Research Article
BibTex RIS Cite

Modeling of the n-octanol/water partition coefficient of a series of PAHs: QSPR model

Year 2024, Volume: 8 Issue: 2, 121 - 127
https://doi.org/10.32571/ijct.1321749

Abstract

A simple linear model was used to investigate the correlation between the n-octanol/water partition coefficient (kow) of non-substituted fused polycyclic aromatic hydrocarbons (PAHs). Among (74) 3D-geometrically tested descriptors calculated using the Dragon software, volume V turned out to be the best descriptor to model the considered endpoint (with a squared correlation coefficient (R2) of 0.9844 and a standard error of estimation (s) of 0.132 log units). The correlation coefficient cross-validation (Q2) between experimental and predicted log kow for training and test sets was 0.9811 (for training set) and 0.9828 (for test set), respectively.
The reliability of the proposed model was further illustrated using various evaluation techniques: leave-5-out cross-validation, bootstrap, randomization tests, and validation through the test set.

References

  • 1. Touhami, I.; Messadi, D. Enrgy Proced. 2019, 157, 522–532.
  • 2. Xu, H.Y.; Zhang, J.Y.; Zou, J.W.; Chen, X.S. J. Mol. Graph. Model. 2008, 26 (7), 1076-1081.
  • 3. Touhami, I.; Haddag, H.; Didi, M.; Messadi D. Chromatographia. 2016, 79, 1023–1032.
  • 4. Amiri, R.; Messadi, D.; Bouakkadia, A.; lourici, L. Egypt.J.Chem. 2019, 62(9), 1563-1574.
  • 5. Katritzky, A.R.; Kuanar, M.; Slavov, S.; Hall, C.D. Chem. Rev. 2010, 110 (10), 5714-5789.
  • 6. Li, W.R.; Song, G.B.; Ding G.H.; Gao, H. IOP Conf. Ser.: Earth Environ. Sci. 2020, 612(1), 012044.
  • 7. Amiri, R.; Messadi, D.; Bouakkadia, A. J. Serb. Chem. Soc.2020, 85(4), 467-480.
  • 8. Mannhold, R.; Van de Waterbeemd, H. J. Comput. Aid. Mol. Des. 2001, 15(4), 337-354.
  • 9. Mannhold, R.; Rekker, R.F. Perspect. Drug. Discov. 2000, 18(1), 1-18.
  • 10. Ziani, N. ; Amirat, K.; Messadi, D. Rev. Sci. Technol. Synthèses. 2014, 29, 51-58.
  • 11. Benfenati, E.; Gini, G.; Piclin, N.; Roncaglioni, A.; Vari, M.R. Chemosphere. 2003, 53(9), 1155-1164.
  • 12. Mannhold, R.; Petrauskas, A. QSAR. Comb. Sci. 2003, 22(4), 466-475.
  • 13. Klopman, G.; Li, J.K.; Wang, S.; Dimayuge, M. J. Chem. Inf. Comp. Sci. 1994, 34(4), 752-781.
  • 14. Netto, A.D.P.; Moreira, J.C.; Dias, A.E.X.O.; Arbilla. G.; Ferreira, L.F.V.; Oliveira, A.S.; Barek, J. Quim. Nova. 2000, 23(6), 765-773.
