Research Article
BibTex RIS Cite

Molecular structure of Zn (II) compound containing 8-hydroxyquinoline and 2-picoline ligands [I], theoretical HF and DFT studies [II]

Year 2018, Volume: 2 Issue: 2, 141 - 152, 28.12.2018
https://doi.org/10.32571/ijct.469000

Abstract

In this study, Zn
(II) compound containing 8-hydroxyquinoline (L1:8-Hq) and 2-picoline (L2: 2P)
ligands was prepared and its elemental analysis was recorded. Infrared spectra
of the ligands and the compound were obtained. The structure of the prepared
compound was determined approximately based on the spectroscopic and analytical
results. The infrared vibration frequencies of the prepared compound were
calculated theoretically employing the ab-initio Hartree-Fock (HF) and density
functional theory (DFT) methods with 6-311G(dp) basis set. Finally, the
vibrational frequency values of the compound obtained both experimentally and
theoretically were compared in details. It was observed that all the
experimental and theoretical results are in good agreement with the literature.

References

  • 1. Bambury, R. E.; Wolff, M. E. Burger’s Medicinal Chemistry, Part II, John Wiley, (New York), 1979, p 41.
  • 2. Buchmann, G.; Proffit, E.; Arzneimittelforsch, 1960, 10, 181.
  • 3. Hamada, Y.; Sano, T.; Fijujita, M.; Fujii, Y.; Nishio, Y.; Shibata, K. Jpn. J. Appl. Phys. 1993, 32, L512.
  • 4. Merritt, L. L. Anal. Chem. 1953, 25, 718-721.
  • 5. Magee, R. J.; Gordon, L. Talanta 1963, 10 (8), 851-859.
  • 6. Magee, R. J.; Gordon, L. Talanta 1963, 10 (9), 961-966.
  • 7. Magee, R. J.; Gordon, L. Talanta 1963, 10 (9), 967-970.
  • 8. Ohkaku, N.; Nakamoto, K. Inorg. Chem. 1971, 10 (4), 798-805.
  • 9. Engelter, C.; Jackson, G. E.; Knight, C. L.; Thornton, D. A. J. Mol. Struct. 1989, 213, 133-144.
  • 10. Yurdakul, Ş.; Arıcı, K. J. Mol. Struct. 2004, 691 (1-3), 45-49.
  • 11. Das, M. K.; Maiti, P. K.; Roy, S.; Mittakanti, M.; Morse, K. W.; Hall, I. H. Arch. Pharm-Weinheim. 1992, 325 (5), 267-272.
  • 12. Saravanan, S. P.; Sankar, A.; Parimala, K. IJSRM, 2017, 7 (3), 74-82.
  • 13. Mutton, A. T.; Thornton, D. A. Spectrosc. Lett. 1977, 10 (1), 57-65.
  • 14. Steffen, W. L.; Palenik, G. J. Acta Cryst. 1976, B32, 298-302.
  • 15. Healy, P. C.; Pakawatchai, C.; White, A. H. J. Chem. Soc. Dalton Trans. 1983, 9, 1917-1927.
  • 16. Greenwood, N. N.; Wade, K. J. Chem. Soc. 1960, 1130-1141.
  • 17. Shayma, A. S., Farina, Y.; Salleh, A. A. Euro. J. Sci. Res. 2009, 33 (4), 702-709.
  • 18. Kindeel, A.S.; I.; Dawood, I. J.; Aziz, M. R. Baghdad Sci. J. 2013, 10, 396-403.
  • 19. Irikura, K. K.; Johnson, R. D.; Kacker, R. N. J. Phys. Chem. 2005, A 109 (37), 8430-8437.
