Research Article
BibTex RIS Cite

Easy and eco-friendly way for silver nanoparticles synthesis using Lotus corniculatus L: characterization and antibacterial activity

Year 2024, , 180 - 189, 31.12.2024
https://doi.org/10.32571/ijct.1507097

Abstract

Lotus corniculatus L. is a plant that has recently proven a significant effect in anticancer therapies. On the other side, silver nanoparticles have always proven to demonstrate pronounced antimicrobial and anti-inflammatory properties. To harness the collective advantages of both entities, we synthesized silver nanoparticles using an aqueous extract of Lotus corniculatus L. In this synthesis, we used a solution of AgNO3 as a precursor of Ag, while existing bioactive molecules in the extract acted as a reducing agent and natural stabilizer of formed nanoparticles.

Structural characterization of the product was done by X-ray diffractometry (XRD) and infrared spectroscopy (FT-IR). Scanning electron microscopy with energy dispersive X-rays (SEM with EDX) was used to investigate nanoparticles morphology, and optical characterization was completed by Ultraviolet-visible spectrophotometry (UV-Vis).
An absorption edge at 420 nm and a noticeable color shift in the extract following the addition of the precursor demonstrated the AgNPs formation. SEM verified that the nanoparticles were spherical and had an average size of 17 nm. Importantly, the synthesized nanoparticles displayed an important antimicrobial activity, which is exhibited more remappable counter to gram-negative (Escherichia coli, Pseudomonas aeruginosa) than gram-positive (Bacillus subtilis). These findings underscore the potential of the Lotus corniculatus L. extract in silver nanoparticles synthesis as a promising avenue for applications in medicine and antimicrobial therapies.

Supporting Institution

Department of chemistry ,faculty of sciences ,Blida-1 university.

Thanks

Authors of this article gratefully acknowledge the direction of hygiene Laboratory of Blida, Algeria for antibacterial activity .

