Research Article
BibTex RIS Cite

Immobilization of Tyrosinase on Cu Nanostructures Thin Film as a Potential Tool for Catechol Detection

Year 2024, , 200 - 207, 31.12.2024
https://doi.org/10.32571/ijct.1585958

Abstract

Catechol, a common environmental pollutant and a by-product of many industrial processes, poses a potential threat to the ecosystem and human health. Therefore, the accurate and sensitive detection of catechol is of paramount importance for a wide variety of scientific studies and industrial applications. Immobilized tyrosinase is a valuable tool for facilitating the development of potential phenolic detection applications. This study performed the immobilization of tyrosinase on Cu nanostructures thin film (tyrosinase/Cu NSs-TF) for catechol detection and investigated the optimum working conditions. The successful immobilization process was determined using Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The optimum pH and temperature for tyrosinase/Cu NSs-TF were 7.0 and 30°C, respectively. Concerning the reusability of tyrosinase/Cu NSs-TF, it retained over 73% of its activity after the first two replicates and 51.67% after the sixth replicate. When the storage stability of tyrosinase/Cu NSs-TF was investigated at 4°C, it was found that 52.42% of the initial activity was retained until the seventh day. A spectrophotometric method was used for catechol detection. Tyrosinase/Cu NSs-TF displayed a linear response to the concentrations of catechol in the range of 2-90 µM. The limit of detection (LOD) and limit of quantification (LOQ) were calculated to be 7.73 µM and 25.76 µM, respectively. A recovery study was performed with tap water spiked with catechol at concentrations of 30 µM, 60 µM, and 90 µM, yielding recovery rates of 104.44%, 99.58%, and 101.53%, respectively. The results show that tyrosinase/Cu NSs-TF may be a promising approach for catechol detection in water.

Project Number

Project No. TBY0820A26

Thanks

The authors would like to thank Iğdır University (BAP, Project No: TBY0820A26) for their financial support.

