Research Article
BibTex RIS Cite
Year 2019, , 17 - 25, 28.06.2019
https://doi.org/10.32571/ijct.514287

Abstract

References

  • 1.https://nptel.ac.in/courses/113106032/16%20-%20Properties%20and%20Applications%20of%20Materials.pdf (Retrieved December 17, 2018).
  • 2. Vitos, L.; Zhang, H.L.; Lu, S.; Al-Zoubi, N.; Johansson, B.; Nurmi, E.; Ropo, M.; Punkkinen, M.P.J.; Kokko, K. Alloy Steel: Properties and Use First-Principles Quantum Mechanical Approach to Stainless Steel Alloys. In. Morales E.V. (Eds). Croatia, Intech Open Access Publisher, 2011, Chap 1.
  • 3. The Balance, Steel Grades and Properties. What Are the Different Types of Steel? Adres: https://www.thebalance.com/steel-grades-2340174 (Retrieved December 17, 2018).
  • 4. El-raouf, M.A.; El-Azabawy, O.E.; El-Azabawy, R.E. Egypt. J. Pet. 2015, 24, 233–239.
  • 5. Gong, W.; Yin, X.; Liu, Y.; Chen, Y.; Yang, W. Prog.Org. Coat. 2019, 126, 150–161.
  • 6. Asaad, M.A.; Ismail, M.; Tahir, M.Md.; Huseien, G.F.; Raja, P.B.; Asmara, Y.P. Constr. Build. Mater. 2018, 188, 555–568.
  • 7. Al-Amierya, A.A.; Ahmed, M.H.O.; Abdullah, T.A.; Gaaz, T.S.; Kadhum, A.A.H. Results Phys. 2018, 9, 978–981.
  • 8. Javadian, S.; Darbasizadeh, B.; Yousefi, A.; Ektefa, F.; Dalir Jamal Kakemam, N. J. Taiwan Ins. Chem. Engin. 2017, 71, 344–354.
  • 9. Palanisamy, K.; Kannan, P.; Sekar, A. Surf. Interfaces, 2018, 12, 50–60.
  • 10. Madkour, L.H.; Kaya, S.; Kaya, C.; Guo, L. J. Taiwan Inst. Chem. E. 2016, 68, 461–480.
  • 11. Pareek, S.; Jain, D.; Hussain, S.; Biswas, A.; Shrivastava, R.; Parida, S.K.; Kisan, H.K.; Lgaz, H.; Chung, Ill-Min,; Behera, D. Chem. Eng. J. 2019, 358, 725–742.
  • 12. Madkour, L.H.; Kaya, S.; Guo, L.; Kaya, C. J. Mol. Struct. 2018, 1163, 397–417.
  • 13. El Nemr, A.; Moneer, A.A.; Khaled, A.; El Sikaily, A.; El-Said, G.F. Mater. Chem. Phys. 2014, 144, 139–154.
  • 14. Singh, A.; Lin, Y.; Liu, W.; Yu, S.; Pan, J.; Ren, C.; Kuanhai, D. J. Ind. Eng. Chem. 2014, 20, 4276–4285.
  • 15. Chen, B.Y.; Xu, B.; Yueh, P.L.; Han, K.; Qin, L.J.; Hsueh, C.C. J. Taiwan Ins. Chem. Engin. 2015, 51, 63–70.
  • 16. Ho, P.I.; Kumar, G.G.; Kim, A.R.; Kim, P.; Nahm, K.S. Bioelectrochemistry, 2011, 80, 99–104.
  • 17. Ackroyd, W. Chem. News 1876, 33, 60.
  • 18. Ehrlich, P.; Arch. Anat. Physiol. 1879, 36, 166–169.
  • 19. Pradeep D’mello, A.X.; Sylvester, T.V.; Ramya, V.; Britto, F.P.; Shetty, P.K.; Jasphin, S. Int. J. Adv. Health Sci. 2016, 2-10, 12–17.
  • 20. Khayyat, S.A.; Akhtar, M.S.; Umar, A.; Mater. Lett. 2012, 81, 239–241.
  • 21. Rahimnejad, M.; Najafpour, G.D.; Ghoreyshi, A.A.; Shakeri, M.; Zare, H. Int. J. Hydrogen Energ. 2011, 36, 13335–13341.
  • 22. Umoren, S.A.; AlAhmary, A.A.; Gasem, Z.M.; Solomon, M.M. Int. J. Biol. Macromol. 2018, 117, 1017–1028.
  • 23. Tasić, Ž.Z.; Petrović Mihajlović, M.B.; Radovanović, M.B.; Simonović, A.T.; Antonijević, M.M. J. Mol. Struct. 2018, doi: 10.1016/j.molstruc.2018.01.031.
  • 24. Solmaz, R. Corros. Sci. 2014, 79, 169–176.
  • 25. Özkır, D.; Kayakırılmaz, K.; Bayol, E.; Gürten, A.A.; Kandemirli, F. Corros. Sci. 2012, 56, 143–152.
  • 26. Chauhan, D.S.; Ansari, K.R.; Sorour, A.A.; Quraishi, M.A.; Lgaz, H.; Salghi, R. Int. J. Biol. Macromol. 2018, 107, 1747–1757.
  • 27. Özkır, D. J. Electrochem. Sci. Technol. 2019, 10 (1), 37–54.
  • 28. Özkır, D. OHU J. Eng. Sci. 2018, 7(2), 993–1003.
  • 29. Wysocka, J.; Cieslik, M.; Krakowiak, S.; Ryl, J. Electrochim. Acta 2018, 289, 175–192.
  • 30. Obot, I.B.; Obi-Egbedi, N.O.; Umoren, S.A. Corros. Sci. 2009, 51, 276–282.
  • 31. Popova, A.; Sokolova, E.; Raicheva, S.; Christov, M. Corros. Sci. 2003, 45, 33–58.
  • 32. Noor, E.A. and Al-Moubaraki, A.H. Mater. Chem. Phys. 2008, 110, 145–154.
  • 33. Singh, D.K.; Ebenso, E.E.; Singh, M.K.; Behera, D.; Udayabhanu, G.; John, R.P. J. Mol. Liq. 2018, 250, 88–99.