References

  • 1. Abbasi, Z.; Feizi, S.; Taghipour, E.; Ghadam, P., Green Process Synth 2017, 6 (5), 477-485.
  • 2. Abdallah, R.; Hammoda, H.; Radwan, M.; El-Gazzar, N.; Wanas, A.; Elsohly, M.; el demellawy, M.; AbdelRahman, N.; Sallam, S. Nat Pro Res 2020, 35, 1-4.
  • 3. Ahmad, N.; Sharma, S.; Singh, V. N.; Shamsi, S. F.; Fatma, A.; Mehta, B. R. Biotechnol Rese Int 2011, 2011, 454090.
  • 4. Ahmed, S.; Saifullah; Ahmad, M.; Swami, B. L.; Ikram, S. J radiat res appl sci 2016, 9 (1), 1-7.
  • 5. Alam, T.; Purnomo, F. O.; Tanjung, A. J Kim Sains Apl 2021, 24 (3), 70-76.
  • 6. Alsamhary, K. I, Saudi J. Biol. Sci 2018, 27(8), 2185-2191.
  • 7. Anastas, P.; Eghbali, N. Chem Soc rev 2010, 39 1, 301-12.
  • 8. Annamalai, J.; Ummalyma, S. B.; Pandey, A.; Bhaskar, T. Environ Sci Pollut R 2021, 28 (36), 49362-49382.
  • 9. B. Ajitha, Y. A. K. Reddy, H.-J. Jeon and C. W. Ahn, Adv. Powder Technol., 2018, 29, 86–93
  • 10. Baali, N.; Mezrag, A.; Bouheroum, M.; Benayache, F.; Benayache, S.; Souad, A. Med Chem 2020, 19 (2), 128-139.
  • 11. Chiang, C. S.; Lin, Y. J.; Lee, R.; Lai, Y. H.; Cheng, H. W.; Hsieh, C. H., Nat Nanotechnol, 2018 13(2), 746–754.
  • 12. Dalmarco, J. B.; Dalmarco, E. M.; Koelzer, J.; Pizzolatti, M. G. Int J Green Pharm 2010, 4 (2),108-114.
  • 13. Erenler, R., Dag, B.. Inorg and Nano-Metal Chem 2021, 52(4), 485–492.
  • 14. Erenler, R.; Geçer, E. N.; Nusret, G.; Yanar, D. Int J Chem Technol 2021, 5 (2), 141-146.
  • 15. Erenler, R.; Geçer, E. N.; Bozer, B. M. Int J Chem Technol 2022, 6 (2), 142-146.
  • 16. Foo, L. Y.; Newman, R.; Waghorn, G.; McNabb, W. C.; Ulyatt, M. J. Phytochemistry 1996, 41 (2), 617-624.
  • 17. Francis, S.; Joseph, S.; Koshy, E. P. ; Mathew, B. Artif. Cells, Nanomed., Biotechnol., 2018, 46, 795–804.
  • 18. Fumić, B.; Jug, M.; Zovko Končić, M. Croat Chem Acta 2019, 92(3), 369-377
  • 19. Gade, A.; Gaikwad, S.; Tiwari, V.; Yadav, A.; Ingle, A.; Rai, M. Curr. Nanosci 2010, 6 (4), 370-375.
  • 20. Ganesan, R.; Narasimhalu, P.; Joseph, A. I. J.; Pugazhendhi, A. Int J Energ Res 2021, 45 (12), 17378-17388.
  • 21. Gardea-Torresdey, J. L.; Gomez, E.; Peralta-Videa, J. R.; Parsons, J. G.; Troiani, H.; Jose-Yacaman, M. Langmuir 2003, 19 (4), 1357-1361.
  • 22. Hasan, K. F.; Xiaoyi, L.; Shaoqin, Z.; Horváth, P. G.; Bak, M.; Bejó, L.; Sipos, G.; Alpár, T., Heliyon 2022, 8 (12),1-26.
  • 23. Huang, J.; Lin, L.; Li, Q.; Sun, D.; Wang, Y.; Lu, Y.; He, N.; Yang, K.; Yang, X.; Wang, H.; Wang, W.; Lin, W. Ind Eng Chemis Res 2008, 47 (16), 6081-6090.
  • 24. Ito, A.; Shinkai, M.; Honda, H.; Kobayashi, T.,J, biosci and bioeng 2005, 100(1), 1-11
  • 25. Jain, H. Daima, S. Kachhwala, S. Kothari,, Digest J Nano and Biostr 2009, 4(1), 557-563 .
  • 26. Jang, S.; Rahman, M. Appl Phys A 2021, 127, 1-14.
  • 27. Javed, B.; Ikram, M.; Farooq, F.; Sultana, T.; Mashwani, Z.-u.-R.; Raja, N. I. App Microbol Biot 2021, 105, 2261-2275.