References

  • Koçak, ÇC.; Koçak S. Electroanalysis. 2020, 32 (2) 358–366.
  • Barveen, NR.; Wang, TJ.; Chang, YH.; Rajakumaran, R. Mater Sci Eng B. 2022, 282, 115753.
  • Saleh-Ahammad AJ.; Sarker S.; Aminur Rahman M.; Lee JJ. Electroanalysis. 2010, 22(6), 694–700.
  • Karim-Nezhad, G.; Moghaddam, MH.; Khorablou, Z.; Dorraji, PS.; J Electrochem Soc. 2017,164(6), B193.
  • Lee, BL.; Ong, HY.; Shi. CY.; Ong, CN. J Chromatogr B Biomed Sci Appl. 1993, 619(2), 259–266.
  • Suvina, V.; Kokulnathan, T.; Wang, TJ.; Balakrishna, RG. Microchim Acta. 2020,187(3),1-7.
  • Berno, E.; Pereira-Marcondes, DF.; Ricci Gamalero, S.; Eandi, M. Ecotoxicol Environ Saf. 2004,n57 (2), 118–122.
  • Chandran, M.; Aswathy, E.; Shamna, I.; Vinoba, M.; Kottappara, R.; Bhagiyalakshmi, M. Mater Today Proc.2021, 46, 3136–3143.
  • Qu, J.; Lou, T.; Wang, Y.; Dong, Y.; Xing, H. Anal Lett. 2015, 48(12), 1842–1853.
  • Petrásková, L.; Káňová, K.; Brodsky, K. Int J Mol Sci. 2022, 23(10), 5743.
  • Wang, B.; Chen, Y.; Wu, Y.; Weng, B.; Liu, Y.; Lu, Z.; Li, CM.; Yu, C. Biosens Bioelectron. 2016, 8,23–30.
  • Lourenço, ELB.; Ferreira, A.; Pinto, E.; Yonamine, M.; Farsky, SHP. Chromatographia. 2006, 63(3–4), 175–179.
  • Unnikrishnan, B.; Ru, PL.; Chen, SM. Sensors Actuators B Chem. 2012, 169, 235–242.
  • Li, YX.; Sun, Y.; Baı, J.; Chen, SY.; Jia, X.; Huang, H.; Dong, J. Chinese J Anal Chem. 2023, 51(2), 100162.
  • Wang, H.; Wang, J.; Wang, J.; Zhu, R.; Shen, Y.; Xu, Q.; Hu, X. Sensors Actuators B Chem. 2017, 247, 146–154.
  • Gür, B.; Ayhan, ME.; Türkhan, A.; Gür, F.; Kaya, ED. Colloids Surfaces A Physicochem Eng Asp. 2019, 562, 179-185.
  • Liang, S.; Wu, XL.; Xiong, J.; Zong, MH.; Lou, WY. Coord Chem Rev. 2020, 406, 213149.
  • Zawistowskib, J.; Biliaderis, CG.; Eskin, NAM. 1991. Polyphenol oxidase. Oxidative Enzym foods. 1991, 217–273.
  • Martinez, MV.; Whitaker, JR. Trends Food Sci Technol. 1995, 6(6), 195–200.
  • Faccio, G.; Kruus, K.; Saloheimo, M.; Thöny-Meyer, L. Process Biochem. 2012, 47(12), 1749–1760.
  • Colak, A.; Özen, A.; Dincer, B.; Güner, S.; Ayaz, FA. Food Chem. 2005, 90(4), 801–807.
  • Han, E.; Yang, Y.; He, Z.; Cai, J.; Zhang, X.; Dong, X. Anal Biochem. 2015, 486, 102–106.
  • Harir, M.; Bellahcene, M.; Baratto, MC.; Pollini, S.; Rossolini, GM.; Trabalzini, L.; Fatarella, E.; Pogni, R. J Biotechnol. 2018, 265, 54–64.
  • Wu, L.; Yan, H.; Wang, J.; Liu, G.; Xie, W. J Electrochem Soc. 2019, 166(8), B562–B568.
  • Kazemi, SH.; Khajeh, K. J Iran Chem Soc. 2011, 8, 17–19.
  • An, J.; Li, G.; Zhang, Y.; Zhang, T.; Liu, X.; Gao, F.; Peng, M.; He, Y.; Fan, H. Catalysts. 2020, 10(3), 338.
  • Garnica-Romo, MG.; Romero-Arcos, M.; Martínez-Flores, HE. Mater Res Express. 2022, 9, 095005.
  • Gu, BX.; Xu, CX.; Zhu, GP.; Liu, SQ.; Chen, LY.; Li, XS. J Phys Chem B. 2009,113(1), 377–381.
  • Wu, L.; Deng, D.; Jin, J.; Lu, X.; Chen, J. Biosens Bioelectron. 2012, 35(1), 193–199.
  • Sakir, M.; Yilmaz, E.; Onses, MS. Microchem J. 2020, 154, 104628.
  • Sakir, M.; Pekdemir, S.; Karatay, A.; Küçüköz, B.; Ipekci, HH.; Elmali, A.; Demirel, G.; Onses, MS. ACS Appl Mater Interfaces. 2017, 9(45), 39795-39803
