Research Article
BibTex RIS Cite
Year 2017, Volume: 1 Issue: 1, 24 - 29, 26.10.2017
https://doi.org/10.32571/ijct.338939

Abstract

References

  • 1. Bambury, R.E. In Burger’s Medicinal Chemistry, Part II, Wolff ,M.E (Ed.), John Wiley, New York, 1979, pp. 41–81.
  • 2. Martell, A.E.; Calvin, M., Chemistry of the Metal Chelate Compounds, Chapter 10, Prentice Hall, Englewood Cliffs, 1959.
  • 3. Vaichulis, J. A., U.S. Patent 3272, 352, 1966.
  • 4. Schmidt, L.H. Annu. Rev. Microbiol. 1969, 23, 427-454.
  • 5. Dietrich, H. Swiss Patent 454874, 1968.
  • 6. Hoffman La Roche Co., Swiss Patent 416648, 1967.
  • 7. Arjunan, V.; Mohanb, S.; Ravindranc, P.; Mythilid, C.V. Spectrochım. Acta A. 2009, 72, 783-788.
  • 8. Arıcı, K.; Yılmaz, R. Asian J. Chem. 2013, 25, 13, 7106-7114.
  • 9. NIST Chemistry WebBook. http://webbook.nist.gov/chemistry (accessed July 7, 2017).
  • 10. Vosko, S.H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200-1211.
  • 11. Kral Irikura, K.; Russel Johnson III, D.; Raghu Kacker, N. J. Phys. Chem. A, 2005, 109, 8426-8435.
  • 12. Frisch, A.; Nielsen, A. B.; Holder. A. J. Gaussview Users Manuel, (Gaussian inc., Pittsburg, 2009).
  • 13. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Bloino, A.F. J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.; Jr.A.; Peralta, J.E.; Ogliaro, F.; Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Staroverov, V.N.; Kobayashi, R.; Normand, J.; Rendell, K. A.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J.M.; Klene, M.; Knox, J.E.; Knox, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.;Dannenberg, J.J.; Dapprich, S.; Daniels, A.D.; Farkas, O.; Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; Fox, D.J. Gaussian 09, Revision A.02, Gaussian Inc., Wallingford CT, 2009.
  • 14. Michalska, D.; Bienko, D.C.; Bienko, A.J.A.; Latajaka, Z. J. Phys. Chem. 1996, 100, 17786-17790.
  • 15. Krishnakumar, V.; Muthunatesan, S. Spectrochım. Acta A. 2006, 65, 815-825.
  • 16. Sathyanarayana, D.N. Vibrational Spectroscopy-Theory and Applications, ed. 2, New Age International (P) Limited Publishers, New Delhi, 2004.
  • 17. Singh, D.N.; Singh, I.D.; Yadav, R.A. Indian J. Phys. 2002, 76B, 307-318.
  • 18. Krishnakumar, V. R.; John X. Indian J. Pure Appl. Phys. 2003, 41, 597-601.
  • 19. Sharma, A.; Gupta, V.P.; Virdi, A. Indian J. Pure Appl. Phys. 2004, 42, 251-257.
  • 20. Krishnakumar, V.; Prabavathi, N. Spectrochım Acta A. 2008, 71, 449-457.
  • 21. Altun, A.; Golcuk,K.; Kumru, M. J. Mol. Struc. (THEOCHEM) 2003, 637, 155-169.
  • 22. Singh,S.J.; Pandey, S.M. Indian J. Pure Appl. Phys. 1974, 12, 300- 305.
  • 23. Ramana Rao, B. G. J. Raman Spect. 1989, 20, 439- 448.
  • 24. Kitson, R. E.; Griffith, N. E. Anal. Chem. 1952, 24, 334-341.
  • 25. Gunasekaran, S.; Natarajan,R.K.; Syamala, D.; Rathika, R. Indian J. Pure Appl. Phys. 2006, 44, 315-319.