  • 15. Mackay, D.; Shiu, W.V.; Ma, K.C. Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, Vol.3, Lewis, London, 1998.
  • 16. HyperchemTM. Release 6.02 for windows. Molecular Modeling system, (2000). (http://www.hyper.com/).
  • 17. Todeschini, R.; Consonni, V.; Mauri, A.; Paven, M. (2005) DRAGON Software for the calculation of Molecular Descriptors version 5.3 for Windows, Talete s. r. l., Milano, Italy. (http://www.talete.mi.it/).
  • 18. Kennard, R.W.; Stone, L.A. Technometrics. 1996, 11(1), 137-148.
  • 19. Todeschini, R.; Ballabio, D.; Consonni, V.; Mauri, A. ; Paven, M. (2004) MobyDigs - version 1.1 - 2009 Copyright TALETE srl. (http://www.talete.mi.it/).
  • 20. Bouakkadia, A.; Driouche, Y.; Kertiou, N.; Messadi, D. Int. J. Saf. Secur. Eng. 2020, 10(3), 389-396.
  • 21. Driouche, Y.; Messadi, D. J. Serb. Chem. Soc. 2019, 84(4), 405-416.
  • 22. Didi, M.; Haddag, H.; Driouche, Y.; Messadi, D. Res. J. Pharm. Biol. Chem. Sci. 2017, 8(4):379-390.
  • 23. Bouakkadia, A.; Kertiou, N.; Amiri, R.; Driouche, Y.; Messadi, D. J. Serb. Chem. Soc. 2021, 86(7-8), 673–684.
  • 24. Eriksson, L.; Jaworska, J.; Worth, A.; Cronin, M.Mc.; Dowell, R.M.; Gramatica, P. Environ Health Persp. 2003, 111(10):1361-1375.
  • 25. Tropscha, A.; Gramatica, P.; Grombar, V.K. QSAR. Comb. Sci. 2003, 22(1), 69-77.
  • 26. Kubinyi, H.; Hamprecht, F.A.; Mietzner, T. J. Med. Chem. 1998, 41(14), 2553-2564.
  • 27. Golbraikh, A.; Tropsha, A. J. Mol. Graph. Model. 2002, 20(4), 269-276.
  • 28. Shen, M.; Béguin, C.; Golbraikh, A.; Stables, J.P.; Kohn, H.; Tropsha, A. J. Med. Chem. 2004, 47(9), 2356-2364.
  • 29. Weisberg, S. Applied Linear Regression, 3rd edition. John wiley and sons, Inc., Hoboken, New Jersey, 2005.
  • 30. Van de Waterbeemd, H.; Testa, B. The parametrization of lipophilicity and other structural properties in drug design. in: Testa B (Ed.) Advances in Drug Research, vol.16, Academic Press, New York, pp 85-225, 1987.
  • 31. Leahy, D.E. J. Pharm. Sci. 1986, 75(7), 629-636.
  • 32. Moriguchi, I.; Kanada, Y.; kawatsu, K. Chem. Pharm. Bull. 1976, 24(8), 1799-1806.
  • 33. Dadfar, E.; Shafiei, F.; Isfahani, T.M. Curr Comput Aided Drug Des. 2020, 16(3), 207-221.
  • 34. Mebarki, F.; Meneceur, S.; Abderrhmane Bouafia, A. Asian J. Research Chem. 2022, 15(6), 443-8.
Year 2024, Volume: 8 Issue: 2, 121 - 127
https://doi.org/10.32571/ijct.1321749