  • Espín, JC.; Morales M.; Varón, R.; Tudela, J.; García‐Cánovas, F. Journal of Food Science. 1996, 61(6), 1177–1182.
  • Galeazzi, MAM.; Sgarbieri, VC.; Constantinides, SM. J Food Sci. 1981, 46(1), 150–155.
  • Türkhan, A.; Faiz, O.; Kaya, ED.; Kocyiğit, A. Fresenius Environ Bull. 2018, 27, 4844–4856.
  • Hou, C.; Wang, Y.; Zhu, H.; Wei, H. Chem Eng J. 2016, 283, 397–403.
  • Kolcuoǧlu, Y. Process Biochem. 2012, 47(12), 2449–2454.
  • Arica, MY.; Bayramoǧlu, G.; Biçak, N. Process Biochem. 2004, 39(12), 2007–2017.
  • Yavaşer, R.; Aktaş-Uygun, D.; Karagözler AA. Catal Lett. 2023, 153(5), 1265-1277
  • Önal, A.; Sagirli, O. Spectrochim Acta A. 2009, 72(1), 68-71.
  • Pekdemir, S.; Torun, I.; Sakir, M.; Ruzi, M.; Rogers, JA.; Onses, MS. ACS nano. 2020, 14(7), 8276-8286.
  • Wang, F., Guo, C.; Liu, HZ.; Liu, CZ. J Chem Technol Biotechnol. 2008, 83(1), 97–104.
  • Denizli, A.; Yavuz, H.; Garipcan, B.; Arica, MY. J Appl Polym Sci. 2000, 76(2), 115–124.
  • Wang, Q.; Cui, J.; Li, G.; Zhang, J.; Huang, F.; Wei, Q. Polymers (Basel). 2014, 6(9), 2357–2370.
  • Gu, YJ.; Zhu, ML.; Li, YL.; Xiong, CH. Int J Biol Macromol. 2018, 112, 1175–1182.
  • John-Kennedy, L.; Selvi, PK.; Padmanabhan, A.; Hema, KN.; Sekaran, G. Chemosphere. 2007,69(2),262-270.
  • Abdollahi, K.; Yazdani, F.; Panahi, R. Int J Biol Macromol. 2017, 94, 396-405.
  • Amjad, R.; Mubeen, B.; Ali, SS.; Imam, SS.; Alshehri, S.; Ghoneim, MM, Alzarea, SI.; Rasool, R.; Ullah, I.; Nadeem, MS.; Kazmi, I. Polymers. 2021, 13(24), 4364.
  • Türkhan, A.; Kaya, ED.; Koçyiğit, A. Appl Biochem Biotech 2020, 192, 432-442.
  • Dinçer, A.; Becerik, S.; Aydemir, T. Int J Biol Macromol. 2012, 50(3), 815-820.
  • Almulaiky, YQ.; Almaghrabi, O. Catal Lett. 2022, 152(10), 3089-3099.
  • Yildiz, HB.; Kiralp, S.; Toppare, L.; Yagci, Y. Reac Funct Polym. 2005, 63(2), 155-161.
  • Camurlu, P.; Kayahan, SK.; Toppare, L. J Macromol Sci Part A Pure Appl Chem. 2008, 45(12), 1009–1014.
  • Uzunoğlu, SB.; Uzunoğlu, T.; Koçsuz, S. Cell Mol Biol 2021, 67(2), 50-55.
  • Zhao, C.; Sha, Y.; Zhuang, W.; Rao, Y.; Zhang, J.; Wu, J.; Shen, T.; Tan, Z.; Zhu, C.; Zhang, H.; Ying, H Process Biochem. 2023, 131, 144–153.
  • Eş, I.; Vieira, JDG.; Amaral, AC. Appl Microbial Biot. 2015, 99, 2065-2082.
  • Şahin, F.; Demirel, G.; Tümtürk, H. Int l J Biol Macromol. 2005, 37(3), 148-153.
  • Lai, YC.; Lin, SC. A Process Bioche. 2005, 40(3-4), 1167-1174.
  • Leboukh, S.; Gouzi, H.; Coradin, T.; Yahi H. J of Sol-Gel Sci Techn. 2018, 86, 675-681.
  • Arkan, E., Karami, C.; Rafipur, R. JBIC Journal of Biological Inorganic Chemistry. 2019, 24, 961-969.
  • Singh, S.; Jain, DVS.; Singla, ML. Sensor Actuat B-Chem. 2013, 182, 161-169.
  • Oriero, DA.; Gyan, IO.; Bolshaw, BW.; Cheng, IF.; Aston, DE. Microchem J. 2015, 118, 166-175.
  • Tembe, S.; Inamdar, S.; Haram, S.; Karve, M.; D'Souza, SF. J Biotechnol. 2007, 128(1), 80-85.
  • Pérez‐López, B.; Merkoçi, A. Adv Funct Mater. 2011, 21(2), 255-260
Year 2024, , 200 - 207, 31.12.2024
https://doi.org/10.32571/ijct.1585958

