1156577.
  • 53. Genişoğlu, M.; Gören, A. Y.; Balcı, E.; Recepoğlu, Y. K.; Ökten, H. E. SDU J Nat. Appl. Sci.2019, 23(2), 574-581.
  • 54. Sheng, L.; Zhang, Y.; Tang, F.; Liu, S. Microporous Mesoporous Mater. 2018, 257, 9-18.
  • 55. Han, R.; Wang, Y.; Zou, W.; Wang, Y.; Shi, J. J. Hazard. Mater. 2007, 145 (1-2), 331–335.

Isotherm and kinetic modeling of the adsorption of methylene blue, a cationic dye, on pumice

Year 2023, , 67 - 74, 30.06.2023
https://doi.org/10.32571/ijct.1279701

Abstract

The removal of dyes from aqueous solution with cheap and abundant adsorbents is becoming increasingly important for the solution of a serious environmental problem such as wastewater treatment. In this study, isotherm and kinetic modeling of the adsorption of methylene blue on pumice, a porous and glassy volcanic rock resistant to physical and chemical factors, was aimed. For this, the compatibility of the experimental data with the isotherm and kinetic models was examined, and information about the efficiency, effectiveness and rate of adsorption was tried to be obtained. Experimental data have been applied to isotherm models such as Langmuir, Freundlich, Temkin, Brenuer-Emmet-Teller (BET), Dubinin- Radushkevich, and Harkins-Jura, and kinetic models such as pseudo-first order, pseudo-second order, and intraparticle diffusion. While the order of fit for the isotherm models was determined as Freundlich > Harkins-Jura > Dubinin- Radushkevich based on the results of the regression analysis, the highest fit was obtained with the Freundlich equation (R2:0.993). Thus, the adsorption intensity (n) of methylene blue on pumice was calculated as 1.14 and the adsorption capacity (k) of pumice was calculated as 6.43. On the other hand, the order of fit of the experimental data to the kinetic models was determined as pseudo-second order > pseudo-first order > intra particle diffusion according to the regression coefficients. However, the highest consistency among the kinetic models was obtained with the pseudo-second order kinetic model(R2:1.000).