  • 20. Frisch, A.; Nielsen, A. B.; Holder, A. J. Gauss 09 View User Manual (Pittsburg: Gaussian Inc.) 2009.
  • 21. Frisch, M.J et al, GAUSSIAN 09: Revision C.02 (Pittsburg, PA: Gaussian Inc.) 2009.
  • 22. Ramakrishnan, L.; Soundararajan, S. Indian. Acad. Sci. 1977, 86A, 59-64.
  • 23. Krishnakumar, V.; Ramasamy, R. Spectrochım. Acta 2005, 61 (4), 673-683.
  • 24. EI-Asmy, A.A.; EI-Sonbati, A.Z., Ba-Issa, A.A. Transit. Metal Chem. 1990, 15, 222-225.
  • 25. Arenas, J.F.; Tocon, I.L.; Otero, J.C.; Marcos, J.I. J. Mol. Struct. 1997, 410-411, 443-446.
  • 26. Greenwood, N.N.; Wade, K. J. Chem. Soc. 1960, 1130 1141.
  • 27. Sujin, P.J.; Mohan, S.; Spectrochım. Acta 2006. 64 (1), 240-25.
  • 28. Bahgat, K.; Ragheb, A. G. Cent. Eur. J. Chem. 2007, 5 (1), 201-220.
  • 29. Srivastava, SL.; Rohitashava, M.P. Spectrochım. Acta 1984, 40 (7), 681-685.
  • 30. Arıcı, K.; Yurdakul, M.; Yurdakul, S. Spectrochım. Acta 2005, 61 (1-2), 37-43.
  • 31. Mabrouk, H.E.; EI-Asmy, A.A.; Mounir, M. Transit. Metal Chem. 1993, 18 (6), 573-575.
  • 32. El Toukhy, A. Qatar Univ. Sci. Bull. 1990, 10, 83-97.
  • 33. Kovala-Demertzi, D.; Yadav, P. N.; Wiecek, J.; Skoulika, S.; Varadinova, T.; Demertzis, M .A. J. Inorg. Bıochem. 2006, 100 (9), 1558–1567.
  • 34. Steffen, W. L.; Palenik, G. J. Inorg. Chem. 1977, 16 (5), 1119-1127.
  • 35. Sharma, A.; Gupta, V.P.; Virdi, A. IJPAP, 2004, 42, 251-257.
  • 36. Krishnakumar, V.; Prabavathi, N. Spectrochim. Acta 2008, 71 (2), 449-457.
  • 37. Altun, A.; Golcuk, K.; Kumru, M. J. Mol. Struct. THEOCHEM. 2003, 637 (1-3), 155-169.
  • 38. Singh, S. J.; Pandey, S. M. Indian J. Pure Ap. Phy. 1974, 12, 300-304.
  • 39. Zierkiewicz, W.; Michalska, D. J. Phys. Chem. A. 2003, 107, 4547-4554.
  • 40. Zierkiewic, W.; Michalska, D.; Zeegers-Huyskens, T. J. Phys. Chem. A. 2000, 104 (50), 11685-11692.
  • 41. Gunasekaran, S.; Natarajan, R.K.; Syamala, D.; Rathikha, R. Indian J. Pure Ap. Phy. 2006, 44 (04), 315-319.
  • 42. Prabhaharan, M.; Prabakaran, A.R.; Srinivasan, S.; Gunasekaran, S. Spectrochim. Acta 2015, 138, 711-722.
  • 43. Arjunan, V.; Mohan, S.; Ravindran, P.; Mythili, C. V. Spectrochim. Acta 2009, 72 (4), 783-788.
  • 44. Arjunan, V.; Mohan, S.; Balamourougane, P.S.; Ravindran, P. Spectrochim. Acta 2009, 74, 1215-1229.
  • 45. Srivastava, A.; Singh, V. B. Indian Pure Appl. Phys. 2007, 45, 714-720.
  • 46. Varsányi G. Vibrational spectra of benzene derivatives, Academic Press New York and, London, 1969, P. 215.
Year 2018, Volume: 2 Issue: 2, 141 - 152, 28.12.2018
https://doi.org/10.32571/ijct.469000

