Production and New Green Activation of Conductive 3D-Printed Cu/PLA Electrode: Its Performance in Hydrogen Evolution Reactions in Alkaline Media
Year 2024,
, 32 - 44, 05.06.2024
Halil Ekici
,
Sevgi Ateş
,
Evrim Baran Aydın
Abstract
In this study, Cu-polylactic acid (PLA) composite filaments were produced with an extruder and three-dimensional (3D) Cu/PLA electrodes were 3D printed with Fused Deposition Modelling (FDM) method. To improve the electrochemical performance of the 3D-Cu/PLA electrode, a novel electrochemical activation method, which differentiates from complex activation methods in the literature, was applied in 1 M KOH solution without using any solvent. Field emission scanning electron microscopy (FE-SEM), Energy-Dispersive X-ray Spectroscopy (EDX), Fourier Transform Infrared Spectroscopy (FT-IR), and RAMAN techniques were used to characterize the 3D-Cu/PLA electrode before and after activation. The results showed that Cu particles were released after the degradation of PLA after activation. In addition, the thermal stability of the 3D electrode was demonstrated by the TGA technique. The performance of the 3D Cu/PLA electrode before and after activation in the hydrogen evolution reaction (HER) in 1M solution was measured using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and cathodic polarization curves methods. The EIS results showed that the charge transfers resistance values of the 3D-Cu/PLA electrode in 1 M KOH decreased significantly after activation. Post-activation hydrogen content measurements of the 3D-Cu/PLA electrode after electrolysis at different potentials and energy efficiency tests at different current densities were also carried out. The results indicate that the electrocatalytic properties of 3D-Cu electrodes were improved for HER through the activation process.
Project Number
Project number: 22/MAP/004
References
- 1. Grochala, W. First there was hydrogen. Nat. Chem. 2015, 7 (3), 264-264.
- 2. McCay, M.; Shafiee, S.; Letcher, T. Future Energy. 2020.
- 3. Nikolaidis, P.; Poullikkas, A. A comparative overview of hydrogen production processes. Renew. Sust. Energ Rev. 2017, 67, 597-611.
- 4. Porshnov, D. Evolution of pyrolysis and gasification as waste to energy tools for low carbon economy. Wires. Energy Environ. 2022, 11 (1), e421.
- 5. Saeidi, S.; Sápi, A.; Khoja, A. H.; Najari, S.; Ayesha, M.; Kónya, Z.; Asare-Bediako, B. B.; Tatarczuk, A.; Hessel, V.; Keil, F. J. Evolution paths from gray to turquoise hydrogen via catalytic steam methane reforming: Current challenges and future developments. Renew. Sust. Energ Rev. 2023, 183, 113392.
- 6. Chen, C.; Teng, Z.; Yasugi, M.; Yang, H.; Cao, Y.; Yu, L.; Ohno, T. A homogeneous copper bismuth sulfide photocathode prepared by spray pyrolysis deposition for efficient photoelectrochemical hydrogen generation. Mater. Lett. 2022, 325, 132801.
- 7. Da Silva Veras, T.; Mozer, T. S.; da Silva César, A. Hydrogen: trends, production and characterization of the main process worldwide. Int. J. Hydrogen Energ. 2017, 42 (4), 2018-2033.
- 8. Ji, M.; Wang, J. Review and comparison of various hydrogen production methods based on costs and life cycle impact assessment indicators. Int. J. Hydrogen Energ. 2021, 46 (78), 38612-38635.
- 9. Guvendiren, M.; Molde, J.; Soares, R. M.; Kohn, J. Designing biomaterials for 3D printing. ACS Biomater. Sci. Eng. 2016, 2 (10), 1679-1693.
- 10. Gross, B.; Lockwood, S. Y.; Spence, D. M. Recent advances in analytical chemistry by 3D printing. Anal. Chem. 2017, 89 (1), 57-70.
- 11. Bui, J. C.; Davis, J. T.; Esposito, D. V. 3D-Printed electrodes for membraneless water electrolysis. Sustain. Energ. Fuels 2020, 4 (1), 213-225.
- 12. Li, N.; Tong, K.; Yang, L.; Du, X. Review of 3D printing in photocatalytic substrates and catalysts. Mater. Today Energy 2022, 101100.
- 13. Ngo, T. D.; Kashani, A.; Imbalzano, G.; Nguyen, K. T.; Hui, D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. B Eng. 2018, 143, 172-196.
- 14. Baş, F.; Kaya, M. F. 3D printed anode electrodes for microbial electrolysis cells. Fuel 2022, 317, 123560.