A corrosion study: Use of Thionine dye having structurally metachromatic influence

Year 2019, , 17 - 25, 28.06.2019
https://doi.org/10.32571/ijct.514287

Abstract

In the present study, it
was examined the inhibition performance of Thionine, which has metachromatic
properties and is generally used as a vital dye for different staining of
nucleus and cytoplasm, on mild steel in acidic medium as a different application
area which is not existed in the literature. In order to understand how
Thionine interacts with the mild steel surface, different types of adsorption
isotherms were plotted and it was seen obeyed the Langmuir isotherm.
The
test results revealed that as the inhibitor concentration increased at each
temperature, the corrosion current density (icorr)
values diminished and accordingly, the inhibition efficiencies (
η%)
increased slightly. The results indicated that the Thionine molecules continued
to be adsorbed onto the metal surface to some extent, even when elevated to
high temperatures. Thermodynamic adsorption parameters revealed a strong and
chemical interaction between Thionine and mild steel. It was determined that
the Thionine acted as a mixed-type inhibitor on the mild steel surface.
Finally, field emission scanning electron (FESEM) and atomic force microscopy
(AFM) analyses were performed to determine the surface characteristics.

References

  • 1.https://nptel.ac.in/courses/113106032/16%20-%20Properties%20and%20Applications%20of%20Materials.pdf (Retrieved December 17, 2018).
  • 2. Vitos, L.; Zhang, H.L.; Lu, S.; Al-Zoubi, N.; Johansson, B.; Nurmi, E.; Ropo, M.; Punkkinen, M.P.J.; Kokko, K. Alloy Steel: Properties and Use First-Principles Quantum Mechanical Approach to Stainless Steel Alloys. In. Morales E.V. (Eds). Croatia, Intech Open Access Publisher, 2011, Chap 1.
  • 3. The Balance, Steel Grades and Properties. What Are the Different Types of Steel? Adres: https://www.thebalance.com/steel-grades-2340174 (Retrieved December 17, 2018).
  • 4. El-raouf, M.A.; El-Azabawy, O.E.; El-Azabawy, R.E. Egypt. J. Pet. 2015, 24, 233–239.
  • 5. Gong, W.; Yin, X.; Liu, Y.; Chen, Y.; Yang, W. Prog.Org. Coat. 2019, 126, 150–161.
  • 6. Asaad, M.A.; Ismail, M.; Tahir, M.Md.; Huseien, G.F.; Raja, P.B.; Asmara, Y.P. Constr. Build. Mater. 2018, 188, 555–568.
  • 7. Al-Amierya, A.A.; Ahmed, M.H.O.; Abdullah, T.A.; Gaaz, T.S.; Kadhum, A.A.H. Results Phys. 2018, 9, 978–981.
  • 8. Javadian, S.; Darbasizadeh, B.; Yousefi, A.; Ektefa, F.; Dalir Jamal Kakemam, N. J. Taiwan Ins. Chem. Engin. 2017, 71, 344–354.
