Review
BibTex RIS Cite

An Overview to Current Trends in Metal Oxide Thin Film Preparation Methods

Year 2023, , 239 - 243, 31.12.2023
https://doi.org/10.32571/ijct.1327047

Abstract

Thin film preparation and coatings technology has been gaining attention as there is an increasing demand to the functionalized novel materials. Surface design through catalytically active materials such as metal oxides or zeolites as thin films and application through coating provides unique properties to the substance and result novel materials physically and chemically differing from their bulk form. Design technologies allow the preparation of structurally ordered thin films and coatings. Currently, designed thin film materials and coatings have a wide application range such as catalysis, sensing, anti- reflective surfaces, photovoltaics, or specialty design for targeted applications. This study provides a brief overview to the preparation methods of catalytically active coatings and thin film substances, which might be of industrial relevance in the case of the design for targeted applications.

References

  • 1.Alliott, G.T.; Higginson, R.L.; Wilcox, G.D. Producing a thin coloured film on stainless steels-a review. Part 2: Non-electrochemical and laser processes. Int. J. Surf. Sci. Eng., 2023, 101(2): 72-78.
  • 2. Xie, T.; Li, F.; Chen, K.; Zhao, S.; Chen, Y.; Sun, H.; Li, P.; Niu, Q.J. Fabrication of novel thin-film nanocomposite polyamide membrane by the interlayer approach: A review. Desalination, 2023, 554: 116509.
  • 3.Ingole, P.G. Inner-coated highly selective thin film nanocomposite hollow fiber membranes for the mixture gas separation. J. Appl. Polym. Sci., 2022, 140(9): e53553.
  • 4.Chen, D.H.; Gliemann, H.; Wöll, C. Layer-by-layer assembly of metal-organic framework thin films: Fabrication and advanced applications. Chem. Phys. Rev., 2023, 4(1): 011305.
  • 5. Kongsong, P.; Hasook, C.; Changpru, C.; Sangchay, W.; Konkhunthot, N. Effect of different chemical etching solutions on physical and chemical surface properties of commercially pure titanium grade 2. J. Mater. Eng. Perform., 2023, 32: 5060-5071.
  • 6.Acosta, D.R.; Martinez, A.I.; Lopez, A.A.; Magana, C.R. Titanium dioxide thin films: the effect of the preparation method in their photocatalytic properties. J. Mol. Catal. A Chem., 2005, 228(1-2): 183-188.
  • 7.Jeon, H.J.; Yi, S.C.; Oh, S.G. Preparation and antibacterial effects of Ag-SiO2 thin films by sol-gel method. Biomater., 2003, 24(27): 4921-4928.
  • 8.Kumari, S.; Suthar, D.; Kannan, M.D.; Kumari, N.; Dhaka, M.S. Understanding the grain growth mechanism in CdS thin films by CdCl2 treatment and thermal annealing evolution. Opt. Mater., 2022, 123: 111900.
  • 9.Maurya, S.; Diaz Abad, S.; Park, E. J.; Ramaiyan, K.; Kim, Y.S.; Davis, B.L.; Mukundan, R. Phosphoric acid pre-treatment to tailor polybenzimidazole membranes for vanadium redox flow batteries. J. Membr. Sci., 2023, 668: 121233.
  • 10.Alhoshan, M.; Shukla, A.K.; Mana, T.H.; Ahmed Ali, F.A.; Alam, J. An evolving MOF thin film nanocomposite tubular ceramic membrane for desalination pretreatment, J. Inorg. Organomet. Polym. Mater., 2023, 33: 337-352.
  • 11.Yabe, A.; Okada, M.; Hara, E.S.; Torii, Y.; Matsumoto, T. Self-adhering imptlantable device of titanium: Enhanced soft-tissue adhesion by sandblast pretreatment. Colloids Surf. B., 2022, 211: 112283.
