Research Article
BibTex RIS Cite

Calculation of the infrared spectrum of 4-Cyanostyrene by Hartree-Fock (HF) and Density Functional Theory (DFT)

Year 2020, , 156 - 161, 31.12.2020
https://doi.org/10.32571/ijct.756992

Abstract

In this study, the molecular geometry of 4-Cyanostyrene molecule was optimized by using the Hartree–Fock (HF) and density functional theory (DFT/B3LYP) with 6-311G(d,p) basis set in the ground state. After the optimization, infrared vibration bands of 4-Cyanostyrene molecule were calculated by using the Hartree–Fock (HF) and density functional theory (DFT/B3LYP) with 6-311G(d,p) basis set. The theoretically calculated vibrational frequencies were multiplied by a scalar factor to correlate to experimental results. These theoretically obtained frequencies were compared exactly with the experimental results of 4-Cyanostyrene. All calculated frequencies were discussed. Finally, the correlation graphs of the theoretical and experimental results were obtained. The results were seen to be quite compatible with each other.

Project Number

Kilis 7 Aralık University, project number: 2010/02/08.

References

  • 1. Rappaport, S. M.; Yeowell-O'Connell, K.; Bodell, W.; Yager, J. W.; Symanski, E. Cancer Res. 1996, 56 (23), 5410-5416.
  • 2. Kogevinas, M.; Ferro, G.; Andersen, A. et al. Scand. J. Work Env. Hea. 1994, 20 (4), 251-261.
  • 3. Coggon, D.; Ntani, G.; Harris, E. C.; Palmer, K. T. Occup. Environ. Med. 2015, 72 (3), 165-170.
  • 4. Christensen, M. S.; Vestergaard, J. M.; d’Amore, F. et al. Epidemiology 2018, 29 (3), 342-351.
  • 5. Collins, J. J.; Bodner, K. M.; Bus, J. S. Epidemiology 2013, 24 (2), 195-203.
  • 6. Nissen, M. S.; Stokholm, Z. A.; Christensen, M. S.; Schlünssen, V.; Vestergaard, J. M.; Iversen, I. B.; Kolstad, H. A. Occup. Environ. Med. 2018, 75 (6), 412-414.
  • 7. Cruzan, G.; Bus, J. S.; Banton, M. I.; Sarang, S. S.; Waites, R.; Layko, D. B.; Raymond, J.; Dodd, D.; Andersen, M. E. Toxicol. Sci. 2017, 159 (2), 413-421.
  • 8. Cruzan, G.; Cushman, J. R.; Andrews, L.S.; et al. J. Appl Toxicol. 2001, 21 (3), 185–198.
  • 9. Ponomarkov, V.; Tomatis, L. Scand. J. Work Environ. Hea. 1978, 4 (2), 127–135.
  • 10. Conti, B.; Maltoni, C.; Perino, G.; Ciliberti, A. Ann. NY Acad. Sci. 1988, 534 (1), 203-234.
  • 11. Hollas, J. M.; Khalilipour, E.; Thakur, S. N. J. Mol. Spectrosc. 1978, 73 (2), 240-265.
  • 12. Zilberg, S.; Haas, Y. J. Chem. Phys. 1995, 103 (1), 20-36.
  • 13. Bock, C. W.; Trachtman, M.; George, P. Chem. Phys. 1985, 83 (3), 431-443.
