Research Article
BibTex RIS Cite

Alkali Pretreatment and Analysis Of Biomass Content Of Narlisaray Population and Vezir Type Cannabis Plant

Year 2024, , 83 - 89, 05.06.2024
https://doi.org/10.32571/ijct.1328410

Abstract

The cell wall of the hemp plant consists of cellulose, hemicellulose, and lignin cross-linked to these components. In such a structure, lignin is considered an undesirable byproduct in the production of textiles, paper, and biofuels from hemp. Therefore, the removal of lignin is essential for the industrial utilization of cellulose from hemp. In this study, lignin removal processes were conducted for the first time on the (native to Anatolia) Narlısaray population and the registered Vezir hemp. Alkaline (NaOH) treatment was preferred for pre-treatment due to its relatively low cost, lower energy requirements, and reduced risk factors. Structural changes before and after alkaline pre-treatment were compared using FT-IR spectra, SEM, and EDX analyses of the biomass. Examination of elemental trace values revealed that the O:C ratios of Narlısaray and Vezir fibers increased to 0.84 and 0.85, respectively. The increase in the O:C ratio indicated the removal of lignin, while the nearly identical ratios suggested that the lignin cross-linking energies in both local hemp fibers were almost the same. Additionally, SEM images provided clear information regarding the structural changes in Narlısaray and Vezir fibers before and after the lignin removal process.

Supporting Institution

TUBİTAK

Project Number

1919B012107603

Thanks

This study was supported by the Scientific and Technical Research Council of Turkey (TUBITAK) within the scope of the 2209-A Student Project. I would like to thank Hümeyra AĞIR who contributed to the study.

References

  • 1. Schultes, R. E. Nat. Hist. 1973, 82(7), 59.
  • 2. Zimniewska, M. Materials. 2002, 15(5), 1901.
  • 3. Schumacher, A. G. D.; Pequito, S.; Pazour, J. J Clean Prod. 2020, 268, 122180.
  • 4. Amode, N. S.; Jeetah, P. Waste Biomass Valorization. 2021, 12, 1781-1802.
  • 5. Tulaphol, S.; Sun, Z.; Sathitsuksanoh, N. Advances in Bioenergy. 2021, 6(1), 301-338.
  • 6. Ehrensing, D. T. Feasibility of industrial hemp production in the United States Pacific Northwest, Station Bulletin 681; Oregon State University: Corvallis, OR, USA, 1998.
  • 7. Kraenzel, D. G.; Petry, T. A.; Nelson, B.; Anderson, M. J.; Mathern, D.; Todd, R. Industrial hemp as an alternative crop in North Dakota, North Dakota State University: Fargo, ND, USA, 1998.
  • 8. Ceyhan, V.; Türkten, H.; Yıldırım, Ç.; Canan, S. Ind. Crop. Prod. 2022, 176, 114354.
  • 9. Crônier, D.; Monties, B.; Chabbert, B. J. Agr. Food Chem. 2005, 53(21), 8279-8289.
  • 10. Thomsen, A.B.; Rasmussen, S.; Bohn, V.; Vad Nielsen, K.; Thygesen, A. Hemp Raw Materials: The effect of cultivar, growth contitions and pretreatment on the chemical composition of the fibres, Risø DTU-National Laboratory for Sustainable Energy: Roskilde, Denmark, 2005.
  • 11. Preikss, I.; Skujans, J.; Adamovics, A.; Iljins, U. Chem. Engineer Trans. 2013, 32, 1639–1643.
  • 12. Parvez, A. M.; Lewis, J. D.; Afzal, M. T. Renew. Sust. Energ. Rev. 2021, 141, 110784.
  • 13. Arora, A.; Nandal, P.; Singh, J.; Verma, M. L. Materials Science for Energy Technologies, 2020, 3, 308-318.
  • 14. Barta, Z.; Oliva, J. M.; Ballesteros, I.; Dienes, D.; Ballesteros, M.; Réczey, K. Chem Biochem Eng Q. 2010, 24(3), 331-339.
  • 15. Kuglarz, M.; Alvarado-Morales, M.; Karakashev, D.; Angelidaki, I. Bioresource Technol. 2016, 200, 639-647.
  • 16. Gunnarsson, I. B.; Kuglarz, M.; Karakashev, D.; Angelidaki, I. Bioresource Technol. 2015, 182, 58-66.
  • 17. Zhao, J.; Xu, Y.; Wang, W.; Griffin, J.; Wang, D. Bioresource Technol. 2020, 309, 123383.
  • 18. Zhao, J.; Xu, Y.; Wang, W.; Griffin, J.; Roozeboom, K.; Wang, D. Fuel. 2020, 281, 118725.
  • 19. Ji, A.; Jia, L.; Kumar, D.; Yoo, C. G. Fermentation. 2021. 7(1), 6.
  • 20. Pakarinen, A.; Zhang, J.; Brock, T.; Maijala, P.; Viikari, L. Bioresource Technol. 2012, 107, 275-281.
  • 21. Rajkumar, S.; Tjong, J.; Nayak, S. K.; Sain, M. J. Reinf. Plast. Comp. 2015, 34(10), 807-818.
  • 22. Kabir, M. M.; Wang, H.; Lau, K. T; Cardona, F. Appl. Surf. Sci. 2013, 276, 13-23.
Year 2024, , 83 - 89, 05.06.2024
https://doi.org/10.32571/ijct.1328410

