Year 2024,
Volume: 8 Issue: 2, 200 - 207, 31.12.2024
Ayşe Türkhan
,
Menekse Sakir
,
Elif Duygu Kaya
Project Number
Project No. TBY0820A26
References
-
Koçak, ÇC.; Koçak S. Electroanalysis. 2020, 32 (2) 358–366.
-
Barveen, NR.; Wang, TJ.; Chang, YH.; Rajakumaran, R. Mater Sci Eng B. 2022, 282, 115753.
-
Saleh-Ahammad AJ.; Sarker S.; Aminur Rahman M.; Lee JJ. Electroanalysis. 2010, 22(6), 694–700.
-
Karim-Nezhad, G.; Moghaddam, MH.; Khorablou, Z.; Dorraji, PS.; J Electrochem Soc. 2017,164(6), B193.
-
Lee, BL.; Ong, HY.; Shi. CY.; Ong, CN. J Chromatogr B Biomed Sci Appl. 1993, 619(2), 259–266.
-
Suvina, V.; Kokulnathan, T.; Wang, TJ.; Balakrishna, RG. Microchim Acta. 2020,187(3),1-7.
-
Berno, E.; Pereira-Marcondes, DF.; Ricci Gamalero, S.; Eandi, M. Ecotoxicol Environ Saf. 2004,n57 (2), 118–122.
-
Chandran, M.; Aswathy, E.; Shamna, I.; Vinoba, M.; Kottappara, R.; Bhagiyalakshmi, M. Mater Today Proc.2021, 46, 3136–3143.
-
Qu, J.; Lou, T.; Wang, Y.; Dong, Y.; Xing, H. Anal Lett. 2015, 48(12), 1842–1853.
-
Petrásková, L.; Káňová, K.; Brodsky, K. Int J Mol Sci. 2022, 23(10), 5743.
-
Wang, B.; Chen, Y.; Wu, Y.; Weng, B.; Liu, Y.; Lu, Z.; Li, CM.; Yu, C. Biosens Bioelectron. 2016, 8,23–30.
-
Lourenço, ELB.; Ferreira, A.; Pinto, E.; Yonamine, M.; Farsky, SHP. Chromatographia. 2006, 63(3–4), 175–179.
-
Unnikrishnan, B.; Ru, PL.; Chen, SM. Sensors Actuators B Chem. 2012, 169, 235–242.
-
Li, YX.; Sun, Y.; Baı, J.; Chen, SY.; Jia, X.; Huang, H.; Dong, J. Chinese J Anal Chem. 2023, 51(2), 100162.
-
Wang, H.; Wang, J.; Wang, J.; Zhu, R.; Shen, Y.; Xu, Q.; Hu, X. Sensors Actuators B Chem. 2017, 247, 146–154.
-
Gür, B.; Ayhan, ME.; Türkhan, A.; Gür, F.; Kaya, ED. Colloids Surfaces A Physicochem Eng Asp. 2019, 562, 179-185.
-
Liang, S.; Wu, XL.; Xiong, J.; Zong, MH.; Lou, WY. Coord Chem Rev. 2020, 406, 213149.
-
Zawistowskib, J.; Biliaderis, CG.; Eskin, NAM. 1991. Polyphenol oxidase. Oxidative Enzym foods. 1991, 217–273.
-
Martinez, MV.; Whitaker, JR. Trends Food Sci Technol. 1995, 6(6), 195–200.
-
Faccio, G.; Kruus, K.; Saloheimo, M.; Thöny-Meyer, L. Process Biochem. 2012, 47(12), 1749–1760.
-
Colak, A.; Özen, A.; Dincer, B.; Güner, S.; Ayaz, FA. Food Chem. 2005, 90(4), 801–807.
-
Han, E.; Yang, Y.; He, Z.; Cai, J.; Zhang, X.; Dong, X. Anal Biochem. 2015, 486, 102–106.
-
Harir, M.; Bellahcene, M.; Baratto, MC.; Pollini, S.; Rossolini, GM.; Trabalzini, L.; Fatarella, E.; Pogni, R. J Biotechnol. 2018, 265, 54–64.