  • 12.Unal, F.; Kurt, M.S.; Durdu, S. Investigation of the effect of light on the electrical parameters of Si/TiO2 heterojunctions produced by anodic oxidation on p-type Si wafer. J. Mater. Sci.: Mater. Electron, 2022, 33: 15834-15847.
  • 13.Widyastuti, E.; Hsu, J.L.; Lee, Y.C. Insight on photocatalytic and photo induced antimicrobial properties of ZnO thin films deposited by HiPIMS through thermal oxidation. Nanomaterials, 2022, 12(3), 463.
  • 14. Goffart, L., Pelissier, B.; Lefevre, G.; Le-Friec, Y.; Vallee, C.; Navarro, G.; Reynard, J.P. Surface oxidation phenomena in Ge-rich GeSbTe alloys and N doping influence for phase-change memory applications. Appl. Surf. Sci., 2022, 573: 151514.
  • 15. Devi, K.P.; Goswami, P.; Chaturvedi, H. Fabrication of nanocrystalline TiO2 thin films using sol-gel spin coating technology and investigation of its structural, morphology and optical characteristics. Appl. Surf. Sci., 2022, 591: 153226.
  • 16. Zhang, B.; Guo, Q.; Dai, B.; Wang, N.; Dai, Y.; Qi, Y. Dependence of the structure of Bi-2212 superconducting thin film prepared by sol-gel method on different complexing agents. Ceram. Int., 2022, 48(16): 23740-23747.
  • 17. Islam, M.R.; Rahman, M.; Farhad, S.F.U.; Podder, J. Structural, optical and photocatalysis properties of sol–gel deposited Al-doped ZnO thin films. Surf. Interfaces, 2019, 16: 120-126.
  • 18. Zargouni, S.; El Whibi, S.; Tessarolo, E.; Rigon, M.; Martucci, A.; Ezzaouia, H. Structural properties and defect related luminescence of Yb-doped NiO sol-gel thin films. Superlattic. Microstruct. 2020, 138: 106361.
  • 19. Catauro, M.; Bollino, F.; Giovanardi, R.; Veronesi, P. Modification of Ti6Al4V implant surfaces by biocompatible TiO2/PCL hybrid layers prepared via sol-gel dip coating: Structural characterization, mechanical and corrosion behavior. Mater. Sci. Eng. C, 2017, 74: 501-507.
  • 20. Brinker, C.J.; Frye, G.C.; Hurd, A.J.; Ashley, C.S. Fundamentals of sol-gel dip coating, Thin Solid Films, 1991, 201(1): 97-108.
  • 21. Thompson, W.A.; Perier, C.; Maroto-Valer, M.M. Systematic study of sol-gel parameters on TiO2 coating for CO2 photoreduction. Appl. Catal. B., 2018, 238: 136-146.
  • 22. Akia, M.; Alavi, S.M.; Rezaei, M.; Yan, Z.F. Optimizing the sol–gel parameters on the synthesis of mesostructure nanocrystalline γ-Al2O3. Micropor. Mesopor. Mat., 2009, 122(1-3): 72-78.
  • 23. Liao, T.Y., Biesiekierski, A.; Berndt, C.C.; King, P.C.; Ivanova, E:P.; Thissen, H.; Kingshott, P. Multifunctional cold spray coatings for biological and biomedical applications: A review, Prog. Surf. Sci., 2022, 97(2): 100654.
  • 24. Shafi, M.A.; Bouich, A.; Fradi, K.; Guatia, J.M.; Khan, L.; Mari, B. Effect of deposition cycles on the properties of ZnO thin films deposited by spin coating method for CZTS-based solar cells. Optik, 258: 168854.
  • 25. Lee, J.; Bang, S.; Lee, W. Sol-Gel Combustion-Assisted Electrostatic Spray Deposition for Durable Solid Oxide Fuel Cell Cathodes. Front. Chem., 2022, 10.
  • 26. Puetz, J.; Aegerter, M.A. Dip Coating Technique, Sol gel technologies for glass producers and users, 2004: 37-48.
  • 27. Tang, X.; Yan, X. Dip-coating for fibrous materials: mechanism, methods and applications. J. Solgel Sci. Technol., 2017, 81: 378-404.
  • 28. Guleria, G.; Thakur, S.; Shandilya, M.; Kumar, S.; Kumari, P.; Sharma, D.K.; Thakur, S. Synthesis of α-Fe2O3/ethyl cellulose-based nanocomposites to extend the shelf-life of Capsicum annuum L. var. Grossum. Mater. Today: Proc., 2022, article in press. 29. Liu, C.; Jin, T.; Liu, W.; Hao, W; Yan, L.; Zheng, L. Effects of hydroxyethyl cellulose and sodium alginate edible coating containing asparagus waste extract on postharvest quality of strawberry fruit. LWT, 2021, 148: 111770.