  • 14. Frisch, M. J.; Trucks, G. W. Schlegel, H. B. et al. GAUSSIAN 09: Revision C.02 (Pittsburg, PA: Gaussian Inc.) 2009.
  • 15. Frisch, A.; Nielsen, A. B.; Holder, A. J. Gauss 09 View User Manual (Pittsburg: Gaussian Inc.) 2009.
  • 16.https://www.acros.com/DesktopModules/Acros_Search_Results/Acros_Search_Results.aspx?search_type=CatalogSearch&SearchString=4-Cyanostyrene (accessed 01.05.2020) .
  • 17. Smith, B. C. Infrared Spectral Interpretation: A Systematic Approach; CRC Press, New York, 1998.
  • 18. Rao, J. M. Organic Spectroscopy Principles and Applications, Narosa Publishing House, New Delhi, 2000.
  • 19. Kanamori, H.; Endo, Y.; Hirota, E. J. Chem. Phys. 1990, 92 (1), 197-205.
  • 20. Kim, E.; Yamamoto, S. J. Chem. Phys. 2002, 116 (24), 10713-10718.
  • 21. Tanaka, K.; Toshimitsu, M.; Harada, K.; Tanaka, T. J. Chem. Phys. 2004, 120 (8), 3604-3618.
  • 22. Shepherd, R. A.; Doyle, T. J.; Graham, W. R. M. J. Chem. Phys. 1988, 89 (5), 2738-2742.
  • 23. Tanskanen, H.; Khriachtchev, L.; Rasanen, M.; Feldman, V. I.; Sukhov, F. F.; Orlov, A. Y.; Tyurin, D. A. J. Chem. Phys. 2005, 123 (6), 064318.
  • 24. Paolucci, D. M.; Gunkelman, K.; McMahon, M. T.; McHugh, J.; Abrash, S. A. J. Phys. Chem. 1995, 99, 10506-10510.
  • 25. Forney; D.; Jacox, M. E.; Thompson, W. E. J. Mol. Spectrosc. 1995, 170, 178-214.
  • 26. Nikow; M.; Wilhelm, M. J.; Dai, H. L. J. Phys. Chem. A 2009, 113 (31), 8857-8870.
  • 27. Dollish, F. R.; Fateley, W. G.; Bentley, F. F. Characteristic Raman Frequencies of Organic Compounds; Wiley: N.Y., USA, 1974.
  • 28. Bellamy, L. J. The Infrared Spectra of Complex Molecules; Wiley: N.Y., USA, 1975.
  • 29. Lin-Vien, D.; Colthup; N. B.; Fateley; W. G.; Grasselli; J. G. The Handbook of Infrared and Raman Characteristics frequencies of Organic Molecules Academic Press: San Diego, California, 1991.
  • 30. Socrates, G. Infrared and Raman Characteristic Group Frequencies, 3rd ed.; Wiley: N.Y., USA, 2004.
  • 31. Krishnakumar, V.; Prabavathi; N. Spectrochim. Acta A 2008, 71 (12), 449-457.
  • 32. Altun, A.; Gölcük, K.; Kumru, M. J. Mol. Struc-Theochem 2003, 637, 155-169.
  • 33. Singh, S. J.; Pandey, S. M. Indian J. Pure Ap. Phy. 1974, 12, 300-304.
  • 34. Lee, S. Y. B. Korean Chem. Soc. 1998, 19 (1), 93-98.
  • 35. Wheeless, C. J.; Zhou, X.; Liu; R. J. Phys. Chem. 1995, 99 (33), 12488-12492.
Year 2020, , 156 - 161, 31.12.2020
https://doi.org/10.32571/ijct.756992

Abstract

Supporting Institution

Kilis 7 Aralık Üniversitesi BAP birimi

Project Number

Kilis 7 Aralık University, project number: 2010/02/08.