  • 28. Kaegi, R.; Voegelin, A.; Sinnet, B.; Zuleeg, S.; Hagendorfer, H.; Burkhardt, M.; Siegrist, H. Environ Sci . technol 2011, 45 (9), 3902-3908.
  • 29. Kaviya, S.; Santhanalakshmi, J.; Viswanathan, B.; Muthumary, J.; Srinivasan, K. Spectrochim Acta A 2011, 79 (3), 594-598.
  • 30. Liu, Y.; Lopes, R. P.; Lüdtke, T.; Di Silvio, D.; Moya, S.; Hamon, J.-R.; Astruc, D. Inorg Chem Front 2021, 8 (13), 3301-3307.
  • 31. Martinez-Gutierrez, F.; Olive, P. L.; Banuelos, A.; Orrantia, E.; Nino, N.; Sanchez, E. M.; Ruiz, F.; Bach, H.; Av-Gay, Y. Nanomed Nanotechnol Bio Med 2010, 6 (5), 681-688.
  • 32. Mitchell, M. J.; Billingsley, M. M.; Haley, R. M.; Wechsler, M. E.; Peppas, N. A.; Langer, R., Nat. reviews drug disc 2021, 20(2), 101-124.
  • 33. Morris, P.; Carter, E. B.; Hauck, B.; Lanot, A.; Theodorou, M. K.; Allison, G. Planta 2021, 253, 1-15.
  • 34. Paramelle, D.; Sadovoy, A.; Gorelik, S.; Free, P.; Hobley, J.; Fernig, D. G. Analyst 2014, 139 (19), 4855-4861.
  • 35. Pareek, V.; Bhargava, A.; Gupta, R.; Jain, N.; Panwar, J. Adv.Sci.Eng. Med 2017, 9 (7), 527-544.
  • 36. Rodrigues, T. S.; da Silva, A. G.; Camargo, P. H. J.Mater.Chem A 2019, 7 (11), 5857-5874.
  • 37. Roy, A.; Bulut, O.; Some, S.; Mandal, A. K.; Yilmaz, M. D. RSC advances 2019, 9 (5), 2673-2702.
  • 38. Salehi, S.; Shandiz, S. A. S.; Ghanbar, F.; Darvish, M. R.; Ardestani, M. S.; Mirzaie, A.; Jafari, M. Int j nanomed 2016, 11, 1835-46
  • 39. Saratale, R. G., Shin, H. S., Kumar, G., Benelli, G., Kim, D. S., & Saratale, G. D. Artificial Cells, Nanomed, and Biotech 2017, 46(1), 211–222.
  • 40. Shankar, S. S.; Ahmad, A.; Sastry, M. Biotechnol prog 2003, 19 (6), 1627-1631.
  • 41. Shankar, T.; Karthiga, P.; Swarnalatha, K.; Rajkumar, K. Resour Efficient Technol 2017, 3 (3), 303-308.
  • 42. Srikar, S. K.; Giri, D. D.; Pal, D. B.; Mishra, P. K.; Upadhyay, S. N. Green Sustain Chem 2016, 6 (1), 34-56.
  • 43. Stockman, M. I., Phys. Tod 2011, 64(2), 39-44.
  • 44. Sudha, A.; Jeyakanthan, J.; Srinivasan, P. Resour Efficient Technol 2017, 3 (4), 506-515.
  • 45. Vivekanandhan, S.; Schreiber, M.; Mason, C.; Mohanty, A. K.; Misra, M. Colloids Sur f B 2014, 113, 169-175.
  • 46. Wang, C.; Kim, Y. J.; Singh, P.; Mathiyalagan, R.; Jin, Y.; Yang, D. C. Artif cells nanomed biotechnol 2016, 44 (4), 1127-1132.
  • 47. Wang, Edina ,C.; Wang, Andrew ,Z. Integ. biolo 2014, 6(1), 9-26.
  • 48. Xia, Q.; Zhang, Y.; Li, Z.; Hou, X.; Feng, N., Acta Pharma. Sinica B 2019, 9(4), 675-689.
  • 49. Yerlikaya, S.; Baloglu, M. C.; Diuzheva, A.; Jekő, J.; Cziáky, Z.; Zengin, G. J pharm biomed anal 2019, 174, 286-299.
  • 50. Youssef, A.; El-Swaify, Z.; Maaty, D.; Youssef, M.; Garrido, G. J. Pharm. Pharmacogn. Res 2020, 8, 537-548.
Year 2024, , 180 - 189, 31.12.2024
https://doi.org/10.32571/ijct.1507097