References

  • 1. Sapci, Z.; Ustun, B. Elec. J. Env. Agricult. Food Chem. 2003, 2(2), 286-290.
  • 2. Samarghandi, M. R.; Zarrabi, M.; Amrane, A.; Safari, G. H.; Bashiri, S. Iran. J. Environ. Health Sci. Eng. 2012, 9(1), 1-10.
  • 3. Ahmad, A.; Banat, F.; Alsafar, H.; Hasan, S. W. Sci. Total Environ. 2022, 806, 150585.
  • 4. Okoro, H. K.; Pandey, S.; Ogunkunle, C. O.; Ngila, C. J.; Zvinowanda, C.; Jimoh, I., Lawal, I. A.; Orosun, M. M.; Adeniyi, A. G. Emerg. Contam. 2022, 8, 46-58.
  • 5. Derakhshan, Z.; Baghapour, M. A.; Ranjbar, M.; Faramarzian, M. Health. Scope. 2013, 2(3), 136-144.
  • 6. Kasbaji, M.; Mennani, M.; Boussetta, A.; Grimi, N.; Barba, F. J.; Mbarki, M.; Moubarik, A. Sep. Sci. Technol. 2023, 58(2), 221-240.
  • 7. Wang, J.; Xu, J.; Wu, N. J. Exp. Nanosci. 2017a 12(1), 297-307.
  • 8. Thakur, S.; Pandey, S.; Arotiba, O. A. Carbohydr. Polym. 2016, 153, 34-46.
  • 9. Guarin, J. R.; Moreno-Pirajan, J. C.; Giraldo, L. J. Chem. 2018, vol. 2018, Article ID 2124845, 12 pages.
  • 10. Liu, X.; Ma, S.; He, P.; Wang, M.; Duan, X.; Jia, D.; Colombo, P.; Zhou, Y. J. Phys. Chem. Solids. 2023, 174, 111158.
  • 11. Wang, H.; Yang, L.; Qin, Y.; Chen, Z.; Wang, T.; Sun, W.; Wang, C. Colloids Surf. A: Physicochem. Eng. Asp. 2023, 656, 130290.
  • 12. Luo, M.; Wang, L.; Li, H.; Bu, Y.; Zhao, Y.; Cai, J. Bioresour. Technol. 2023, 372, 128676.
  • 13. Gürses, A.; Doğar, Ç.; Yalçın, M.; Açıkyıldız, M.; Bayrak, R.; Karaca, S. J. Hazard. Mater. 2006, 131(1-3), 217-228.
  • 14. Belaid, K. D.; Kacha, S.; Kameche, M.; Derriche, Z. J. Environ. Chem. Eng., 2013, 1(3), 496-503.
  • 15. Gong, R.; Li, M.; Yang, C.; Sun, Y.; Chen, J. J. Hazard. Mater. 2005, 121(1-3), 247-250.
  • 16. Gürses, A.; Karaca, S.; Aksakal, F.; Acikyildiz, M. Desalination, 2010, 264(1-2), 165-172.
  • 17. Nkosi, N.; Basson, A.; Ntombela, Z.; Dlamini, N.; Maliehe, T.; Pullabhotla, R. Pure Appl. Chem. 2023, 18. Zhafiri, S.; Ali, B. T. I.; Gunawan, T.; Widiastuti, N. Mater. Today Proc. 2023, 74, 471-475.
  • 19. Luo, X. P.; Fu, S. Y.; Du, Y. M.; Guo, J. Z.; Li, B. Microporous Mesoporous Mater. 2017, 237, 268-274. 20. Alverez-Gallegos, A.; Pletcher, D. Electrochim. Acta. 1999, 44(14), 2483-2492.
  • 21. Aysan, H.; Edebali, S.; Ozdemir, C.; Karakaya, M. C.; Karakaya, N. Microporous Mesoporous Mater. 2016, 235, 78-86.
  • 22. Wang, F.; Zhang, L.; Wang, Y.; Liu, X.; Rohani, S.; Lu, J. Appl. Surf. Sci. 2017b, 420, 970-981.
  • 23. Bhattacharjee, A.; Ahmaruzzaman, M.; Sinha, T. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 136, 751-760.
  • 24. Fei, P.; Zhong, M.; Lei, Z.; Su, B. Mater. Lett. 2013, 108, 72-74.
  • 25. Zhang, J.; Li, B.; Yang, W.; Liu, J. Ind. Eng. Chem. Res. 2014, 53(26), 10629-10636.
  • 26. Yang, J.; Qiu, K. Chem. Eng. J. 2010, 165(1), 209-217.
  • 27. Santhy, K.; Selvapathy, P. Bioresour. Technol. 2006, 97(11), 1329-1336.
  • 28. Bereket, G.; Arog, A. Z.; Özel, M. Z. J. Colloid Interface Sci. 1997, 187(2), 338-343.
  • 29. Mohamed, M. M. Colloids Surf. A: Physicochem. Eng. Asp. 1996, 108(1), 39-48.
  • 30. Mohan, D.; Singh, K. P.; Singh, G.; Kumar, K. Ind. Eng. Chem. Res. 2002, 41(15), 3688-3695.
  • 31. Ho, Y. S.; McKay, G. Chem. Eng. J. 1998, 70(2), 115-124.
  • 32. Mckay, G.; Otterburn, M. S.; Sweeney, A. G. Water Res. 1981, 15(3), 327-331.
  • 33. Kalantaryan, M. A.; Abrahamyan, G. E.; Hoveyan, H. A. J. Archit. Eng. Res. 2022, 2, 36-40.
  • 34. Sharafi, K.; Mansouri, A. M.; Zinatizadeh, A. A.; Pirsaheb, M. Environ. Eng. Manag. J. 2015, 14(5), 1067-1078.
  • 35. Soleimani, H.; Sharafi, K.; Parian, J. A.; Jaafari, J.; Ebrahimzadeh, G. Heliyon, 2023, 9(4), e14743. 36. Liu, L.; Luo, X. B.; Ding, L.; Luo, S. L. In Nanomaterials for the removal of pollutants and resource reutilization; Luo, X.; Deng, F., Eds.; Elsevier; London, 2019; pp 83-147.
  • 37. Koochakzadeh, F.; Norouzbeigi, R.; Shayesteh, H. Environ. Sci. Pollut. Res. 2023, 30(7), 19167-19181.
  • 38. Akbal, F. J. Colloid Interface Sci. 2005, 286(2), 455-458.
  • 39. Yalçın, M.; Gürses, A.; Doğar, Ç.; Sözbilir, M. Adsorption, 2004, 10(4), 339-348.
  • 40. Kul, A. R.; Elik, H.; Benek, V. Erciyes University Journal of Institue of Science and Technology, 2019, 35(2), 26-31.
  • 41. Ugurlu, M.; Gurses, A.; Yalcin, M.; Dogar, C. Adsorption, 2005, 11(1), 87-97.
  • 42. Jain, C. K.; Sharma, M. K. Water Air Soil Pollut. 2002, 137(1), 1-19.
  • 43. Basibuyuk, M.; Forster, C. F. Process Biochem. 2003, 38(9), 1311-1316.
  • 44. Sivaraj, R.; Namasivayam, C.; Kadirvelu, K. Waste manag. 2001, 21(1), 105-110.
  • 45. Soltanian, M.; Almasi, A.; Moradi, M.; Sharafi, K.; Soltanian, S. J. Toloo Behdasht. 2016, 14(5), 50-63.
  • 46. Cho, D.-W.; Jeon, B.-H.; Chon, C.-M.; Schwartz, F. W.; Jeong, Y.; Song, H. J. Ind. Eng. Chem. 2015, 28, 60-66.
  • 47. Fan, L.; Luo, C.; Sun, M.; Li, X.; Lu, F.; Qiu, H. Bioresour.Technol. 2012,114, 703-706.
  • 48. Duman, O.; Polat, T. G.; Diker, C. Ö.; Tunç, S. Int. J. Biol. Macromol. 2020, 160, 823-835.
  • 49. Shayesteh, H.; Rahbar-Kelishami, A.; Norouzbeigi, R. J. Mol. Liq. 2016, 221, 1-11.
  • 50. Ling, C.; Wang, Z.; Ni, Y.; Zhu, Z.; Cheng, Z.; Liu, R. Environ. Prog. Sustain. Energy. 2022, 41(6), e13923.
  • 51. Linh, H. X.; Trung, N. T.; Van Thanh, D.; Huy, N. N.; Dung, N. Q.; Toan, T. Q.; Mai, N. T.; Thuy, N. T.; Khai, N. M. Vietnam J. Chem. 2022, 60, 41-45.
  • 52. Gürses, A.; Güneş, K.; Şahin, E.; Açıkyıldız, M. Front. Chem. 2023, 11, 1156577.
  • 53. Genişoğlu, M.; Gören, A. Y.; Balcı, E.; Recepoğlu, Y. K.; Ökten, H. E. SDU J Nat. Appl. Sci.2019, 23(2), 574-581.
  • 54. Sheng, L.; Zhang, Y.; Tang, F.; Liu, S. Microporous Mesoporous Mater. 2018, 257, 9-18.
  • 55. Han, R.; Wang, Y.; Zou, W.; Wang, Y.; Shi, J. J. Hazard. Mater. 2007, 145 (1-2), 331–335.
There are 52 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Research Articles
Authors