Abstract

Project Number

1919B012107603

References

  • 1. Schultes, R. E. Nat. Hist. 1973, 82(7), 59.
  • 2. Zimniewska, M. Materials. 2002, 15(5), 1901.
  • 3. Schumacher, A. G. D.; Pequito, S.; Pazour, J. J Clean Prod. 2020, 268, 122180.
  • 4. Amode, N. S.; Jeetah, P. Waste Biomass Valorization. 2021, 12, 1781-1802.
  • 5. Tulaphol, S.; Sun, Z.; Sathitsuksanoh, N. Advances in Bioenergy. 2021, 6(1), 301-338.
  • 6. Ehrensing, D. T. Feasibility of industrial hemp production in the United States Pacific Northwest, Station Bulletin 681; Oregon State University: Corvallis, OR, USA, 1998.
  • 7. Kraenzel, D. G.; Petry, T. A.; Nelson, B.; Anderson, M. J.; Mathern, D.; Todd, R. Industrial hemp as an alternative crop in North Dakota, North Dakota State University: Fargo, ND, USA, 1998.
  • 8. Ceyhan, V.; Türkten, H.; Yıldırım, Ç.; Canan, S. Ind. Crop. Prod. 2022, 176, 114354.
  • 9. Crônier, D.; Monties, B.; Chabbert, B. J. Agr. Food Chem. 2005, 53(21), 8279-8289.
  • 10. Thomsen, A.B.; Rasmussen, S.; Bohn, V.; Vad Nielsen, K.; Thygesen, A. Hemp Raw Materials: The effect of cultivar, growth contitions and pretreatment on the chemical composition of the fibres, Risø DTU-National Laboratory for Sustainable Energy: Roskilde, Denmark, 2005.
  • 11. Preikss, I.; Skujans, J.; Adamovics, A.; Iljins, U. Chem. Engineer Trans. 2013, 32, 1639–1643.
  • 12. Parvez, A. M.; Lewis, J. D.; Afzal, M. T. Renew. Sust. Energ. Rev. 2021, 141, 110784.
  • 13. Arora, A.; Nandal, P.; Singh, J.; Verma, M. L. Materials Science for Energy Technologies, 2020, 3, 308-318.
  • 14. Barta, Z.; Oliva, J. M.; Ballesteros, I.; Dienes, D.; Ballesteros, M.; Réczey, K. Chem Biochem Eng Q. 2010, 24(3), 331-339.
  • 15. Kuglarz, M.; Alvarado-Morales, M.; Karakashev, D.; Angelidaki, I. Bioresource Technol. 2016, 200, 639-647.
  • 16. Gunnarsson, I. B.; Kuglarz, M.; Karakashev, D.; Angelidaki, I. Bioresource Technol. 2015, 182, 58-66.
  • 17. Zhao, J.; Xu, Y.; Wang, W.; Griffin, J.; Wang, D. Bioresource Technol. 2020, 309, 123383.
  • 18. Zhao, J.; Xu, Y.; Wang, W.; Griffin, J.; Roozeboom, K.; Wang, D. Fuel. 2020, 281, 118725.
  • 19. Ji, A.; Jia, L.; Kumar, D.; Yoo, C. G. Fermentation. 2021. 7(1), 6.
  • 20. Pakarinen, A.; Zhang, J.; Brock, T.; Maijala, P.; Viikari, L. Bioresource Technol. 2012, 107, 275-281.
  • 21. Rajkumar, S.; Tjong, J.; Nayak, S. K.; Sain, M. J. Reinf. Plast. Comp. 2015, 34(10), 807-818.
  • 22. Kabir, M. M.; Wang, H.; Lau, K. T; Cardona, F. Appl. Surf. Sci. 2013, 276, 13-23.
There are 22 citations in total.