Abstract

References

  • 1. Abbasi, Z.; Feizi, S.; Taghipour, E.; Ghadam, P., Green Process Synth 2017, 6 (5), 477-485.
  • 2. Abdallah, R.; Hammoda, H.; Radwan, M.; El-Gazzar, N.; Wanas, A.; Elsohly, M.; el demellawy, M.; AbdelRahman, N.; Sallam, S. Nat Pro Res 2020, 35, 1-4.
  • 3. Ahmad, N.; Sharma, S.; Singh, V. N.; Shamsi, S. F.; Fatma, A.; Mehta, B. R. Biotechnol Rese Int 2011, 2011, 454090.
  • 4. Ahmed, S.; Saifullah; Ahmad, M.; Swami, B. L.; Ikram, S. J radiat res appl sci 2016, 9 (1), 1-7.
  • 5. Alam, T.; Purnomo, F. O.; Tanjung, A. J Kim Sains Apl 2021, 24 (3), 70-76.
  • 6. Alsamhary, K. I, Saudi J. Biol. Sci 2018, 27(8), 2185-2191.
  • 7. Anastas, P.; Eghbali, N. Chem Soc rev 2010, 39 1, 301-12.
  • 8. Annamalai, J.; Ummalyma, S. B.; Pandey, A.; Bhaskar, T. Environ Sci Pollut R 2021, 28 (36), 49362-49382.
  • 9. B. Ajitha, Y. A. K. Reddy, H.-J. Jeon and C. W. Ahn, Adv. Powder Technol., 2018, 29, 86–93
  • 10. Baali, N.; Mezrag, A.; Bouheroum, M.; Benayache, F.; Benayache, S.; Souad, A. Med Chem 2020, 19 (2), 128-139.
  • 11. Chiang, C. S.; Lin, Y. J.; Lee, R.; Lai, Y. H.; Cheng, H. W.; Hsieh, C. H., Nat Nanotechnol, 2018 13(2), 746–754.
  • 12. Dalmarco, J. B.; Dalmarco, E. M.; Koelzer, J.; Pizzolatti, M. G. Int J Green Pharm 2010, 4 (2),108-114.
  • 13. Erenler, R., Dag, B.. Inorg and Nano-Metal Chem 2021, 52(4), 485–492.
  • 14. Erenler, R.; Geçer, E. N.; Nusret, G.; Yanar, D. Int J Chem Technol 2021, 5 (2), 141-146.
  • 15. Erenler, R.; Geçer, E. N.; Bozer, B. M. Int J Chem Technol 2022, 6 (2), 142-146.
  • 16. Foo, L. Y.; Newman, R.; Waghorn, G.; McNabb, W. C.; Ulyatt, M. J. Phytochemistry 1996, 41 (2), 617-624.
  • 17. Francis, S.; Joseph, S.; Koshy, E. P. ; Mathew, B. Artif. Cells, Nanomed., Biotechnol., 2018, 46, 795–804.
  • 18. Fumić, B.; Jug, M.; Zovko Končić, M. Croat Chem Acta 2019, 92(3), 369-377
  • 19. Gade, A.; Gaikwad, S.; Tiwari, V.; Yadav, A.; Ingle, A.; Rai, M. Curr. Nanosci 2010, 6 (4), 370-375.
  • 20. Ganesan, R.; Narasimhalu, P.; Joseph, A. I. J.; Pugazhendhi, A. Int J Energ Res 2021, 45 (12), 17378-17388.
  • 21. Gardea-Torresdey, J. L.; Gomez, E.; Peralta-Videa, J. R.; Parsons, J. G.; Troiani, H.; Jose-Yacaman, M. Langmuir 2003, 19 (4), 1357-1361.
  • 22. Hasan, K. F.; Xiaoyi, L.; Shaoqin, Z.; Horváth, P. G.; Bak, M.; Bejó, L.; Sipos, G.; Alpár, T., Heliyon 2022, 8 (12),1-26.
  • 23. Huang, J.; Lin, L.; Li, Q.; Sun, D.; Wang, Y.; Lu, Y.; He, N.; Yang, K.; Yang, X.; Wang, H.; Wang, W.; Lin, W. Ind Eng Chemis Res 2008, 47 (16), 6081-6090.
  • 24. Ito, A.; Shinkai, M.; Honda, H.; Kobayashi, T.,J, biosci and bioeng 2005, 100(1), 1-11
  • 25. Jain, H. Daima, S. Kachhwala, S. Kothari,, Digest J Nano and Biostr 2009, 4(1), 557-563 .
  • 26. Jang, S.; Rahman, M. Appl Phys A 2021, 127, 1-14.