Vibrational spectra of 4-hydroxy-3-cyano-7-chloro-quinoline by Density Functional Theory and ab initio Hartree-Fock calculations

Year 2017, Volume: 1 Issue: 1, 24 - 29, 26.10.2017
https://doi.org/10.32571/ijct.338939

Abstract

The
infrared vibrational spectra of 4-hydroxy-3-cyano-7-chloro-quinoline
(4H3CN7CLQ) molecule in the solid phase were download from the NIST Chemistry
WebBook. In order to calculate the frequency of molecular vibrations the
4H3CN7CLQ molecule was optimized in the HF and DFT theories in the basic case.
All frequencies calculated with HF/6-311G(dp) and DFT/B3LYP/6-311G(dp) were
scaled to 0.9085 and 0.9669, respectively. All calculations were not limited
and performed on a personal computer using GaussView visualization and
GAUSSIAN09 program package. The frequencies values obtained by scaling were
compared with the experimental values one by one. Correlation graphs were drawn
between experimental and theoretical values. However, some modes of vibration
frequencies are also provided. The frequency values obtained from the HF and
DFT methods are seen in good agreement with the experimental data.    

References

  • 1. Bambury, R.E. In Burger’s Medicinal Chemistry, Part II, Wolff ,M.E (Ed.), John Wiley, New York, 1979, pp. 41–81.
  • 2. Martell, A.E.; Calvin, M., Chemistry of the Metal Chelate Compounds, Chapter 10, Prentice Hall, Englewood Cliffs, 1959.
  • 3. Vaichulis, J. A., U.S. Patent 3272, 352, 1966.
  • 4. Schmidt, L.H. Annu. Rev. Microbiol. 1969, 23, 427-454.
  • 5. Dietrich, H. Swiss Patent 454874, 1968.
  • 6. Hoffman La Roche Co., Swiss Patent 416648, 1967.
  • 7. Arjunan, V.; Mohanb, S.; Ravindranc, P.; Mythilid, C.V. Spectrochım. Acta A. 2009, 72, 783-788.
  • 8. Arıcı, K.; Yılmaz, R. Asian J. Chem. 2013, 25, 13, 7106-7114.
  • 9. NIST Chemistry WebBook. http://webbook.nist.gov/chemistry (accessed July 7, 2017).
  • 10. Vosko, S.H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200-1211.
  • 11. Kral Irikura, K.; Russel Johnson III, D.; Raghu Kacker, N. J. Phys. Chem. A, 2005, 109, 8426-8435.
  • 12. Frisch, A.; Nielsen, A. B.; Holder. A. J. Gaussview Users Manuel, (Gaussian inc., Pittsburg, 2009).
  • 13. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Bloino, A.F. J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.; Jr.A.; Peralta, J.E.; Ogliaro, F.; Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Staroverov, V.N.; Kobayashi, R.; Normand, J.; Rendell, K. A.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J.M.; Klene, M.; Knox, J.E.; Knox, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.;Dannenberg, J.J.; Dapprich, S.; Daniels, A.D.; Farkas, O.; Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; Fox, D.J. Gaussian 09, Revision A.02, Gaussian Inc., Wallingford CT, 2009.
  • 14. Michalska, D.; Bienko, D.C.; Bienko, A.J.A.; Latajaka, Z. J. Phys. Chem. 1996, 100, 17786-17790.
  • 15. Krishnakumar, V.; Muthunatesan, S. Spectrochım. Acta A. 2006, 65, 815-825.
  • 16. Sathyanarayana, D.N. Vibrational Spectroscopy-Theory and Applications, ed. 2, New Age International (P) Limited Publishers, New Delhi, 2004.
  • 17. Singh, D.N.; Singh, I.D.; Yadav, R.A. Indian J. Phys. 2002, 76B, 307-318.
  • 18. Krishnakumar, V. R.; John X. Indian J. Pure Appl. Phys. 2003, 41, 597-601.
  • 19. Sharma, A.; Gupta, V.P.; Virdi, A. Indian J. Pure Appl. Phys. 2004, 42, 251-257.
  • 20. Krishnakumar, V.; Prabavathi, N. Spectrochım Acta A. 2008, 71, 449-457.
  • 21. Altun, A.; Golcuk,K.; Kumru, M. J. Mol. Struc. (THEOCHEM) 2003, 637, 155-169.
  • 22. Singh,S.J.; Pandey, S.M. Indian J. Pure Appl. Phys. 1974, 12, 300- 305.
  • 23. Ramana Rao, B. G. J. Raman Spect. 1989, 20, 439- 448.
  • 24. Kitson, R. E.; Griffith, N. E. Anal. Chem. 1952, 24, 334-341.
  • 25. Gunasekaran, S.; Natarajan,R.K.; Syamala, D.; Rathika, R. Indian J. Pure Appl. Phys. 2006, 44, 315-319.
There are 25 citations in total.