Abstract

Project Number

Project No. TBY0820A26

References

  • Koçak, ÇC.; Koçak S. Electroanalysis. 2020, 32 (2) 358–366.
  • Barveen, NR.; Wang, TJ.; Chang, YH.; Rajakumaran, R. Mater Sci Eng B. 2022, 282, 115753.
  • Saleh-Ahammad AJ.; Sarker S.; Aminur Rahman M.; Lee JJ. Electroanalysis. 2010, 22(6), 694–700.
  • Karim-Nezhad, G.; Moghaddam, MH.; Khorablou, Z.; Dorraji, PS.; J Electrochem Soc. 2017,164(6), B193.
  • Lee, BL.; Ong, HY.; Shi. CY.; Ong, CN. J Chromatogr B Biomed Sci Appl. 1993, 619(2), 259–266.
  • Suvina, V.; Kokulnathan, T.; Wang, TJ.; Balakrishna, RG. Microchim Acta. 2020,187(3),1-7.
  • Berno, E.; Pereira-Marcondes, DF.; Ricci Gamalero, S.; Eandi, M. Ecotoxicol Environ Saf. 2004,n57 (2), 118–122.
  • Chandran, M.; Aswathy, E.; Shamna, I.; Vinoba, M.; Kottappara, R.; Bhagiyalakshmi, M. Mater Today Proc.2021, 46, 3136–3143.
  • Qu, J.; Lou, T.; Wang, Y.; Dong, Y.; Xing, H. Anal Lett. 2015, 48(12), 1842–1853.
  • Petrásková, L.; Káňová, K.; Brodsky, K. Int J Mol Sci. 2022, 23(10), 5743.
  • Wang, B.; Chen, Y.; Wu, Y.; Weng, B.; Liu, Y.; Lu, Z.; Li, CM.; Yu, C. Biosens Bioelectron. 2016, 8,23–30.
  • Lourenço, ELB.; Ferreira, A.; Pinto, E.; Yonamine, M.; Farsky, SHP. Chromatographia. 2006, 63(3–4), 175–179.
  • Unnikrishnan, B.; Ru, PL.; Chen, SM. Sensors Actuators B Chem. 2012, 169, 235–242.
  • Li, YX.; Sun, Y.; Baı, J.; Chen, SY.; Jia, X.; Huang, H.; Dong, J. Chinese J Anal Chem. 2023, 51(2), 100162.
  • Wang, H.; Wang, J.; Wang, J.; Zhu, R.; Shen, Y.; Xu, Q.; Hu, X. Sensors Actuators B Chem. 2017, 247, 146–154.
  • Gür, B.; Ayhan, ME.; Türkhan, A.; Gür, F.; Kaya, ED. Colloids Surfaces A Physicochem Eng Asp. 2019, 562, 179-185.
  • Liang, S.; Wu, XL.; Xiong, J.; Zong, MH.; Lou, WY. Coord Chem Rev. 2020, 406, 213149.
  • Zawistowskib, J.; Biliaderis, CG.; Eskin, NAM. 1991. Polyphenol oxidase. Oxidative Enzym foods. 1991, 217–273.
  • Martinez, MV.; Whitaker, JR. Trends Food Sci Technol. 1995, 6(6), 195–200.
  • Faccio, G.; Kruus, K.; Saloheimo, M.; Thöny-Meyer, L. Process Biochem. 2012, 47(12), 1749–1760.
  • Colak, A.; Özen, A.; Dincer, B.; Güner, S.; Ayaz, FA. Food Chem. 2005, 90(4), 801–807.
  • Han, E.; Yang, Y.; He, Z.; Cai, J.; Zhang, X.; Dong, X. Anal Biochem. 2015, 486, 102–106.
  • Harir, M.; Bellahcene, M.; Baratto, MC.; Pollini, S.; Rossolini, GM.; Trabalzini, L.; Fatarella, E.; Pogni, R. J Biotechnol. 2018, 265, 54–64.
  • Wu, L.; Yan, H.; Wang, J.; Liu, G.; Xie, W. J Electrochem Soc. 2019, 166(8), B562–B568.
  • Kazemi, SH.; Khajeh, K. J Iran Chem Soc. 2011, 8, 17–19.
  • An, J.; Li, G.; Zhang, Y.; Zhang, T.; Liu, X.; Gao, F.; Peng, M.; He, Y.; Fan, H. Catalysts. 2020, 10(3), 338.
  • Garnica-Romo, MG.; Romero-Arcos, M.; Martínez-Flores, HE. Mater Res Express. 2022, 9, 095005.
  • Gu, BX.; Xu, CX.; Zhu, GP.; Liu, SQ.; Chen, LY.; Li, XS. J Phys Chem B. 2009,113(1), 377–381.
  • Wu, L.; Deng, D.; Jin, J.; Lu, X.; Chen, J. Biosens Bioelectron. 2012, 35(1), 193–199.
  • Sakir, M.; Yilmaz, E.; Onses, MS. Microchem J. 2020, 154, 104628.
  • Sakir, M.; Pekdemir, S.; Karatay, A.; Küçüköz, B.; Ipekci, HH.; Elmali, A.; Demirel, G.; Onses, MS. ACS Appl Mater Interfaces. 2017, 9(45), 39795-39803