References

  • 1. Rappaport, S. M.; Yeowell-O'Connell, K.; Bodell, W.; Yager, J. W.; Symanski, E. Cancer Res. 1996, 56 (23), 5410-5416.
  • 2. Kogevinas, M.; Ferro, G.; Andersen, A. et al. Scand. J. Work Env. Hea. 1994, 20 (4), 251-261.
  • 3. Coggon, D.; Ntani, G.; Harris, E. C.; Palmer, K. T. Occup. Environ. Med. 2015, 72 (3), 165-170.
  • 4. Christensen, M. S.; Vestergaard, J. M.; d’Amore, F. et al. Epidemiology 2018, 29 (3), 342-351.
  • 5. Collins, J. J.; Bodner, K. M.; Bus, J. S. Epidemiology 2013, 24 (2), 195-203.
  • 6. Nissen, M. S.; Stokholm, Z. A.; Christensen, M. S.; Schlünssen, V.; Vestergaard, J. M.; Iversen, I. B.; Kolstad, H. A. Occup. Environ. Med. 2018, 75 (6), 412-414.
  • 7. Cruzan, G.; Bus, J. S.; Banton, M. I.; Sarang, S. S.; Waites, R.; Layko, D. B.; Raymond, J.; Dodd, D.; Andersen, M. E. Toxicol. Sci. 2017, 159 (2), 413-421.
  • 8. Cruzan, G.; Cushman, J. R.; Andrews, L.S.; et al. J. Appl Toxicol. 2001, 21 (3), 185–198.
  • 9. Ponomarkov, V.; Tomatis, L. Scand. J. Work Environ. Hea. 1978, 4 (2), 127–135.
  • 10. Conti, B.; Maltoni, C.; Perino, G.; Ciliberti, A. Ann. NY Acad. Sci. 1988, 534 (1), 203-234.
  • 11. Hollas, J. M.; Khalilipour, E.; Thakur, S. N. J. Mol. Spectrosc. 1978, 73 (2), 240-265.
  • 12. Zilberg, S.; Haas, Y. J. Chem. Phys. 1995, 103 (1), 20-36.
  • 13. Bock, C. W.; Trachtman, M.; George, P. Chem. Phys. 1985, 83 (3), 431-443.
  • 14. Frisch, M. J.; Trucks, G. W. Schlegel, H. B. et al. GAUSSIAN 09: Revision C.02 (Pittsburg, PA: Gaussian Inc.) 2009.
  • 15. Frisch, A.; Nielsen, A. B.; Holder, A. J. Gauss 09 View User Manual (Pittsburg: Gaussian Inc.) 2009.
  • 16.https://www.acros.com/DesktopModules/Acros_Search_Results/Acros_Search_Results.aspx?search_type=CatalogSearch&SearchString=4-Cyanostyrene (accessed 01.05.2020) .
  • 17. Smith, B. C. Infrared Spectral Interpretation: A Systematic Approach; CRC Press, New York, 1998.
  • 18. Rao, J. M. Organic Spectroscopy Principles and Applications, Narosa Publishing House, New Delhi, 2000.
  • 19. Kanamori, H.; Endo, Y.; Hirota, E. J. Chem. Phys. 1990, 92 (1), 197-205.
  • 20. Kim, E.; Yamamoto, S. J. Chem. Phys. 2002, 116 (24), 10713-10718.
  • 21. Tanaka, K.; Toshimitsu, M.; Harada, K.; Tanaka, T. J. Chem. Phys. 2004, 120 (8), 3604-3618.
  • 22. Shepherd, R. A.; Doyle, T. J.; Graham, W. R. M. J. Chem. Phys. 1988, 89 (5), 2738-2742.
  • 23. Tanskanen, H.; Khriachtchev, L.; Rasanen, M.; Feldman, V. I.; Sukhov, F. F.; Orlov, A. Y.; Tyurin, D. A. J. Chem. Phys. 2005, 123 (6), 064318.
  • 24. Paolucci, D. M.; Gunkelman, K.; McMahon, M. T.; McHugh, J.; Abrash, S. A. J. Phys. Chem. 1995, 99, 10506-10510.
  • 25. Forney; D.; Jacox, M. E.; Thompson, W. E. J. Mol. Spectrosc. 1995, 170, 178-214.
  • 26. Nikow; M.; Wilhelm, M. J.; Dai, H. L. J. Phys. Chem. A 2009, 113 (31), 8857-8870.
  • 27. Dollish, F. R.; Fateley, W. G.; Bentley, F. F. Characteristic Raman Frequencies of Organic Compounds; Wiley: N.Y., USA, 1974.
  • 28. Bellamy, L. J. The Infrared Spectra of Complex Molecules; Wiley: N.Y., USA, 1975.
  • 29. Lin-Vien, D.; Colthup; N. B.; Fateley; W. G.; Grasselli; J. G. The Handbook of Infrared and Raman Characteristics frequencies of Organic Molecules Academic Press: San Diego, California, 1991.
  • 30. Socrates, G. Infrared and Raman Characteristic Group Frequencies, 3rd ed.; Wiley: N.Y., USA, 2004.
  • 31. Krishnakumar, V.; Prabavathi; N. Spectrochim. Acta A 2008, 71 (12), 449-457.
  • 32. Altun, A.; Gölcük, K.; Kumru, M. J. Mol. Struc-Theochem 2003, 637, 155-169.
  • 33. Singh, S. J.; Pandey, S. M. Indian J. Pure Ap. Phy. 1974, 12, 300-304.
  • 34. Lee, S. Y. B. Korean Chem. Soc. 1998, 19 (1), 93-98.
  • 35. Wheeless, C. J.; Zhou, X.; Liu; R. J. Phys. Chem. 1995, 99 (33), 12488-12492.
There are 35 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Research Articles
Authors