- 15. Rohaizad, N.; Mayorga-Martinez, C. C.; Novotný, F.; Webster, R. D.; Pumera, M. 3D-printed Ag/AgCl pseudo-reference electrodes. Electrochem. Commun. 2019, 103, 104-108.
- 16. Zhang, X.; Guo, K.; Shen, D.; Feng, H.; Wang, M.; Zhou, Y.; Jia, Y.; Liang, Y.; Zhou, M. Carbon black as an alternative cathode material for electrical energy recovery and transfer in a microbial battery. Sci. Rep. 2017, 7 (1), 1-10.
- 17. Gong, Y.; Li, D.; Fu, Q.; Pan, C. Influence of graphene microstructures on electrochemical performance for supercapacitors. Prog. Nat. Sci.: Mater. Int. 2015, 25 (5), 379-385.
- 18. Browne, M. P.; Urbanova, V.; Plutnar, J.; Novotný, F.; Pumera, M. Inherent impurities in 3D-printed electrodes are responsible for catalysis towards water splitting. J. Mater. Chem. A 2020, 8 (3), 1120-1126.
- 19. Foster, C. W.; Down, M. P.; Zhang, Y.; Ji, X.; Rowley-Neale, S. J.; Smith, G. C.; Kelly, P. J.; Banks, C. E. 3D printed graphene based energy storage devices. Sci. Rep. 2017, 7 (1), 42233.
- 20. Browne, M. P.; Redondo, E.; Pumera, M. 3D printing for electrochemical energy applications. Chem. Rev. 2020, 120 (5), 2783-2810.
- 21. Browne, M.; Novotný, F. Z. k. Sofer and M. Pumera. ACS Appl. Mater. Interfaces 2018, 10, 40294-40301.
- 22. Gusmão, R.; Sofer, Z.; Marvan, P.; Pumera, M. MoS 2 versatile spray-coating of 3D electrodes for the hydrogen evolution reaction. Nanoscale 2019, 11 (20), 9888-9895.
- 23. Browne, M. P.; Pumera, M. Impurities in graphene/PLA 3D-printing filaments dramatically influence the electrochemical properties of the devices. Chem. Commun. 2019, 55 (58), 8374-8377.
- 24. Hughes, J. P.; dos Santos, P. L.; Down, M. P.; Foster, C. W.; Bonacin, J. A.; Keefe, E. M.; Rowley-Neale, S. J.; Banks, C. E. Single step additive manufacturing (3D printing) of electrocatalytic anodes and cathodes for efficient water splitting. Sustain. Energy Fuels 2020, 4 (1), 302-311.
- 25. Yang, W.; Chen, S. Recent progress in electrode fabrication for electrocatalytic hydrogen evolution reaction: A mini review. J. Chem. Eng. 2020, 393, 124726.
- 26. Huener, B.; Demir, N.; Kaya, M. F. Electrodeposition of NiCu bimetal on 3D printed electrodes for hydrogen evolution reactions in alkaline media. Int. J. Hydrogen Energ. 2022, 47 (24), 12136-12146.
- 27. Iffelsberger, C.; Rojas, D.; Pumera, M. Photo-Responsive Doped 3D-Printed Copper Electrodes for Water Splitting: Refractory One-Pot Doping Dramatically Enhances the Performance. J. Phys. Chem. C 2022, 126 (21), 9016-9026.
- 28. Siddiqui, M. N.; Kolokotsiou, L.; Vouvoudi, E.; Redhwi, H. H.; Al-Arfaj, A. A.; Achilias, D. S. Depolymerization of PLA by phase transfer catalysed alkaline hydrolysis in a microwave reactor. J. Polym. Environ. 2020, 28, 1664-1672.
- 29. Chieng, B. W.; Ibrahim, N. A.; Wan Yunus, W. M. Z.; Hussein, M. Z. Poly (lactic acid)/poly (ethylene glycol) polymer nanocomposites: Effects of graphene nanoplatelets. Polymers 2013, 6 (1), 93-104.
- 30. Pop, M. A.; Croitoru, C.; Bedő, T.; Geamăn, V.; Radomir, I.; Cos, n., ă, Mihaela; Zaharia, S. M.; Chicos, L. A.; Milos, a., Ioan. Structural changes during 3D printing of bioderived and synthetic thermoplastic materials. J. Appl. Polym. Sci. 2019, 136 (17), 47382.