  • Espín, JC.; Morales M.; Varón, R.; Tudela, J.; García‐Cánovas, F. Journal of Food Science. 1996, 61(6), 1177–1182.
  • Galeazzi, MAM.; Sgarbieri, VC.; Constantinides, SM. J Food Sci. 1981, 46(1), 150–155.
  • Türkhan, A.; Faiz, O.; Kaya, ED.; Kocyiğit, A. Fresenius Environ Bull. 2018, 27, 4844–4856.
  • Hou, C.; Wang, Y.; Zhu, H.; Wei, H. Chem Eng J. 2016, 283, 397–403.
  • Kolcuoǧlu, Y. Process Biochem. 2012, 47(12), 2449–2454.
  • Arica, MY.; Bayramoǧlu, G.; Biçak, N. Process Biochem. 2004, 39(12), 2007–2017.
  • Yavaşer, R.; Aktaş-Uygun, D.; Karagözler AA. Catal Lett. 2023, 153(5), 1265-1277
  • Önal, A.; Sagirli, O. Spectrochim Acta A. 2009, 72(1), 68-71.
  • Pekdemir, S.; Torun, I.; Sakir, M.; Ruzi, M.; Rogers, JA.; Onses, MS. ACS nano. 2020, 14(7), 8276-8286.
  • Wang, F., Guo, C.; Liu, HZ.; Liu, CZ. J Chem Technol Biotechnol. 2008, 83(1), 97–104.
  • Denizli, A.; Yavuz, H.; Garipcan, B.; Arica, MY. J Appl Polym Sci. 2000, 76(2), 115–124.
  • Wang, Q.; Cui, J.; Li, G.; Zhang, J.; Huang, F.; Wei, Q. Polymers (Basel). 2014, 6(9), 2357–2370.
  • Gu, YJ.; Zhu, ML.; Li, YL.; Xiong, CH. Int J Biol Macromol. 2018, 112, 1175–1182.
  • John-Kennedy, L.; Selvi, PK.; Padmanabhan, A.; Hema, KN.; Sekaran, G. Chemosphere. 2007,69(2),262-270.
  • Abdollahi, K.; Yazdani, F.; Panahi, R. Int J Biol Macromol. 2017, 94, 396-405.
  • Amjad, R.; Mubeen, B.; Ali, SS.; Imam, SS.; Alshehri, S.; Ghoneim, MM, Alzarea, SI.; Rasool, R.; Ullah, I.; Nadeem, MS.; Kazmi, I. Polymers. 2021, 13(24), 4364.
  • Türkhan, A.; Kaya, ED.; Koçyiğit, A. Appl Biochem Biotech 2020, 192, 432-442.
  • Dinçer, A.; Becerik, S.; Aydemir, T. Int J Biol Macromol. 2012, 50(3), 815-820.
  • Almulaiky, YQ.; Almaghrabi, O. Catal Lett. 2022, 152(10), 3089-3099.
  • Yildiz, HB.; Kiralp, S.; Toppare, L.; Yagci, Y. Reac Funct Polym. 2005, 63(2), 155-161.
  • Camurlu, P.; Kayahan, SK.; Toppare, L. J Macromol Sci Part A Pure Appl Chem. 2008, 45(12), 1009–1014.
  • Uzunoğlu, SB.; Uzunoğlu, T.; Koçsuz, S. Cell Mol Biol 2021, 67(2), 50-55.
  • Zhao, C.; Sha, Y.; Zhuang, W.; Rao, Y.; Zhang, J.; Wu, J.; Shen, T.; Tan, Z.; Zhu, C.; Zhang, H.; Ying, H Process Biochem. 2023, 131, 144–153.
  • Eş, I.; Vieira, JDG.; Amaral, AC. Appl Microbial Biot. 2015, 99, 2065-2082.
  • Şahin, F.; Demirel, G.; Tümtürk, H. Int l J Biol Macromol. 2005, 37(3), 148-153.
  • Lai, YC.; Lin, SC. A Process Bioche. 2005, 40(3-4), 1167-1174.
  • Leboukh, S.; Gouzi, H.; Coradin, T.; Yahi H. J of Sol-Gel Sci Techn. 2018, 86, 675-681.
  • Arkan, E., Karami, C.; Rafipur, R. JBIC Journal of Biological Inorganic Chemistry. 2019, 24, 961-969.
  • Singh, S.; Jain, DVS.; Singla, ML. Sensor Actuat B-Chem. 2013, 182, 161-169.
  • Oriero, DA.; Gyan, IO.; Bolshaw, BW.; Cheng, IF.; Aston, DE. Microchem J. 2015, 118, 166-175.
  • Tembe, S.; Inamdar, S.; Haram, S.; Karve, M.; D'Souza, SF. J Biotechnol. 2007, 128(1), 80-85.
  • Pérez‐López, B.; Merkoçi, A. Adv Funct Mater. 2011, 21(2), 255-260
There are 63 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other)
Journal Section Research Articles
Authors