  • 30. Wang, X.; Yang, Z.; u, C.; Yin, L.; Zhang, C.; Gu, X. Preparation of T-type zeolite membranes using a dip-coating seeding suspension containing colloidal SiO2. Micropor. Mesopor. Mater., 2014, 197: 17-25. 31. Turkoglu, S.; Zhang, J.; Dodiuk, H.; Kenig, S.; Rato, J.A., Mead, J. Dynamic Wetting Properties of Silica-Poly (Acrylic Acid) Superhydrophilic Coatings. Polymers, 2023, 15(5), 1242. 32. Lisi, L.; Pirone, R.; Russo, G.; Stanzione, V. Cu-ZSM5 based monolith reactors for NO decomposition. Chem. Eng. J., 2009, 154(1-3): 341-347.
  • 33. Wang, J.; Yoshida, A.; Wang, P.; Yu, T.; Wang, Z.; Hao, X.; Abudula, A.; Guan, G. Catalytic oxidation of volatile organic compound over cerium modified cobalt-based mixed oxide catalysts synthesized by electrodeposition method. Appl. Catal. B., 2020, 271: 118941.
  • 34. Sikkema, R.; Baker, K.; Zhitomirsky, I. Electrophoretic deposition of polymers and proteins for biomedical applications. Adv. Coll. Int. Sci., 2020, 284: 102272.
  • 35. Hu, S.; Li, W.; Finklea, H.; Liu, X. A review of electrophoretic deposition of metal oxides and its application in solid oxide fuel cells. Adv. Coll. Int. Sci., 2020, 276: 102102. 36. Charalambous, H.; Borkiewicz, O.J.; Colclasure, A.M.; Yang, Z.; Dunlop, A.R.; Trask, S.E.; Jansen, A.N.; Bloom, I.D.; Ruett, U; Wiaderek, K.; Ren, Y. Comprehensive Insights into Nucleation, Autocatalytic Growth, and Stripping Efficiency for Lithium Plating in Full Cells. ACS Energy Lett., 2021, 6(10): 3725-3733. 37. Liu, F.; Li,P.; An, H.; Peng, P.; McLean, B.; Ding, F. Achievements and Challenges of Graphene Chemical Vapor Deposition Growth. Adv. Funct. Mater., 2022, 32(42): 2203191. 38. Sahoo, S.; Sahoo, G.; Jeong, S.M.; Rout, C.S. A review on supercapacitors based on plasma enhanced chemical vapor deposited vertical graphene arrays. J. Energy Storage, 2022, 53: 105212.
  • 39. Dan, A.; Bijalwan, P.K.; Pathak, A.S.; Bhagat, A.N. A review on physical vapor deposition-based metallic coatings on steel as an alternative to conventional galvanized coatings. J. Coat. Technol. Res., 2022, 19: 403-438. 40. Tan, J.; Wang, J.; Cao, Q; Bi, H.; Wu, J.; Wang, X. High-rate deposition of ultra-thick silver film by hollow cathode magnetron sputtering. Vacuum, 2023, 212: 112034.
  • 41. Zhang, J.; Li, Y.; Cao, K.; Chen, R. Advances in atomic layer deposition. Nanomanuf. Metrol., 2022, 5: 191-208.
  • 42. Altuwirqi, R.M. Graphene nanostructures by pulsed laser ablation in liquids: A review. Materials, 2022, 15(17): 5925.
  • 43. Alghfeli, A.; Fisher, T.S. High quality AB bilayer graphene films by direct solar-thermal chemical vapor deposition. ACS Sustainable Chem. Eng., 2023, article in press.
  • 44. Hamzah, N.; Yasin, M.F.M.; Zainal, M.T.; Sies, M.M.; Yusop, M.Z.M.; Chong, C.T. Morphology and growth region analysis of carbon nanotubes growth in water-assisted flame synthesis. Combust. Sci. Technol., 2023, 195(4): 860-877.
  • 45. van der Hoeven, J.E.S.; Shneidman, A.V.; Nicolas, N.J.; Aizenberg, J. Evaporation-induced self assembly of metal oxide inerse opals: from synthesis to applications. Acc. Chem. Res., 2022, 55(13): 1809-1820.
Year 2023, , 239 - 243, 31.12.2023
https://doi.org/10.32571/ijct.1327047

