A numerical study of mixed convection heat transfer in a lid-driven cavity using Al2O3-water nanofluid
Year 2020,
, 22 - 37, 30.06.2020
Neşe Keklikcioğlu Çakmak
,
Hasan Hüseyin Durmazuçar
Kerim Yapıcı
Abstract
This study aims a numerical investigation of steady, laminar mixed convection heat transfer in a two-dimensional cavity by employing a finite volume method with a fourth-order approximation of convective terms, when nanoparticles are present. With the aim of solving two-dimensional momentum and energy conservation equations, a finite volume method on a non-uniform staggered grid is utilized. Second-order central differences are utilized to approximate diffusion terms in momentum and energy equations, while the development of a non-uniform four-point fourth-order interpolation (FPFOI) scheme is performed for the convective terms. Continuity and momentum equations are solved using the SIMPLE (Semi-Implicit Method for Pressure-Linked Equation) algorithm. In order to evaluate heat transfer enhancement, various viscosity and thermal conductivity models were employed. Numerical solution results were obtained in different models in cases where Gr number is between 103 and 105, Re number is 10-100-1000 and nanoparticle volumetric fraction is 0-5%.
Supporting Institution
The Scientific Research Project Fund of Sivas Cumhuriyet University
Thanks
The Scientific Research Project Fund of Sivas Cumhuriyet University provided its support for the present research under the project number M-489.
References
- 1. Esfe, M. H.; Saedodin, S.; Malekshah, E. H.; Babaie, A.; Rostamian, H. J. Therm. Anal. and Calorim. 2019, 135 (1), 813-859.
- 2. Tiwari, R. K.; Das, M. K. Int. J. Heat Mass Transf. 2007, 50, 2002-2018.
- 3. Talebi, F.; Mahmoudi, A. H.; Shahi, M. Int. Commun. Heat Mass Tran. 2010, 37 (1), 79-90.
- 4. Arefmanesh, A.; Mahmoodi, M. Int. J. Therm. Sci. 2011, 50 (9), 1706-1719.
- 5. Brinkman, H. C. J. Chem. Phys. 1952, 20 (4), 571-582.
- 6. Maiga, S. E. B.; Nguyen, C. T.; Galanis, N.; Roy, G. Heat transfer enhancement in forced convection laminar tube flow by using nanofluids, Proceedings of the International Symposium on Advances in Computational Heat Transfer III, Paper CHT-040101, p. 24, Begell House Publishers, 2004.
- 7. Chamkha, A. J.; Rashad, A. M.; Armaghani, T.; Mansour, M. A. J. Therm. Anal. Calorim. 2018, 132 (2), 1291-1306.
- 8. Kapil, M.; Roy, D., Sharma, B., Rana, S. C., Pramanik, S., Barman, R. N. Mater. Today-Proc. 2019, 11, 700-707.
- 9. Abu-Nada, E.; Masoud, Z.; Hijazi, A. Int. Commun. Heat Mass Tran. 2008, 35 (5), 657-665.
- 10. Kim, C. S.; Okuyama, K.; Fernández de la Mora, J. Aerosol Sci. Tech. 2003, 37 (10), 791-803.
- 11. Yapici, K.; Obut, S. Int. J. Numer. Method H. 2015, 25 (5), 998-1029.
- 12. Einstein, A. Investigations on the theory of the Brownian movement, Dover Books, 1956.
- 13. Maxwell, J.C. A Treatise on Electricity and Magnetism. Third ed Clarendon Press, Oxford, 1904.
- 14. Chandrasekar, M.; Suresh, S.; Chandra Bose, A. Exp. Therm. Fluid Sci. 2010, 34 (2), 210-216.
- 15. Öğüt, E. B.; Kahveci, K. J. Mol. Liq. 2016, 224, 338-345.
- 16. Yapici, K.; Obut, S. Heat Transfer Eng. 2015, 36 (3), 303-314.
- 17. Heydari, M. R.; Esfe, M. H.; Hajmohammad, M. H.; Akbari, M.; Esforjani, S. S. M. Heat Transf. Res. 2014, 45 (1), 75-95.
- 18. Taamneh, Y.; Bataineh, K., Stroj. Vestn-J. Mech. E. 2017, 63 (6), 383-393.
- 19. Lauriat, G. Appl. Therm. Eng. 2018, 129, 1039-1057.
Year 2020,
, 22 - 37, 30.06.2020
Neşe Keklikcioğlu Çakmak
,
Hasan Hüseyin Durmazuçar
Kerim Yapıcı
References
- 1. Esfe, M. H.; Saedodin, S.; Malekshah, E. H.; Babaie, A.; Rostamian, H. J. Therm. Anal. and Calorim. 2019, 135 (1), 813-859.
- 2. Tiwari, R. K.; Das, M. K. Int. J. Heat Mass Transf. 2007, 50, 2002-2018.
- 3. Talebi, F.; Mahmoudi, A. H.; Shahi, M. Int. Commun. Heat Mass Tran. 2010, 37 (1), 79-90.
- 4. Arefmanesh, A.; Mahmoodi, M. Int. J. Therm. Sci. 2011, 50 (9), 1706-1719.
- 5. Brinkman, H. C. J. Chem. Phys. 1952, 20 (4), 571-582.
- 6. Maiga, S. E. B.; Nguyen, C. T.; Galanis, N.; Roy, G. Heat transfer enhancement in forced convection laminar tube flow by using nanofluids, Proceedings of the International Symposium on Advances in Computational Heat Transfer III, Paper CHT-040101, p. 24, Begell House Publishers, 2004.
- 7. Chamkha, A. J.; Rashad, A. M.; Armaghani, T.; Mansour, M. A. J. Therm. Anal. Calorim. 2018, 132 (2), 1291-1306.
- 8. Kapil, M.; Roy, D., Sharma, B., Rana, S. C., Pramanik, S., Barman, R. N. Mater. Today-Proc. 2019, 11, 700-707.
- 9. Abu-Nada, E.; Masoud, Z.; Hijazi, A. Int. Commun. Heat Mass Tran. 2008, 35 (5), 657-665.
- 10. Kim, C. S.; Okuyama, K.; Fernández de la Mora, J. Aerosol Sci. Tech. 2003, 37 (10), 791-803.
- 11. Yapici, K.; Obut, S. Int. J. Numer. Method H. 2015, 25 (5), 998-1029.
- 12. Einstein, A. Investigations on the theory of the Brownian movement, Dover Books, 1956.
- 13. Maxwell, J.C. A Treatise on Electricity and Magnetism. Third ed Clarendon Press, Oxford, 1904.
- 14. Chandrasekar, M.; Suresh, S.; Chandra Bose, A. Exp. Therm. Fluid Sci. 2010, 34 (2), 210-216.
- 15. Öğüt, E. B.; Kahveci, K. J. Mol. Liq. 2016, 224, 338-345.
- 16. Yapici, K.; Obut, S. Heat Transfer Eng. 2015, 36 (3), 303-314.
- 17. Heydari, M. R.; Esfe, M. H.; Hajmohammad, M. H.; Akbari, M.; Esforjani, S. S. M. Heat Transf. Res. 2014, 45 (1), 75-95.
- 18. Taamneh, Y.; Bataineh, K., Stroj. Vestn-J. Mech. E. 2017, 63 (6), 383-393.
- 19. Lauriat, G. Appl. Therm. Eng. 2018, 129, 1039-1057.