Abstract

References

  • 1. Touhami, I.; Messadi, D. Enrgy Proced. 2019, 157, 522–532.
  • 2. Xu, H.Y.; Zhang, J.Y.; Zou, J.W.; Chen, X.S. J. Mol. Graph. Model. 2008, 26 (7), 1076-1081.
  • 3. Touhami, I.; Haddag, H.; Didi, M.; Messadi D. Chromatographia. 2016, 79, 1023–1032.
  • 4. Amiri, R.; Messadi, D.; Bouakkadia, A.; lourici, L. Egypt.J.Chem. 2019, 62(9), 1563-1574.
  • 5. Katritzky, A.R.; Kuanar, M.; Slavov, S.; Hall, C.D. Chem. Rev. 2010, 110 (10), 5714-5789.
  • 6. Li, W.R.; Song, G.B.; Ding G.H.; Gao, H. IOP Conf. Ser.: Earth Environ. Sci. 2020, 612(1), 012044.
  • 7. Amiri, R.; Messadi, D.; Bouakkadia, A. J. Serb. Chem. Soc.2020, 85(4), 467-480.
  • 8. Mannhold, R.; Van de Waterbeemd, H. J. Comput. Aid. Mol. Des. 2001, 15(4), 337-354.
  • 9. Mannhold, R.; Rekker, R.F. Perspect. Drug. Discov. 2000, 18(1), 1-18.
  • 10. Ziani, N. ; Amirat, K.; Messadi, D. Rev. Sci. Technol. Synthèses. 2014, 29, 51-58.
  • 11. Benfenati, E.; Gini, G.; Piclin, N.; Roncaglioni, A.; Vari, M.R. Chemosphere. 2003, 53(9), 1155-1164.
  • 12. Mannhold, R.; Petrauskas, A. QSAR. Comb. Sci. 2003, 22(4), 466-475.
  • 13. Klopman, G.; Li, J.K.; Wang, S.; Dimayuge, M. J. Chem. Inf. Comp. Sci. 1994, 34(4), 752-781.
  • 14. Netto, A.D.P.; Moreira, J.C.; Dias, A.E.X.O.; Arbilla. G.; Ferreira, L.F.V.; Oliveira, A.S.; Barek, J. Quim. Nova. 2000, 23(6), 765-773.
  • 15. Mackay, D.; Shiu, W.V.; Ma, K.C. Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, Vol.3, Lewis, London, 1998.
  • 16. HyperchemTM. Release 6.02 for windows. Molecular Modeling system, (2000). (http://www.hyper.com/).
  • 17. Todeschini, R.; Consonni, V.; Mauri, A.; Paven, M. (2005) DRAGON Software for the calculation of Molecular Descriptors version 5.3 for Windows, Talete s. r. l., Milano, Italy. (http://www.talete.mi.it/).
  • 18. Kennard, R.W.; Stone, L.A. Technometrics. 1996, 11(1), 137-148.
  • 19. Todeschini, R.; Ballabio, D.; Consonni, V.; Mauri, A. ; Paven, M. (2004) MobyDigs - version 1.1 - 2009 Copyright TALETE srl. (http://www.talete.mi.it/).
  • 20. Bouakkadia, A.; Driouche, Y.; Kertiou, N.; Messadi, D. Int. J. Saf. Secur. Eng. 2020, 10(3), 389-396.
  • 21. Driouche, Y.; Messadi, D. J. Serb. Chem. Soc. 2019, 84(4), 405-416.
  • 22. Didi, M.; Haddag, H.; Driouche, Y.; Messadi, D. Res. J. Pharm. Biol. Chem. Sci. 2017, 8(4):379-390.
  • 23. Bouakkadia, A.; Kertiou, N.; Amiri, R.; Driouche, Y.; Messadi, D. J. Serb. Chem. Soc. 2021, 86(7-8), 673–684.
  • 24. Eriksson, L.; Jaworska, J.; Worth, A.; Cronin, M.Mc.; Dowell, R.M.; Gramatica, P. Environ Health Persp. 2003, 111(10):1361-1375.
  • 25. Tropscha, A.; Gramatica, P.; Grombar, V.K. QSAR. Comb. Sci. 2003, 22(1), 69-77.
  • 26. Kubinyi, H.; Hamprecht, F.A.; Mietzner, T. J. Med. Chem. 1998, 41(14), 2553-2564.
  • 27. Golbraikh, A.; Tropsha, A. J. Mol. Graph. Model. 2002, 20(4), 269-276.
  • 28. Shen, M.; Béguin, C.; Golbraikh, A.; Stables, J.P.; Kohn, H.; Tropsha, A. J. Med. Chem. 2004, 47(9), 2356-2364.
  • 29. Weisberg, S. Applied Linear Regression, 3rd edition. John wiley and sons, Inc., Hoboken, New Jersey, 2005.
  • 30. Van de Waterbeemd, H.; Testa, B. The parametrization of lipophilicity and other structural properties in drug design. in: Testa B (Ed.) Advances in Drug Research, vol.16, Academic Press, New York, pp 85-225, 1987.
  • 31. Leahy, D.E. J. Pharm. Sci. 1986, 75(7), 629-636.
  • 32. Moriguchi, I.; Kanada, Y.; kawatsu, K. Chem. Pharm. Bull. 1976, 24(8), 1799-1806.
  • 33. Dadfar, E.; Shafiei, F.; Isfahani, T.M. Curr Comput Aided Drug Des. 2020, 16(3), 207-221.
  • 34. Mebarki, F.; Meneceur, S.; Abderrhmane Bouafia, A. Asian J. Research Chem. 2022, 15(6), 443-8.
There are 34 citations in total.