Abstract

References

  • 1.Alliott, G.T.; Higginson, R.L.; Wilcox, G.D. Producing a thin coloured film on stainless steels-a review. Part 2: Non-electrochemical and laser processes. Int. J. Surf. Sci. Eng., 2023, 101(2): 72-78.
  • 2. Xie, T.; Li, F.; Chen, K.; Zhao, S.; Chen, Y.; Sun, H.; Li, P.; Niu, Q.J. Fabrication of novel thin-film nanocomposite polyamide membrane by the interlayer approach: A review. Desalination, 2023, 554: 116509.
  • 3.Ingole, P.G. Inner-coated highly selective thin film nanocomposite hollow fiber membranes for the mixture gas separation. J. Appl. Polym. Sci., 2022, 140(9): e53553.
  • 4.Chen, D.H.; Gliemann, H.; Wöll, C. Layer-by-layer assembly of metal-organic framework thin films: Fabrication and advanced applications. Chem. Phys. Rev., 2023, 4(1): 011305.
  • 5. Kongsong, P.; Hasook, C.; Changpru, C.; Sangchay, W.; Konkhunthot, N. Effect of different chemical etching solutions on physical and chemical surface properties of commercially pure titanium grade 2. J. Mater. Eng. Perform., 2023, 32: 5060-5071.
  • 6.Acosta, D.R.; Martinez, A.I.; Lopez, A.A.; Magana, C.R. Titanium dioxide thin films: the effect of the preparation method in their photocatalytic properties. J. Mol. Catal. A Chem., 2005, 228(1-2): 183-188.
  • 7.Jeon, H.J.; Yi, S.C.; Oh, S.G. Preparation and antibacterial effects of Ag-SiO2 thin films by sol-gel method. Biomater., 2003, 24(27): 4921-4928.
  • 8.Kumari, S.; Suthar, D.; Kannan, M.D.; Kumari, N.; Dhaka, M.S. Understanding the grain growth mechanism in CdS thin films by CdCl2 treatment and thermal annealing evolution. Opt. Mater., 2022, 123: 111900.
  • 9.Maurya, S.; Diaz Abad, S.; Park, E. J.; Ramaiyan, K.; Kim, Y.S.; Davis, B.L.; Mukundan, R. Phosphoric acid pre-treatment to tailor polybenzimidazole membranes for vanadium redox flow batteries. J. Membr. Sci., 2023, 668: 121233.
  • 10.Alhoshan, M.; Shukla, A.K.; Mana, T.H.; Ahmed Ali, F.A.; Alam, J. An evolving MOF thin film nanocomposite tubular ceramic membrane for desalination pretreatment, J. Inorg. Organomet. Polym. Mater., 2023, 33: 337-352.
  • 11.Yabe, A.; Okada, M.; Hara, E.S.; Torii, Y.; Matsumoto, T. Self-adhering imptlantable device of titanium: Enhanced soft-tissue adhesion by sandblast pretreatment. Colloids Surf. B., 2022, 211: 112283.
  • 12.Unal, F.; Kurt, M.S.; Durdu, S. Investigation of the effect of light on the electrical parameters of Si/TiO2 heterojunctions produced by anodic oxidation on p-type Si wafer. J. Mater. Sci.: Mater. Electron, 2022, 33: 15834-15847.
  • 13.Widyastuti, E.; Hsu, J.L.; Lee, Y.C. Insight on photocatalytic and photo induced antimicrobial properties of ZnO thin films deposited by HiPIMS through thermal oxidation. Nanomaterials, 2022, 12(3), 463.
  • 14. Goffart, L., Pelissier, B.; Lefevre, G.; Le-Friec, Y.; Vallee, C.; Navarro, G.; Reynard, J.P. Surface oxidation phenomena in Ge-rich GeSbTe alloys and N doping influence for phase-change memory applications. Appl. Surf. Sci., 2022, 573: 151514.