-
Wu, L.; Yan, H.; Wang, J.; Liu, G.; Xie, W. J Electrochem Soc. 2019, 166(8), B562–B568.
-
Kazemi, SH.; Khajeh, K. J Iran Chem Soc. 2011, 8, 17–19.
-
An, J.; Li, G.; Zhang, Y.; Zhang, T.; Liu, X.; Gao, F.; Peng, M.; He, Y.; Fan, H. Catalysts. 2020, 10(3), 338.
-
Garnica-Romo, MG.; Romero-Arcos, M.; Martínez-Flores, HE. Mater Res Express. 2022, 9, 095005.
-
Gu, BX.; Xu, CX.; Zhu, GP.; Liu, SQ.; Chen, LY.; Li, XS. J Phys Chem B. 2009,113(1), 377–381.
-
Wu, L.; Deng, D.; Jin, J.; Lu, X.; Chen, J. Biosens Bioelectron. 2012, 35(1), 193–199.
-
Sakir, M.; Yilmaz, E.; Onses, MS. Microchem J. 2020, 154, 104628.
-
Sakir, M.; Pekdemir, S.; Karatay, A.; Küçüköz, B.; Ipekci, HH.; Elmali, A.; Demirel, G.; Onses, MS. ACS Appl Mater Interfaces. 2017, 9(45), 39795-39803
-
Espín, JC.; Morales M.; Varón, R.; Tudela, J.; García‐Cánovas, F. Journal of Food Science. 1996, 61(6), 1177–1182.
-
Galeazzi, MAM.; Sgarbieri, VC.; Constantinides, SM. J Food Sci. 1981, 46(1), 150–155.
-
Türkhan, A.; Faiz, O.; Kaya, ED.; Kocyiğit, A. Fresenius Environ Bull. 2018, 27, 4844–4856.
-
Hou, C.; Wang, Y.; Zhu, H.; Wei, H. Chem Eng J. 2016, 283, 397–403.
-
Kolcuoǧlu, Y. Process Biochem. 2012, 47(12), 2449–2454.
-
Arica, MY.; Bayramoǧlu, G.; Biçak, N. Process Biochem. 2004, 39(12), 2007–2017.
-
Yavaşer, R.; Aktaş-Uygun, D.; Karagözler AA. Catal Lett. 2023, 153(5), 1265-1277
-
Önal, A.; Sagirli, O. Spectrochim Acta A. 2009, 72(1), 68-71.
-
Pekdemir, S.; Torun, I.; Sakir, M.; Ruzi, M.; Rogers, JA.; Onses, MS. ACS nano. 2020, 14(7), 8276-8286.
-
Wang, F., Guo, C.; Liu, HZ.; Liu, CZ. J Chem Technol Biotechnol. 2008, 83(1), 97–104.
-
Denizli, A.; Yavuz, H.; Garipcan, B.; Arica, MY. J Appl Polym Sci. 2000, 76(2), 115–124.
-
Wang, Q.; Cui, J.; Li, G.; Zhang, J.; Huang, F.; Wei, Q. Polymers (Basel). 2014, 6(9), 2357–2370.
-
Gu, YJ.; Zhu, ML.; Li, YL.; Xiong, CH. Int J Biol Macromol. 2018, 112, 1175–1182.
-
John-Kennedy, L.; Selvi, PK.; Padmanabhan, A.; Hema, KN.; Sekaran, G. Chemosphere. 2007,69(2),262-270.
-
Abdollahi, K.; Yazdani, F.; Panahi, R. Int J Biol Macromol. 2017, 94, 396-405.
-
Amjad, R.; Mubeen, B.; Ali, SS.; Imam, SS.; Alshehri, S.; Ghoneim, MM, Alzarea, SI.; Rasool, R.; Ullah, I.; Nadeem, MS.; Kazmi, I. Polymers. 2021, 13(24), 4364.
-
Türkhan, A.; Kaya, ED.; Koçyiğit, A. Appl Biochem Biotech 2020, 192, 432-442.
-
Dinçer, A.; Becerik, S.; Aydemir, T. Int J Biol Macromol. 2012, 50(3), 815-820.