  • 9. Palanisamy, K.; Kannan, P.; Sekar, A. Surf. Interfaces, 2018, 12, 50–60.
  • 10. Madkour, L.H.; Kaya, S.; Kaya, C.; Guo, L. J. Taiwan Inst. Chem. E. 2016, 68, 461–480.
  • 11. Pareek, S.; Jain, D.; Hussain, S.; Biswas, A.; Shrivastava, R.; Parida, S.K.; Kisan, H.K.; Lgaz, H.; Chung, Ill-Min,; Behera, D. Chem. Eng. J. 2019, 358, 725–742.
  • 12. Madkour, L.H.; Kaya, S.; Guo, L.; Kaya, C. J. Mol. Struct. 2018, 1163, 397–417.
  • 13. El Nemr, A.; Moneer, A.A.; Khaled, A.; El Sikaily, A.; El-Said, G.F. Mater. Chem. Phys. 2014, 144, 139–154.
  • 14. Singh, A.; Lin, Y.; Liu, W.; Yu, S.; Pan, J.; Ren, C.; Kuanhai, D. J. Ind. Eng. Chem. 2014, 20, 4276–4285.
  • 15. Chen, B.Y.; Xu, B.; Yueh, P.L.; Han, K.; Qin, L.J.; Hsueh, C.C. J. Taiwan Ins. Chem. Engin. 2015, 51, 63–70.
  • 16. Ho, P.I.; Kumar, G.G.; Kim, A.R.; Kim, P.; Nahm, K.S. Bioelectrochemistry, 2011, 80, 99–104.
  • 17. Ackroyd, W. Chem. News 1876, 33, 60.
  • 18. Ehrlich, P.; Arch. Anat. Physiol. 1879, 36, 166–169.
  • 19. Pradeep D’mello, A.X.; Sylvester, T.V.; Ramya, V.; Britto, F.P.; Shetty, P.K.; Jasphin, S. Int. J. Adv. Health Sci. 2016, 2-10, 12–17.
  • 20. Khayyat, S.A.; Akhtar, M.S.; Umar, A.; Mater. Lett. 2012, 81, 239–241.
  • 21. Rahimnejad, M.; Najafpour, G.D.; Ghoreyshi, A.A.; Shakeri, M.; Zare, H. Int. J. Hydrogen Energ. 2011, 36, 13335–13341.
  • 22. Umoren, S.A.; AlAhmary, A.A.; Gasem, Z.M.; Solomon, M.M. Int. J. Biol. Macromol. 2018, 117, 1017–1028.
  • 23. Tasić, Ž.Z.; Petrović Mihajlović, M.B.; Radovanović, M.B.; Simonović, A.T.; Antonijević, M.M. J. Mol. Struct. 2018, doi: 10.1016/j.molstruc.2018.01.031.
  • 24. Solmaz, R. Corros. Sci. 2014, 79, 169–176.
  • 25. Özkır, D.; Kayakırılmaz, K.; Bayol, E.; Gürten, A.A.; Kandemirli, F. Corros. Sci. 2012, 56, 143–152.
  • 26. Chauhan, D.S.; Ansari, K.R.; Sorour, A.A.; Quraishi, M.A.; Lgaz, H.; Salghi, R. Int. J. Biol. Macromol. 2018, 107, 1747–1757.
  • 27. Özkır, D. J. Electrochem. Sci. Technol. 2019, 10 (1), 37–54.
  • 28. Özkır, D. OHU J. Eng. Sci. 2018, 7(2), 993–1003.
  • 29. Wysocka, J.; Cieslik, M.; Krakowiak, S.; Ryl, J. Electrochim. Acta 2018, 289, 175–192.
  • 30. Obot, I.B.; Obi-Egbedi, N.O.; Umoren, S.A. Corros. Sci. 2009, 51, 276–282.
  • 31. Popova, A.; Sokolova, E.; Raicheva, S.; Christov, M. Corros. Sci. 2003, 45, 33–58.
  • 32. Noor, E.A. and Al-Moubaraki, A.H. Mater. Chem. Phys. 2008, 110, 145–154.
  • 33. Singh, D.K.; Ebenso, E.E.; Singh, M.K.; Behera, D.; Udayabhanu, G.; John, R.P. J. Mol. Liq. 2018, 250, 88–99.
There are 33 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Research Articles
Authors