Details

Primary Language English
Subjects Chemical Engineering (Other)
Journal Section Research Articles
Authors

Özgenur Dinçer Şahan 0000-0002-2598-4865

Nesrin Korkmaz 0000-0002-7896-1042

Ahmet Karadağ 0000-0003-4676-683X

Project Number 1919B012107603
Early Pub Date May 30, 2024
Publication Date June 5, 2024
Published in Issue Year 2024

Cite

APA Dinçer Şahan, Ö., Korkmaz, N., & Karadağ, A. (2024). Alkali Pretreatment and Analysis Of Biomass Content Of Narlisaray Population and Vezir Type Cannabis Plant. International Journal of Chemistry and Technology, 8(1), 83-89. https://doi.org/10.32571/ijct.1328410
AMA Dinçer Şahan Ö, Korkmaz N, Karadağ A. Alkali Pretreatment and Analysis Of Biomass Content Of Narlisaray Population and Vezir Type Cannabis Plant. Int. J. Chem. Technol. June 2024;8(1):83-89. doi:10.32571/ijct.1328410
Chicago Dinçer Şahan, Özgenur, Nesrin Korkmaz, and Ahmet Karadağ. “Alkali Pretreatment and Analysis Of Biomass Content Of Narlisaray Population and Vezir Type Cannabis Plant”. International Journal of Chemistry and Technology 8, no. 1 (June 2024): 83-89. https://doi.org/10.32571/ijct.1328410.
EndNote Dinçer Şahan Ö, Korkmaz N, Karadağ A (June 1, 2024) Alkali Pretreatment and Analysis Of Biomass Content Of Narlisaray Population and Vezir Type Cannabis Plant. International Journal of Chemistry and Technology 8 1 83–89.
IEEE Ö. Dinçer Şahan, N. Korkmaz, and A. Karadağ, “Alkali Pretreatment and Analysis Of Biomass Content Of Narlisaray Population and Vezir Type Cannabis Plant”, Int. J. Chem. Technol., vol. 8, no. 1, pp. 83–89, 2024, doi: 10.32571/ijct.1328410.
ISNAD Dinçer Şahan, Özgenur et al. “Alkali Pretreatment and Analysis Of Biomass Content Of Narlisaray Population and Vezir Type Cannabis Plant”. International Journal of Chemistry and Technology 8/1 (June 2024), 83-89. https://doi.org/10.32571/ijct.1328410.
JAMA Dinçer Şahan Ö, Korkmaz N, Karadağ A. Alkali Pretreatment and Analysis Of Biomass Content Of Narlisaray Population and Vezir Type Cannabis Plant. Int. J. Chem. Technol. 2024;8:83–89.
MLA Dinçer Şahan, Özgenur et al. “Alkali Pretreatment and Analysis Of Biomass Content Of Narlisaray Population and Vezir Type Cannabis Plant”. International Journal of Chemistry and Technology, vol. 8, no. 1, 2024, pp. 83-89, doi:10.32571/ijct.1328410.
Vancouver Dinçer Şahan Ö, Korkmaz N, Karadağ A. Alkali Pretreatment and Analysis Of Biomass Content Of Narlisaray Population and Vezir Type Cannabis Plant. Int. J. Chem. Technol. 2024;8(1):83-9.