Abstract

References

  • 1. Bambury, R. E.; Wolff, M. E. Burger’s Medicinal Chemistry, Part II, John Wiley, (New York), 1979, p 41.
  • 2. Buchmann, G.; Proffit, E.; Arzneimittelforsch, 1960, 10, 181.
  • 3. Hamada, Y.; Sano, T.; Fijujita, M.; Fujii, Y.; Nishio, Y.; Shibata, K. Jpn. J. Appl. Phys. 1993, 32, L512.
  • 4. Merritt, L. L. Anal. Chem. 1953, 25, 718-721.
  • 5. Magee, R. J.; Gordon, L. Talanta 1963, 10 (8), 851-859.
  • 6. Magee, R. J.; Gordon, L. Talanta 1963, 10 (9), 961-966.
  • 7. Magee, R. J.; Gordon, L. Talanta 1963, 10 (9), 967-970.
  • 8. Ohkaku, N.; Nakamoto, K. Inorg. Chem. 1971, 10 (4), 798-805.
  • 9. Engelter, C.; Jackson, G. E.; Knight, C. L.; Thornton, D. A. J. Mol. Struct. 1989, 213, 133-144.
  • 10. Yurdakul, Ş.; Arıcı, K. J. Mol. Struct. 2004, 691 (1-3), 45-49.
  • 11. Das, M. K.; Maiti, P. K.; Roy, S.; Mittakanti, M.; Morse, K. W.; Hall, I. H. Arch. Pharm-Weinheim. 1992, 325 (5), 267-272.
  • 12. Saravanan, S. P.; Sankar, A.; Parimala, K. IJSRM, 2017, 7 (3), 74-82.
  • 13. Mutton, A. T.; Thornton, D. A. Spectrosc. Lett. 1977, 10 (1), 57-65.
  • 14. Steffen, W. L.; Palenik, G. J. Acta Cryst. 1976, B32, 298-302.
  • 15. Healy, P. C.; Pakawatchai, C.; White, A. H. J. Chem. Soc. Dalton Trans. 1983, 9, 1917-1927.
  • 16. Greenwood, N. N.; Wade, K. J. Chem. Soc. 1960, 1130-1141.
  • 17. Shayma, A. S., Farina, Y.; Salleh, A. A. Euro. J. Sci. Res. 2009, 33 (4), 702-709.
  • 18. Kindeel, A.S.; I.; Dawood, I. J.; Aziz, M. R. Baghdad Sci. J. 2013, 10, 396-403.
  • 19. Irikura, K. K.; Johnson, R. D.; Kacker, R. N. J. Phys. Chem. 2005, A 109 (37), 8430-8437.
  • 20. Frisch, A.; Nielsen, A. B.; Holder, A. J. Gauss 09 View User Manual (Pittsburg: Gaussian Inc.) 2009.
  • 21. Frisch, M.J et al, GAUSSIAN 09: Revision C.02 (Pittsburg, PA: Gaussian Inc.) 2009.
  • 22. Ramakrishnan, L.; Soundararajan, S. Indian. Acad. Sci. 1977, 86A, 59-64.
  • 23. Krishnakumar, V.; Ramasamy, R. Spectrochım. Acta 2005, 61 (4), 673-683.
  • 24. EI-Asmy, A.A.; EI-Sonbati, A.Z., Ba-Issa, A.A. Transit. Metal Chem. 1990, 15, 222-225.
  • 25. Arenas, J.F.; Tocon, I.L.; Otero, J.C.; Marcos, J.I. J. Mol. Struct. 1997, 410-411, 443-446.
  • 26. Greenwood, N.N.; Wade, K. J. Chem. Soc. 1960, 1130 1141.
  • 27. Sujin, P.J.; Mohan, S.; Spectrochım. Acta 2006. 64 (1), 240-25.
  • 28. Bahgat, K.; Ragheb, A. G. Cent. Eur. J. Chem. 2007, 5 (1), 201-220.
  • 29. Srivastava, SL.; Rohitashava, M.P. Spectrochım. Acta 1984, 40 (7), 681-685.
  • 30. Arıcı, K.; Yurdakul, M.; Yurdakul, S. Spectrochım. Acta 2005, 61 (1-2), 37-43.
  • 31. Mabrouk, H.E.; EI-Asmy, A.A.; Mounir, M. Transit. Metal Chem. 1993, 18 (6), 573-575.
  • 32. El Toukhy, A. Qatar Univ. Sci. Bull. 1990, 10, 83-97.
  • 33. Kovala-Demertzi, D.; Yadav, P. N.; Wiecek, J.; Skoulika, S.; Varadinova, T.; Demertzis, M .A. J. Inorg. Bıochem. 2006, 100 (9), 1558–1567.
  • 34. Steffen, W. L.; Palenik, G. J. Inorg. Chem. 1977, 16 (5), 1119-1127.
  • 35. Sharma, A.; Gupta, V.P.; Virdi, A. IJPAP, 2004, 42, 251-257.
  • 36. Krishnakumar, V.; Prabavathi, N. Spectrochim. Acta 2008, 71 (2), 449-457.
  • 37. Altun, A.; Golcuk, K.; Kumru, M. J. Mol. Struct. THEOCHEM. 2003, 637 (1-3), 155-169.
  • 38. Singh, S. J.; Pandey, S. M. Indian J. Pure Ap. Phy. 1974, 12, 300-304.
  • 39. Zierkiewicz, W.; Michalska, D. J. Phys. Chem. A. 2003, 107, 4547-4554.
  • 40. Zierkiewic, W.; Michalska, D.; Zeegers-Huyskens, T. J. Phys. Chem. A. 2000, 104 (50), 11685-11692.
  • 41. Gunasekaran, S.; Natarajan, R.K.; Syamala, D.; Rathikha, R. Indian J. Pure Ap. Phy. 2006, 44 (04), 315-319.
  • 42. Prabhaharan, M.; Prabakaran, A.R.; Srinivasan, S.; Gunasekaran, S. Spectrochim. Acta 2015, 138, 711-722.
  • 43. Arjunan, V.; Mohan, S.; Ravindran, P.; Mythili, C. V. Spectrochim. Acta 2009, 72 (4), 783-788.
  • 44. Arjunan, V.; Mohan, S.; Balamourougane, P.S.; Ravindran, P. Spectrochim. Acta 2009, 74, 1215-1229.
  • 45. Srivastava, A.; Singh, V. B. Indian Pure Appl. Phys. 2007, 45, 714-720.
  • 46. Varsányi G. Vibrational spectra of benzene derivatives, Academic Press New York and, London, 1969, P. 215.
There are 46 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Research Articles
Authors