Ayşe Türkhan 0000-0002-2195-9435

Menekse Sakir 0000-0003-3102-0947

Elif Duygu Kaya 0000-0003-1203-979X

Project Number Project No. TBY0820A26
Early Pub Date December 24, 2024
Publication Date December 31, 2024
Submission Date November 15, 2024
Acceptance Date December 19, 2024
Published in Issue Year 2024

Cite

APA Türkhan, A., Sakir, M., & Kaya, E. D. (2024). Immobilization of Tyrosinase on Cu Nanostructures Thin Film as a Potential Tool for Catechol Detection. International Journal of Chemistry and Technology, 8(2), 200-207. https://doi.org/10.32571/ijct.1585958
AMA Türkhan A, Sakir M, Kaya ED. Immobilization of Tyrosinase on Cu Nanostructures Thin Film as a Potential Tool for Catechol Detection. Int. J. Chem. Technol. December 2024;8(2):200-207. doi:10.32571/ijct.1585958
Chicago Türkhan, Ayşe, Menekse Sakir, and Elif Duygu Kaya. “Immobilization of Tyrosinase on Cu Nanostructures Thin Film As a Potential Tool for Catechol Detection”. International Journal of Chemistry and Technology 8, no. 2 (December 2024): 200-207. https://doi.org/10.32571/ijct.1585958.
EndNote Türkhan A, Sakir M, Kaya ED (December 1, 2024) Immobilization of Tyrosinase on Cu Nanostructures Thin Film as a Potential Tool for Catechol Detection. International Journal of Chemistry and Technology 8 2 200–207.
IEEE A. Türkhan, M. Sakir, and E. D. Kaya, “Immobilization of Tyrosinase on Cu Nanostructures Thin Film as a Potential Tool for Catechol Detection”, Int. J. Chem. Technol., vol. 8, no. 2, pp. 200–207, 2024, doi: 10.32571/ijct.1585958.
ISNAD Türkhan, Ayşe et al. “Immobilization of Tyrosinase on Cu Nanostructures Thin Film As a Potential Tool for Catechol Detection”. International Journal of Chemistry and Technology 8/2 (December 2024), 200-207. https://doi.org/10.32571/ijct.1585958.
JAMA Türkhan A, Sakir M, Kaya ED. Immobilization of Tyrosinase on Cu Nanostructures Thin Film as a Potential Tool for Catechol Detection. Int. J. Chem. Technol. 2024;8:200–207.
MLA Türkhan, Ayşe et al. “Immobilization of Tyrosinase on Cu Nanostructures Thin Film As a Potential Tool for Catechol Detection”. International Journal of Chemistry and Technology, vol. 8, no. 2, 2024, pp. 200-7, doi:10.32571/ijct.1585958.
Vancouver Türkhan A, Sakir M, Kaya ED. Immobilization of Tyrosinase on Cu Nanostructures Thin Film as a Potential Tool for Catechol Detection. Int. J. Chem. Technol. 2024;8(2):200-7.