  • 15. Devi, K.P.; Goswami, P.; Chaturvedi, H. Fabrication of nanocrystalline TiO2 thin films using sol-gel spin coating technology and investigation of its structural, morphology and optical characteristics. Appl. Surf. Sci., 2022, 591: 153226.
  • 16. Zhang, B.; Guo, Q.; Dai, B.; Wang, N.; Dai, Y.; Qi, Y. Dependence of the structure of Bi-2212 superconducting thin film prepared by sol-gel method on different complexing agents. Ceram. Int., 2022, 48(16): 23740-23747.
  • 17. Islam, M.R.; Rahman, M.; Farhad, S.F.U.; Podder, J. Structural, optical and photocatalysis properties of sol–gel deposited Al-doped ZnO thin films. Surf. Interfaces, 2019, 16: 120-126.
  • 18. Zargouni, S.; El Whibi, S.; Tessarolo, E.; Rigon, M.; Martucci, A.; Ezzaouia, H. Structural properties and defect related luminescence of Yb-doped NiO sol-gel thin films. Superlattic. Microstruct. 2020, 138: 106361.
  • 19. Catauro, M.; Bollino, F.; Giovanardi, R.; Veronesi, P. Modification of Ti6Al4V implant surfaces by biocompatible TiO2/PCL hybrid layers prepared via sol-gel dip coating: Structural characterization, mechanical and corrosion behavior. Mater. Sci. Eng. C, 2017, 74: 501-507.
  • 20. Brinker, C.J.; Frye, G.C.; Hurd, A.J.; Ashley, C.S. Fundamentals of sol-gel dip coating, Thin Solid Films, 1991, 201(1): 97-108.
  • 21. Thompson, W.A.; Perier, C.; Maroto-Valer, M.M. Systematic study of sol-gel parameters on TiO2 coating for CO2 photoreduction. Appl. Catal. B., 2018, 238: 136-146.
  • 22. Akia, M.; Alavi, S.M.; Rezaei, M.; Yan, Z.F. Optimizing the sol–gel parameters on the synthesis of mesostructure nanocrystalline γ-Al2O3. Micropor. Mesopor. Mat., 2009, 122(1-3): 72-78.
  • 23. Liao, T.Y., Biesiekierski, A.; Berndt, C.C.; King, P.C.; Ivanova, E:P.; Thissen, H.; Kingshott, P. Multifunctional cold spray coatings for biological and biomedical applications: A review, Prog. Surf. Sci., 2022, 97(2): 100654.
  • 24. Shafi, M.A.; Bouich, A.; Fradi, K.; Guatia, J.M.; Khan, L.; Mari, B. Effect of deposition cycles on the properties of ZnO thin films deposited by spin coating method for CZTS-based solar cells. Optik, 258: 168854.
  • 25. Lee, J.; Bang, S.; Lee, W. Sol-Gel Combustion-Assisted Electrostatic Spray Deposition for Durable Solid Oxide Fuel Cell Cathodes. Front. Chem., 2022, 10.
  • 26. Puetz, J.; Aegerter, M.A. Dip Coating Technique, Sol gel technologies for glass producers and users, 2004: 37-48.
  • 27. Tang, X.; Yan, X. Dip-coating for fibrous materials: mechanism, methods and applications. J. Solgel Sci. Technol., 2017, 81: 378-404.
  • 28. Guleria, G.; Thakur, S.; Shandilya, M.; Kumar, S.; Kumari, P.; Sharma, D.K.; Thakur, S. Synthesis of α-Fe2O3/ethyl cellulose-based nanocomposites to extend the shelf-life of Capsicum annuum L. var. Grossum. Mater. Today: Proc., 2022, article in press. 29. Liu, C.; Jin, T.; Liu, W.; Hao, W; Yan, L.; Zheng, L. Effects of hydroxyethyl cellulose and sodium alginate edible coating containing asparagus waste extract on postharvest quality of strawberry fruit. LWT, 2021, 148: 111770.