Kani Arıcı 0000-0001-7947-0766

Özkan Gül This is me 0000-0001-7204-7957

Publication Date December 28, 2018
Published in Issue Year 2018 Volume: 2 Issue: 2

Cite

APA Arıcı, K., & Gül, Ö. (2018). Molecular structure of Zn (II) compound containing 8-hydroxyquinoline and 2-picoline ligands [I], theoretical HF and DFT studies [II]. International Journal of Chemistry and Technology, 2(2), 141-152. https://doi.org/10.32571/ijct.469000
AMA Arıcı K, Gül Ö. Molecular structure of Zn (II) compound containing 8-hydroxyquinoline and 2-picoline ligands [I], theoretical HF and DFT studies [II]. Int. J. Chem. Technol. December 2018;2(2):141-152. doi:10.32571/ijct.469000
Chicago Arıcı, Kani, and Özkan Gül. “Molecular Structure of Zn (II) Compound Containing 8-Hydroxyquinoline and 2-Picoline Ligands [I], Theoretical HF and DFT Studies [II]”. International Journal of Chemistry and Technology 2, no. 2 (December 2018): 141-52. https://doi.org/10.32571/ijct.469000.
EndNote Arıcı K, Gül Ö (December 1, 2018) Molecular structure of Zn (II) compound containing 8-hydroxyquinoline and 2-picoline ligands [I], theoretical HF and DFT studies [II]. International Journal of Chemistry and Technology 2 2 141–152.
IEEE K. Arıcı and Ö. Gül, “Molecular structure of Zn (II) compound containing 8-hydroxyquinoline and 2-picoline ligands [I], theoretical HF and DFT studies [II]”, Int. J. Chem. Technol., vol. 2, no. 2, pp. 141–152, 2018, doi: 10.32571/ijct.469000.
ISNAD Arıcı, Kani - Gül, Özkan. “Molecular Structure of Zn (II) Compound Containing 8-Hydroxyquinoline and 2-Picoline Ligands [I], Theoretical HF and DFT Studies [II]”. International Journal of Chemistry and Technology 2/2 (December 2018), 141-152. https://doi.org/10.32571/ijct.469000.
JAMA Arıcı K, Gül Ö. Molecular structure of Zn (II) compound containing 8-hydroxyquinoline and 2-picoline ligands [I], theoretical HF and DFT studies [II]. Int. J. Chem. Technol. 2018;2:141–152.
MLA Arıcı, Kani and Özkan Gül. “Molecular Structure of Zn (II) Compound Containing 8-Hydroxyquinoline and 2-Picoline Ligands [I], Theoretical HF and DFT Studies [II]”. International Journal of Chemistry and Technology, vol. 2, no. 2, 2018, pp. 141-52, doi:10.32571/ijct.469000.
Vancouver Arıcı K, Gül Ö. Molecular structure of Zn (II) compound containing 8-hydroxyquinoline and 2-picoline ligands [I], theoretical HF and DFT studies [II]. Int. J. Chem. Technol. 2018;2(2):141-52.