Kani Arıcı 0000-0001-7947-0766

Rafet Yılmaz 0000-0003-2734-8763

Project Number Kilis 7 Aralık University, project number: 2010/02/08.
Publication Date December 31, 2020
Published in Issue Year 2020

Cite

APA Arıcı, K., & Yılmaz, R. (2020). Calculation of the infrared spectrum of 4-Cyanostyrene by Hartree-Fock (HF) and Density Functional Theory (DFT). International Journal of Chemistry and Technology, 4(2), 156-161. https://doi.org/10.32571/ijct.756992
AMA Arıcı K, Yılmaz R. Calculation of the infrared spectrum of 4-Cyanostyrene by Hartree-Fock (HF) and Density Functional Theory (DFT). Int. J. Chem. Technol. December 2020;4(2):156-161. doi:10.32571/ijct.756992
Chicago Arıcı, Kani, and Rafet Yılmaz. “Calculation of the Infrared Spectrum of 4-Cyanostyrene by Hartree-Fock (HF) and Density Functional Theory (DFT)”. International Journal of Chemistry and Technology 4, no. 2 (December 2020): 156-61. https://doi.org/10.32571/ijct.756992.
EndNote Arıcı K, Yılmaz R (December 1, 2020) Calculation of the infrared spectrum of 4-Cyanostyrene by Hartree-Fock (HF) and Density Functional Theory (DFT). International Journal of Chemistry and Technology 4 2 156–161.
IEEE K. Arıcı and R. Yılmaz, “Calculation of the infrared spectrum of 4-Cyanostyrene by Hartree-Fock (HF) and Density Functional Theory (DFT)”, Int. J. Chem. Technol., vol. 4, no. 2, pp. 156–161, 2020, doi: 10.32571/ijct.756992.
ISNAD Arıcı, Kani - Yılmaz, Rafet. “Calculation of the Infrared Spectrum of 4-Cyanostyrene by Hartree-Fock (HF) and Density Functional Theory (DFT)”. International Journal of Chemistry and Technology 4/2 (December 2020), 156-161. https://doi.org/10.32571/ijct.756992.
JAMA Arıcı K, Yılmaz R. Calculation of the infrared spectrum of 4-Cyanostyrene by Hartree-Fock (HF) and Density Functional Theory (DFT). Int. J. Chem. Technol. 2020;4:156–161.
MLA Arıcı, Kani and Rafet Yılmaz. “Calculation of the Infrared Spectrum of 4-Cyanostyrene by Hartree-Fock (HF) and Density Functional Theory (DFT)”. International Journal of Chemistry and Technology, vol. 4, no. 2, 2020, pp. 156-61, doi:10.32571/ijct.756992.
Vancouver Arıcı K, Yılmaz R. Calculation of the infrared spectrum of 4-Cyanostyrene by Hartree-Fock (HF) and Density Functional Theory (DFT). Int. J. Chem. Technol. 2020;4(2):156-61.