  • 30. Wang, X.; Yang, Z.; u, C.; Yin, L.; Zhang, C.; Gu, X. Preparation of T-type zeolite membranes using a dip-coating seeding suspension containing colloidal SiO2. Micropor. Mesopor. Mater., 2014, 197: 17-25. 31. Turkoglu, S.; Zhang, J.; Dodiuk, H.; Kenig, S.; Rato, J.A., Mead, J. Dynamic Wetting Properties of Silica-Poly (Acrylic Acid) Superhydrophilic Coatings. Polymers, 2023, 15(5), 1242. 32. Lisi, L.; Pirone, R.; Russo, G.; Stanzione, V. Cu-ZSM5 based monolith reactors for NO decomposition. Chem. Eng. J., 2009, 154(1-3): 341-347.
  • 33. Wang, J.; Yoshida, A.; Wang, P.; Yu, T.; Wang, Z.; Hao, X.; Abudula, A.; Guan, G. Catalytic oxidation of volatile organic compound over cerium modified cobalt-based mixed oxide catalysts synthesized by electrodeposition method. Appl. Catal. B., 2020, 271: 118941.
  • 34. Sikkema, R.; Baker, K.; Zhitomirsky, I. Electrophoretic deposition of polymers and proteins for biomedical applications. Adv. Coll. Int. Sci., 2020, 284: 102272.
  • 35. Hu, S.; Li, W.; Finklea, H.; Liu, X. A review of electrophoretic deposition of metal oxides and its application in solid oxide fuel cells. Adv. Coll. Int. Sci., 2020, 276: 102102. 36. Charalambous, H.; Borkiewicz, O.J.; Colclasure, A.M.; Yang, Z.; Dunlop, A.R.; Trask, S.E.; Jansen, A.N.; Bloom, I.D.; Ruett, U; Wiaderek, K.; Ren, Y. Comprehensive Insights into Nucleation, Autocatalytic Growth, and Stripping Efficiency for Lithium Plating in Full Cells. ACS Energy Lett., 2021, 6(10): 3725-3733. 37. Liu, F.; Li,P.; An, H.; Peng, P.; McLean, B.; Ding, F. Achievements and Challenges of Graphene Chemical Vapor Deposition Growth. Adv. Funct. Mater., 2022, 32(42): 2203191. 38. Sahoo, S.; Sahoo, G.; Jeong, S.M.; Rout, C.S. A review on supercapacitors based on plasma enhanced chemical vapor deposited vertical graphene arrays. J. Energy Storage, 2022, 53: 105212.
  • 39. Dan, A.; Bijalwan, P.K.; Pathak, A.S.; Bhagat, A.N. A review on physical vapor deposition-based metallic coatings on steel as an alternative to conventional galvanized coatings. J. Coat. Technol. Res., 2022, 19: 403-438. 40. Tan, J.; Wang, J.; Cao, Q; Bi, H.; Wu, J.; Wang, X. High-rate deposition of ultra-thick silver film by hollow cathode magnetron sputtering. Vacuum, 2023, 212: 112034.
  • 41. Zhang, J.; Li, Y.; Cao, K.; Chen, R. Advances in atomic layer deposition. Nanomanuf. Metrol., 2022, 5: 191-208.
  • 42. Altuwirqi, R.M. Graphene nanostructures by pulsed laser ablation in liquids: A review. Materials, 2022, 15(17): 5925.
  • 43. Alghfeli, A.; Fisher, T.S. High quality AB bilayer graphene films by direct solar-thermal chemical vapor deposition. ACS Sustainable Chem. Eng., 2023, article in press.
  • 44. Hamzah, N.; Yasin, M.F.M.; Zainal, M.T.; Sies, M.M.; Yusop, M.Z.M.; Chong, C.T. Morphology and growth region analysis of carbon nanotubes growth in water-assisted flame synthesis. Combust. Sci. Technol., 2023, 195(4): 860-877.
  • 45. van der Hoeven, J.E.S.; Shneidman, A.V.; Nicolas, N.J.; Aizenberg, J. Evaporation-induced self assembly of metal oxide inerse opals: from synthesis to applications. Acc. Chem. Res., 2022, 55(13): 1809-1820.
There are 38 citations in total.