  • 27. Javed, B.; Ikram, M.; Farooq, F.; Sultana, T.; Mashwani, Z.-u.-R.; Raja, N. I. App Microbol Biot 2021, 105, 2261-2275.
  • 28. Kaegi, R.; Voegelin, A.; Sinnet, B.; Zuleeg, S.; Hagendorfer, H.; Burkhardt, M.; Siegrist, H. Environ Sci . technol 2011, 45 (9), 3902-3908.
  • 29. Kaviya, S.; Santhanalakshmi, J.; Viswanathan, B.; Muthumary, J.; Srinivasan, K. Spectrochim Acta A 2011, 79 (3), 594-598.
  • 30. Liu, Y.; Lopes, R. P.; Lüdtke, T.; Di Silvio, D.; Moya, S.; Hamon, J.-R.; Astruc, D. Inorg Chem Front 2021, 8 (13), 3301-3307.
  • 31. Martinez-Gutierrez, F.; Olive, P. L.; Banuelos, A.; Orrantia, E.; Nino, N.; Sanchez, E. M.; Ruiz, F.; Bach, H.; Av-Gay, Y. Nanomed Nanotechnol Bio Med 2010, 6 (5), 681-688.
  • 32. Mitchell, M. J.; Billingsley, M. M.; Haley, R. M.; Wechsler, M. E.; Peppas, N. A.; Langer, R., Nat. reviews drug disc 2021, 20(2), 101-124.
  • 33. Morris, P.; Carter, E. B.; Hauck, B.; Lanot, A.; Theodorou, M. K.; Allison, G. Planta 2021, 253, 1-15.
  • 34. Paramelle, D.; Sadovoy, A.; Gorelik, S.; Free, P.; Hobley, J.; Fernig, D. G. Analyst 2014, 139 (19), 4855-4861.
  • 35. Pareek, V.; Bhargava, A.; Gupta, R.; Jain, N.; Panwar, J. Adv.Sci.Eng. Med 2017, 9 (7), 527-544.
  • 36. Rodrigues, T. S.; da Silva, A. G.; Camargo, P. H. J.Mater.Chem A 2019, 7 (11), 5857-5874.
  • 37. Roy, A.; Bulut, O.; Some, S.; Mandal, A. K.; Yilmaz, M. D. RSC advances 2019, 9 (5), 2673-2702.
  • 38. Salehi, S.; Shandiz, S. A. S.; Ghanbar, F.; Darvish, M. R.; Ardestani, M. S.; Mirzaie, A.; Jafari, M. Int j nanomed 2016, 11, 1835-46
  • 39. Saratale, R. G., Shin, H. S., Kumar, G., Benelli, G., Kim, D. S., & Saratale, G. D. Artificial Cells, Nanomed, and Biotech 2017, 46(1), 211–222.
  • 40. Shankar, S. S.; Ahmad, A.; Sastry, M. Biotechnol prog 2003, 19 (6), 1627-1631.
  • 41. Shankar, T.; Karthiga, P.; Swarnalatha, K.; Rajkumar, K. Resour Efficient Technol 2017, 3 (3), 303-308.
  • 42. Srikar, S. K.; Giri, D. D.; Pal, D. B.; Mishra, P. K.; Upadhyay, S. N. Green Sustain Chem 2016, 6 (1), 34-56.
  • 43. Stockman, M. I., Phys. Tod 2011, 64(2), 39-44.
  • 44. Sudha, A.; Jeyakanthan, J.; Srinivasan, P. Resour Efficient Technol 2017, 3 (4), 506-515.
  • 45. Vivekanandhan, S.; Schreiber, M.; Mason, C.; Mohanty, A. K.; Misra, M. Colloids Sur f B 2014, 113, 169-175.
  • 46. Wang, C.; Kim, Y. J.; Singh, P.; Mathiyalagan, R.; Jin, Y.; Yang, D. C. Artif cells nanomed biotechnol 2016, 44 (4), 1127-1132.
  • 47. Wang, Edina ,C.; Wang, Andrew ,Z. Integ. biolo 2014, 6(1), 9-26.
  • 48. Xia, Q.; Zhang, Y.; Li, Z.; Hou, X.; Feng, N., Acta Pharma. Sinica B 2019, 9(4), 675-689.
  • 49. Yerlikaya, S.; Baloglu, M. C.; Diuzheva, A.; Jekő, J.; Cziáky, Z.; Zengin, G. J pharm biomed anal 2019, 174, 286-299.
  • 50. Youssef, A.; El-Swaify, Z.; Maaty, D.; Youssef, M.; Garrido, G. J. Pharm. Pharmacogn. Res 2020, 8, 537-548.
There are 50 citations in total.