- 31. Vidakis, N.; Petousis, M.; Velidakis, E.; Mountakis, N.; Tzounis, L.; Liebscher, M.; Grammatikos, S. A. Enhanced mechanical, thermal and antimicrobial properties of additively manufactured polylactic acid with optimized nano silica content. Nanomaterials 2021, 11 (4), 1012.
- 32. Vu, M. C.; Jeong, T. H.; Kim, J. B.; Choi, W. K.; Kim, D. H.; Kim, S. R. 3D printing of copper particles
and poly (methyl methacrylate) beads containing poly (lactic acid) composites for enhancing thermomechanical properties. J. Appl. Polym. Sci. 2021, 138 (5), 49776.
- 33. Pusomjit, P.; Teengam, P.; Thepsuparungsikul, N.; Sanongkiet, S.; Chailapakul, O. Impedimetric determination of cortisol using screen-printed electrode with aptamer-modified magnetic beads. Mikrochim. Acta 2021, 188, 1-8.
- 34. Herraiz-Cardona, I.; Ortega, E.; Vázquez-Gómez, L.; Pérez-Herranz, V. Electrochemical characterization of a NiCo/Zn cathode for hydrogen generation. Int. J. Hydrogen Energ. 2011, 36 (18), 11578-11587.
- 35. Hüner, B.; Demir, N.; Kaya, M. F. Ni-Pt coating on graphene based 3D printed electrodes for hydrogen evolution reactions in alkaline media. Fuel 2023, 331, 125971.
- 36. QayoomáMugheri, A.; LiaquatáBhatti, A.; NaeemáMemon, N.; IshaqueáAbro, M.; AhmedáShah, A.; AliáHullio, A.; HussaináIbupoto, Z. Efficient tri-metallic oxides NiCo 2 O 4/CuO for the oxygen evolution reaction. RSC Adv. 2019, 9 (72), 42387-42394.
- 37. Song, Q.; Li, J.; Wang, L.; Qin, Y.; Pang, L.; Liu, H. Stable single-atom cobalt as a strong coupling bridge to promote electron transfer and separation in photoelectrocatalysis. J. Catal. 2019, 370, 176-185.
- 38. Bao, F.; Kemppainen, E.; Dorbandt, I.; Bors, R.; Xi, F.; Schlatmann, R.; van de Krol, R.; Calnan, S. Understanding the Hydrogen Evolution Reaction Kinetics of Electrodeposited Nickel‐Molybdenum in Acidic, Near‐Neutral, and Alkaline Conditions. ChemElectroChem 2021, 8 (1), 195-208.
- 39. Giri, S. D.; Sarkar, A. Electrochemical study of bulk and monolayer copper in alkaline solution. J Electrochem. Soc. 2016, 163 (3), H252.
- 40. Nikolic, V. M.; Tasic, G. S.; Maksic, A. D.; Saponjic, D. P.; Miulovic, S. M.; Kaninski, M. P. M. Raising efficiency of hydrogen generation from alkaline water electrolysis–Energy saving. Int. J. Hydrogen Energ. 2010, 35 (22), 12369-12373.
Year 2024,
, 32 - 44, 05.06.2024
Halil Ekici
,
Sevgi Ateş
,
Evrim Baran Aydın
Project Number
Project number: 22/MAP/004
References
- 1. Grochala, W. First there was hydrogen. Nat. Chem. 2015, 7 (3), 264-264.
- 2. McCay, M.; Shafiee, S.; Letcher, T. Future Energy. 2020.
- 3. Nikolaidis, P.; Poullikkas, A. A comparative overview of hydrogen production processes. Renew. Sust. Energ Rev. 2017, 67, 597-611.
- 4. Porshnov, D. Evolution of pyrolysis and gasification as waste to energy tools for low carbon economy. Wires. Energy Environ. 2022, 11 (1), e421.
- 5. Saeidi, S.; Sápi, A.; Khoja, A. H.; Najari, S.; Ayesha, M.; Kónya, Z.; Asare-Bediako, B. B.; Tatarczuk, A.; Hessel, V.; Keil, F. J. Evolution paths from gray to turquoise hydrogen via catalytic steam methane reforming: Current challenges and future developments. Renew. Sust. Energ Rev. 2023, 183, 113392.
- 6. Chen, C.; Teng, Z.; Yasugi, M.; Yang, H.; Cao, Y.; Yu, L.; Ohno, T. A homogeneous copper bismuth sulfide photocathode prepared by spray pyrolysis deposition for efficient photoelectrochemical hydrogen generation. Mater. Lett. 2022, 325, 132801.