Details

Primary Language English
Subjects Chemical Engineering (Other)
Journal Section Research Articles
Authors

Cemre Avşar 0000-0002-8953-9859

Early Pub Date February 29, 2024
Publication Date December 31, 2023
Published in Issue Year 2023

Cite

APA Avşar, C. (2023). An Overview to Current Trends in Metal Oxide Thin Film Preparation Methods. International Journal of Chemistry and Technology, 7(2), 239-243. https://doi.org/10.32571/ijct.1327047
AMA Avşar C. An Overview to Current Trends in Metal Oxide Thin Film Preparation Methods. Int. J. Chem. Technol. December 2023;7(2):239-243. doi:10.32571/ijct.1327047
Chicago Avşar, Cemre. “An Overview to Current Trends in Metal Oxide Thin Film Preparation Methods”. International Journal of Chemistry and Technology 7, no. 2 (December 2023): 239-43. https://doi.org/10.32571/ijct.1327047.
EndNote Avşar C (December 1, 2023) An Overview to Current Trends in Metal Oxide Thin Film Preparation Methods. International Journal of Chemistry and Technology 7 2 239–243.
IEEE C. Avşar, “An Overview to Current Trends in Metal Oxide Thin Film Preparation Methods”, Int. J. Chem. Technol., vol. 7, no. 2, pp. 239–243, 2023, doi: 10.32571/ijct.1327047.
ISNAD Avşar, Cemre. “An Overview to Current Trends in Metal Oxide Thin Film Preparation Methods”. International Journal of Chemistry and Technology 7/2 (December 2023), 239-243. https://doi.org/10.32571/ijct.1327047.
JAMA Avşar C. An Overview to Current Trends in Metal Oxide Thin Film Preparation Methods. Int. J. Chem. Technol. 2023;7:239–243.
MLA Avşar, Cemre. “An Overview to Current Trends in Metal Oxide Thin Film Preparation Methods”. International Journal of Chemistry and Technology, vol. 7, no. 2, 2023, pp. 239-43, doi:10.32571/ijct.1327047.
Vancouver Avşar C. An Overview to Current Trends in Metal Oxide Thin Film Preparation Methods. Int. J. Chem. Technol. 2023;7(2):239-43.