Details

Primary Language English
Subjects Chemical Engineering (Other)
Journal Section Research Articles
Authors

Youssouf Drıouche 0000-0001-8024-407X

Hamza Haddag 0000-0002-8515-8397

Meriem Ferfar 0000-0002-2028-5213

Laid Bouchaala 0000-0001-8278-810X

Amel Bouakkadia 0009-0008-4021-1423

Amırı Rana 0000-0001-6348-7176

Nabil Bouarra 0000-0001-5438-8678

Samia Alem 0000-0003-3165-1415

Early Pub Date September 4, 2024
Publication Date
Published in Issue Year 2024 Volume: 8 Issue: 2

Cite

APA Drıouche, Y., Haddag, H., Ferfar, M., Bouchaala, L., et al. (2024). Modeling of the n-octanol/water partition coefficient of a series of PAHs: QSPR model. International Journal of Chemistry and Technology, 8(2), 121-127. https://doi.org/10.32571/ijct.1321749
AMA Drıouche Y, Haddag H, Ferfar M, Bouchaala L, Bouakkadia A, Rana A, Bouarra N, Alem S. Modeling of the n-octanol/water partition coefficient of a series of PAHs: QSPR model. Int. J. Chem. Technol. September 2024;8(2):121-127. doi:10.32571/ijct.1321749
Chicago Drıouche, Youssouf, Hamza Haddag, Meriem Ferfar, Laid Bouchaala, Amel Bouakkadia, Amırı Rana, Nabil Bouarra, and Samia Alem. “Modeling of the N-octanol/Water Partition Coefficient of a Series of PAHs: QSPR Model”. International Journal of Chemistry and Technology 8, no. 2 (September 2024): 121-27. https://doi.org/10.32571/ijct.1321749.
EndNote Drıouche Y, Haddag H, Ferfar M, Bouchaala L, Bouakkadia A, Rana A, Bouarra N, Alem S (September 1, 2024) Modeling of the n-octanol/water partition coefficient of a series of PAHs: QSPR model. International Journal of Chemistry and Technology 8 2 121–127.
IEEE Y. Drıouche, “Modeling of the n-octanol/water partition coefficient of a series of PAHs: QSPR model”, Int. J. Chem. Technol., vol. 8, no. 2, pp. 121–127, 2024, doi: 10.32571/ijct.1321749.
ISNAD Drıouche, Youssouf et al. “Modeling of the N-octanol/Water Partition Coefficient of a Series of PAHs: QSPR Model”. International Journal of Chemistry and Technology 8/2 (September 2024), 121-127. https://doi.org/10.32571/ijct.1321749.
JAMA Drıouche Y, Haddag H, Ferfar M, Bouchaala L, Bouakkadia A, Rana A, Bouarra N, Alem S. Modeling of the n-octanol/water partition coefficient of a series of PAHs: QSPR model. Int. J. Chem. Technol. 2024;8:121–127.
MLA Drıouche, Youssouf et al. “Modeling of the N-octanol/Water Partition Coefficient of a Series of PAHs: QSPR Model”. International Journal of Chemistry and Technology, vol. 8, no. 2, 2024, pp. 121-7, doi:10.32571/ijct.1321749.
Vancouver Drıouche Y, Haddag H, Ferfar M, Bouchaala L, Bouakkadia A, Rana A, Bouarra N, Alem S. Modeling of the n-octanol/water partition coefficient of a series of PAHs: QSPR model. Int. J. Chem. Technol. 2024;8(2):121-7.