Demet Özkır 0000-0002-8096-5755

Publication Date June 28, 2019
Published in Issue Year 2019

Cite

APA Özkır, D. (2019). A corrosion study: Use of Thionine dye having structurally metachromatic influence. International Journal of Chemistry and Technology, 3(1), 17-25. https://doi.org/10.32571/ijct.514287
AMA Özkır D. A corrosion study: Use of Thionine dye having structurally metachromatic influence. Int. J. Chem. Technol. June 2019;3(1):17-25. doi:10.32571/ijct.514287
Chicago Özkır, Demet. “A Corrosion Study: Use of Thionine Dye Having Structurally Metachromatic Influence”. International Journal of Chemistry and Technology 3, no. 1 (June 2019): 17-25. https://doi.org/10.32571/ijct.514287.
EndNote Özkır D (June 1, 2019) A corrosion study: Use of Thionine dye having structurally metachromatic influence. International Journal of Chemistry and Technology 3 1 17–25.
IEEE D. Özkır, “A corrosion study: Use of Thionine dye having structurally metachromatic influence”, Int. J. Chem. Technol., vol. 3, no. 1, pp. 17–25, 2019, doi: 10.32571/ijct.514287.
ISNAD Özkır, Demet. “A Corrosion Study: Use of Thionine Dye Having Structurally Metachromatic Influence”. International Journal of Chemistry and Technology 3/1 (June 2019), 17-25. https://doi.org/10.32571/ijct.514287.
JAMA Özkır D. A corrosion study: Use of Thionine dye having structurally metachromatic influence. Int. J. Chem. Technol. 2019;3:17–25.
MLA Özkır, Demet. “A Corrosion Study: Use of Thionine Dye Having Structurally Metachromatic Influence”. International Journal of Chemistry and Technology, vol. 3, no. 1, 2019, pp. 17-25, doi:10.32571/ijct.514287.
Vancouver Özkır D. A corrosion study: Use of Thionine dye having structurally metachromatic influence. Int. J. Chem. Technol. 2019;3(1):17-25.