Details

Subjects Chemical Engineering
Journal Section Research Articles
Authors

Kani Arıcı 0000-0001-7947-0766

Publication Date October 26, 2017
Published in Issue Year 2017 Volume: 1 Issue: 1

Cite

APA Arıcı, K. (2017). Vibrational spectra of 4-hydroxy-3-cyano-7-chloro-quinoline by Density Functional Theory and ab initio Hartree-Fock calculations. International Journal of Chemistry and Technology, 1(1), 24-29. https://doi.org/10.32571/ijct.338939
AMA Arıcı K. Vibrational spectra of 4-hydroxy-3-cyano-7-chloro-quinoline by Density Functional Theory and ab initio Hartree-Fock calculations. Int. J. Chem. Technol. December 2017;1(1):24-29. doi:10.32571/ijct.338939
Chicago Arıcı, Kani. “Vibrational Spectra of 4-Hydroxy-3-Cyano-7-Chloro-Quinoline by Density Functional Theory and Ab Initio Hartree-Fock Calculations”. International Journal of Chemistry and Technology 1, no. 1 (December 2017): 24-29. https://doi.org/10.32571/ijct.338939.
EndNote Arıcı K (December 1, 2017) Vibrational spectra of 4-hydroxy-3-cyano-7-chloro-quinoline by Density Functional Theory and ab initio Hartree-Fock calculations. International Journal of Chemistry and Technology 1 1 24–29.
IEEE K. Arıcı, “Vibrational spectra of 4-hydroxy-3-cyano-7-chloro-quinoline by Density Functional Theory and ab initio Hartree-Fock calculations”, Int. J. Chem. Technol., vol. 1, no. 1, pp. 24–29, 2017, doi: 10.32571/ijct.338939.
ISNAD Arıcı, Kani. “Vibrational Spectra of 4-Hydroxy-3-Cyano-7-Chloro-Quinoline by Density Functional Theory and Ab Initio Hartree-Fock Calculations”. International Journal of Chemistry and Technology 1/1 (December 2017), 24-29. https://doi.org/10.32571/ijct.338939.
JAMA Arıcı K. Vibrational spectra of 4-hydroxy-3-cyano-7-chloro-quinoline by Density Functional Theory and ab initio Hartree-Fock calculations. Int. J. Chem. Technol. 2017;1:24–29.
MLA Arıcı, Kani. “Vibrational Spectra of 4-Hydroxy-3-Cyano-7-Chloro-Quinoline by Density Functional Theory and Ab Initio Hartree-Fock Calculations”. International Journal of Chemistry and Technology, vol. 1, no. 1, 2017, pp. 24-29, doi:10.32571/ijct.338939.
Vancouver Arıcı K. Vibrational spectra of 4-hydroxy-3-cyano-7-chloro-quinoline by Density Functional Theory and ab initio Hartree-Fock calculations. Int. J. Chem. Technol. 2017;1(1):24-9.