Kübra Güneş 0000-0002-3105-8905

Early Pub Date June 26, 2023
Publication Date June 30, 2023
Published in Issue Year 2023

Cite

APA Güneş, K. (2023). Isotherm and kinetic modeling of the adsorption of methylene blue, a cationic dye, on pumice. International Journal of Chemistry and Technology, 7(1), 67-74. https://doi.org/10.32571/ijct.1279701
AMA Güneş K. Isotherm and kinetic modeling of the adsorption of methylene blue, a cationic dye, on pumice. Int. J. Chem. Technol. June 2023;7(1):67-74. doi:10.32571/ijct.1279701
Chicago Güneş, Kübra. “Isotherm and Kinetic Modeling of the Adsorption of Methylene Blue, a Cationic Dye, on Pumice”. International Journal of Chemistry and Technology 7, no. 1 (June 2023): 67-74. https://doi.org/10.32571/ijct.1279701.
EndNote Güneş K (June 1, 2023) Isotherm and kinetic modeling of the adsorption of methylene blue, a cationic dye, on pumice. International Journal of Chemistry and Technology 7 1 67–74.
IEEE K. Güneş, “Isotherm and kinetic modeling of the adsorption of methylene blue, a cationic dye, on pumice”, Int. J. Chem. Technol., vol. 7, no. 1, pp. 67–74, 2023, doi: 10.32571/ijct.1279701.
ISNAD Güneş, Kübra. “Isotherm and Kinetic Modeling of the Adsorption of Methylene Blue, a Cationic Dye, on Pumice”. International Journal of Chemistry and Technology 7/1 (June 2023), 67-74. https://doi.org/10.32571/ijct.1279701.
JAMA Güneş K. Isotherm and kinetic modeling of the adsorption of methylene blue, a cationic dye, on pumice. Int. J. Chem. Technol. 2023;7:67–74.
MLA Güneş, Kübra. “Isotherm and Kinetic Modeling of the Adsorption of Methylene Blue, a Cationic Dye, on Pumice”. International Journal of Chemistry and Technology, vol. 7, no. 1, 2023, pp. 67-74, doi:10.32571/ijct.1279701.
Vancouver Güneş K. Isotherm and kinetic modeling of the adsorption of methylene blue, a cationic dye, on pumice. Int. J. Chem. Technol. 2023;7(1):67-74.