Details

Primary Language English
Subjects Chemical Engineering (Other)
Journal Section Research Articles
Authors

Bessi Assia 0000-0001-9484-5722

Kahina Hamza 0009-0004-5611-8873

Boubkeur Boudine 0000-0002-6917-5373

Chaouki Boudaren 0009-0003-0092-9602

Early Pub Date December 19, 2024
Publication Date December 31, 2024
Submission Date July 1, 2024
Acceptance Date December 9, 2024
Published in Issue Year 2024

Cite

APA Assia, B., Hamza, K., Boudine, B., Boudaren, C. (2024). Easy and eco-friendly way for silver nanoparticles synthesis using Lotus corniculatus L: characterization and antibacterial activity. International Journal of Chemistry and Technology, 8(2), 180-189. https://doi.org/10.32571/ijct.1507097
AMA Assia B, Hamza K, Boudine B, Boudaren C. Easy and eco-friendly way for silver nanoparticles synthesis using Lotus corniculatus L: characterization and antibacterial activity. Int. J. Chem. Technol. December 2024;8(2):180-189. doi:10.32571/ijct.1507097
Chicago Assia, Bessi, Kahina Hamza, Boubkeur Boudine, and Chaouki Boudaren. “Easy and Eco-Friendly Way for Silver Nanoparticles Synthesis Using Lotus Corniculatus L: Characterization and Antibacterial Activity”. International Journal of Chemistry and Technology 8, no. 2 (December 2024): 180-89. https://doi.org/10.32571/ijct.1507097.
EndNote Assia B, Hamza K, Boudine B, Boudaren C (December 1, 2024) Easy and eco-friendly way for silver nanoparticles synthesis using Lotus corniculatus L: characterization and antibacterial activity. International Journal of Chemistry and Technology 8 2 180–189.
IEEE B. Assia, K. Hamza, B. Boudine, and C. Boudaren, “Easy and eco-friendly way for silver nanoparticles synthesis using Lotus corniculatus L: characterization and antibacterial activity”, Int. J. Chem. Technol., vol. 8, no. 2, pp. 180–189, 2024, doi: 10.32571/ijct.1507097.
ISNAD Assia, Bessi et al. “Easy and Eco-Friendly Way for Silver Nanoparticles Synthesis Using Lotus Corniculatus L: Characterization and Antibacterial Activity”. International Journal of Chemistry and Technology 8/2 (December 2024), 180-189. https://doi.org/10.32571/ijct.1507097.
JAMA Assia B, Hamza K, Boudine B, Boudaren C. Easy and eco-friendly way for silver nanoparticles synthesis using Lotus corniculatus L: characterization and antibacterial activity. Int. J. Chem. Technol. 2024;8:180–189.
MLA Assia, Bessi et al. “Easy and Eco-Friendly Way for Silver Nanoparticles Synthesis Using Lotus Corniculatus L: Characterization and Antibacterial Activity”. International Journal of Chemistry and Technology, vol. 8, no. 2, 2024, pp. 180-9, doi:10.32571/ijct.1507097.
Vancouver Assia B, Hamza K, Boudine B, Boudaren C. Easy and eco-friendly way for silver nanoparticles synthesis using Lotus corniculatus L: characterization and antibacterial activity. Int. J. Chem. Technol. 2024;8(2):180-9.