- 7. Da Silva Veras, T.; Mozer, T. S.; da Silva César, A. Hydrogen: trends, production and characterization of the main process worldwide. Int. J. Hydrogen Energ. 2017, 42 (4), 2018-2033.
- 8. Ji, M.; Wang, J. Review and comparison of various hydrogen production methods based on costs and life cycle impact assessment indicators. Int. J. Hydrogen Energ. 2021, 46 (78), 38612-38635.
- 9. Guvendiren, M.; Molde, J.; Soares, R. M.; Kohn, J. Designing biomaterials for 3D printing. ACS Biomater. Sci. Eng. 2016, 2 (10), 1679-1693.
- 10. Gross, B.; Lockwood, S. Y.; Spence, D. M. Recent advances in analytical chemistry by 3D printing. Anal. Chem. 2017, 89 (1), 57-70.
- 11. Bui, J. C.; Davis, J. T.; Esposito, D. V. 3D-Printed electrodes for membraneless water electrolysis. Sustain. Energ. Fuels 2020, 4 (1), 213-225.
- 12. Li, N.; Tong, K.; Yang, L.; Du, X. Review of 3D printing in photocatalytic substrates and catalysts. Mater. Today Energy 2022, 101100.
- 13. Ngo, T. D.; Kashani, A.; Imbalzano, G.; Nguyen, K. T.; Hui, D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. B Eng. 2018, 143, 172-196.
- 14. Baş, F.; Kaya, M. F. 3D printed anode electrodes for microbial electrolysis cells. Fuel 2022, 317, 123560.
- 15. Rohaizad, N.; Mayorga-Martinez, C. C.; Novotný, F.; Webster, R. D.; Pumera, M. 3D-printed Ag/AgCl pseudo-reference electrodes. Electrochem. Commun. 2019, 103, 104-108.
- 16. Zhang, X.; Guo, K.; Shen, D.; Feng, H.; Wang, M.; Zhou, Y.; Jia, Y.; Liang, Y.; Zhou, M. Carbon black as an alternative cathode material for electrical energy recovery and transfer in a microbial battery. Sci. Rep. 2017, 7 (1), 1-10.
- 17. Gong, Y.; Li, D.; Fu, Q.; Pan, C. Influence of graphene microstructures on electrochemical performance for supercapacitors. Prog. Nat. Sci.: Mater. Int. 2015, 25 (5), 379-385.
- 18. Browne, M. P.; Urbanova, V.; Plutnar, J.; Novotný, F.; Pumera, M. Inherent impurities in 3D-printed electrodes are responsible for catalysis towards water splitting. J. Mater. Chem. A 2020, 8 (3), 1120-1126.
- 19. Foster, C. W.; Down, M. P.; Zhang, Y.; Ji, X.; Rowley-Neale, S. J.; Smith, G. C.; Kelly, P. J.; Banks, C. E. 3D printed graphene based energy storage devices. Sci. Rep. 2017, 7 (1), 42233.
- 20. Browne, M. P.; Redondo, E.; Pumera, M. 3D printing for electrochemical energy applications. Chem. Rev. 2020, 120 (5), 2783-2810.
- 21. Browne, M.; Novotný, F. Z. k. Sofer and M. Pumera. ACS Appl. Mater. Interfaces 2018, 10, 40294-40301.
- 22. Gusmão, R.; Sofer, Z.; Marvan, P.; Pumera, M. MoS 2 versatile spray-coating of 3D electrodes for the hydrogen evolution reaction. Nanoscale 2019, 11 (20), 9888-9895.
- 23. Browne, M. P.; Pumera, M. Impurities in graphene/PLA 3D-printing filaments dramatically influence the electrochemical properties of the devices. Chem. Commun. 2019, 55 (58), 8374-8377.
- 24. Hughes, J. P.; dos Santos, P. L.; Down, M. P.; Foster, C. W.; Bonacin, J. A.; Keefe, E. M.; Rowley-Neale, S. J.; Banks, C. E. Single step additive manufacturing (3D printing) of electrocatalytic anodes and cathodes for efficient water splitting. Sustain. Energy Fuels 2020, 4 (1), 302-311.
- 25. Yang, W.; Chen, S. Recent progress in electrode fabrication for electrocatalytic hydrogen evolution reaction: A mini review. J. Chem. Eng. 2020, 393, 124726.
- 26. Huener, B.; Demir, N.; Kaya, M. F. Electrodeposition of NiCu bimetal on 3D printed electrodes for hydrogen evolution reactions in alkaline media. Int. J. Hydrogen Energ. 2022, 47 (24), 12136-12146.
- 27. Iffelsberger, C.; Rojas, D.; Pumera, M. Photo-Responsive Doped 3D-Printed Copper Electrodes for Water Splitting: Refractory One-Pot Doping Dramatically Enhances the Performance. J. Phys. Chem. C 2022, 126 (21), 9016-9026.
- 28. Siddiqui, M. N.; Kolokotsiou, L.; Vouvoudi, E.; Redhwi, H. H.; Al-Arfaj, A. A.; Achilias, D. S. Depolymerization of PLA by phase transfer catalysed alkaline hydrolysis in a microwave reactor. J. Polym. Environ. 2020, 28, 1664-1672.
- 29. Chieng, B. W.; Ibrahim, N. A.; Wan Yunus, W. M. Z.; Hussein, M. Z. Poly (lactic acid)/poly (ethylene glycol) polymer nanocomposites: Effects of graphene nanoplatelets. Polymers 2013, 6 (1), 93-104.
- 30. Pop, M. A.; Croitoru, C.; Bedő, T.; Geamăn, V.; Radomir, I.; Cos, n., ă, Mihaela; Zaharia, S. M.; Chicos, L. A.; Milos, a., Ioan. Structural changes during 3D printing of bioderived and synthetic thermoplastic materials. J. Appl. Polym. Sci. 2019, 136 (17), 47382.
- 31. Vidakis, N.; Petousis, M.; Velidakis, E.; Mountakis, N.; Tzounis, L.; Liebscher, M.; Grammatikos, S. A. Enhanced mechanical, thermal and antimicrobial properties of additively manufactured polylactic acid with optimized nano silica content. Nanomaterials 2021, 11 (4), 1012.
- 32. Vu, M. C.; Jeong, T. H.; Kim, J. B.; Choi, W. K.; Kim, D. H.; Kim, S. R. 3D printing of copper particles
and poly (methyl methacrylate) beads containing poly (lactic acid) composites for enhancing thermomechanical properties. J. Appl. Polym. Sci. 2021, 138 (5), 49776.
- 33. Pusomjit, P.; Teengam, P.; Thepsuparungsikul, N.; Sanongkiet, S.; Chailapakul, O. Impedimetric determination of cortisol using screen-printed electrode with aptamer-modified magnetic beads. Mikrochim. Acta 2021, 188, 1-8.
- 34. Herraiz-Cardona, I.; Ortega, E.; Vázquez-Gómez, L.; Pérez-Herranz, V. Electrochemical characterization of a NiCo/Zn cathode for hydrogen generation. Int. J. Hydrogen Energ. 2011, 36 (18), 11578-11587.
- 35. Hüner, B.; Demir, N.; Kaya, M. F. Ni-Pt coating on graphene based 3D printed electrodes for hydrogen evolution reactions in alkaline media. Fuel 2023, 331, 125971.
- 36. QayoomáMugheri, A.; LiaquatáBhatti, A.; NaeemáMemon, N.; IshaqueáAbro, M.; AhmedáShah, A.; AliáHullio, A.; HussaináIbupoto, Z. Efficient tri-metallic oxides NiCo 2 O 4/CuO for the oxygen evolution reaction. RSC Adv. 2019, 9 (72), 42387-42394.
- 37. Song, Q.; Li, J.; Wang, L.; Qin, Y.; Pang, L.; Liu, H. Stable single-atom cobalt as a strong coupling bridge to promote electron transfer and separation in photoelectrocatalysis. J. Catal. 2019, 370, 176-185.
- 38. Bao, F.; Kemppainen, E.; Dorbandt, I.; Bors, R.; Xi, F.; Schlatmann, R.; van de Krol, R.; Calnan, S. Understanding the Hydrogen Evolution Reaction Kinetics of Electrodeposited Nickel‐Molybdenum in Acidic, Near‐Neutral, and Alkaline Conditions. ChemElectroChem 2021, 8 (1), 195-208.
- 39. Giri, S. D.; Sarkar, A. Electrochemical study of bulk and monolayer copper in alkaline solution. J Electrochem. Soc. 2016, 163 (3), H252.
- 40. Nikolic, V. M.; Tasic, G. S.; Maksic, A. D.; Saponjic, D. P.; Miulovic, S. M.; Kaninski, M. P. M. Raising efficiency of hydrogen generation from alkaline water electrolysis–Energy saving. Int. J. Hydrogen Energ. 2010, 35 (22), 12369-12373.