-
Almulaiky, YQ.; Almaghrabi, O. Catal Lett. 2022, 152(10), 3089-3099.
-
Yildiz, HB.; Kiralp, S.; Toppare, L.; Yagci, Y. Reac Funct Polym. 2005, 63(2), 155-161.
-
Camurlu, P.; Kayahan, SK.; Toppare, L. J Macromol Sci Part A Pure Appl Chem. 2008, 45(12), 1009–1014.
-
Uzunoğlu, SB.; Uzunoğlu, T.; Koçsuz, S. Cell Mol Biol 2021, 67(2), 50-55.
-
Zhao, C.; Sha, Y.; Zhuang, W.; Rao, Y.; Zhang, J.; Wu, J.; Shen, T.; Tan, Z.; Zhu, C.; Zhang, H.; Ying, H Process Biochem. 2023, 131, 144–153.
-
Eş, I.; Vieira, JDG.; Amaral, AC. Appl Microbial Biot. 2015, 99, 2065-2082.
-
Şahin, F.; Demirel, G.; Tümtürk, H. Int l J Biol Macromol. 2005, 37(3), 148-153.
-
Lai, YC.; Lin, SC. A Process Bioche. 2005, 40(3-4), 1167-1174.
-
Leboukh, S.; Gouzi, H.; Coradin, T.; Yahi H. J of Sol-Gel Sci Techn. 2018, 86, 675-681.
-
Arkan, E., Karami, C.; Rafipur, R. JBIC Journal of Biological Inorganic Chemistry. 2019, 24, 961-969.
-
Singh, S.; Jain, DVS.; Singla, ML. Sensor Actuat B-Chem. 2013, 182, 161-169.
-
Oriero, DA.; Gyan, IO.; Bolshaw, BW.; Cheng, IF.; Aston, DE. Microchem J. 2015, 118, 166-175.
-
Tembe, S.; Inamdar, S.; Haram, S.; Karve, M.; D'Souza, SF. J Biotechnol. 2007, 128(1), 80-85.
-
Pérez‐López, B.; Merkoçi, A. Adv Funct Mater. 2011, 21(2), 255-260
Immobilization of Tyrosinase on Cu Nanostructures Thin Film as a Potential Tool for Catechol Detection
Year 2024,
Volume: 8 Issue: 2, 200 - 207, 31.12.2024
Ayşe Türkhan
,
Menekse Sakir
,
Elif Duygu Kaya
Abstract
Catechol, a common environmental pollutant and a by-product of many industrial processes, poses a potential threat to the ecosystem and human health. Therefore, the accurate and sensitive detection of catechol is of paramount importance for a wide variety of scientific studies and industrial applications. Immobilized tyrosinase is a valuable tool for facilitating the development of potential phenolic detection applications. This study performed the immobilization of tyrosinase on Cu nanostructures thin film (tyrosinase/Cu NSs-TF) for catechol detection and investigated the optimum working conditions. The successful immobilization process was determined using Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The optimum pH and temperature for tyrosinase/Cu NSs-TF were 7.0 and 30°C, respectively. Concerning the reusability of tyrosinase/Cu NSs-TF, it retained over 73% of its activity after the first two replicates and 51.67% after the sixth replicate. When the storage stability of tyrosinase/Cu NSs-TF was investigated at 4°C, it was found that 52.42% of the initial activity was retained until the seventh day. A spectrophotometric method was used for catechol detection. Tyrosinase/Cu NSs-TF displayed a linear response to the concentrations of catechol in the range of 2-90 µM. The limit of detection (LOD) and limit of quantification (LOQ) were calculated to be 7.73 µM and 25.76 µM, respectively. A recovery study was performed with tap water spiked with catechol at concentrations of 30 µM, 60 µM, and 90 µM, yielding recovery rates of 104.44%, 99.58%, and 101.53%, respectively. The results show that tyrosinase/Cu NSs-TF may be a promising approach for catechol detection in water.
Project Number
Project No. TBY0820A26
Thanks
The authors would like to thank Iğdır University (BAP, Project No: TBY0820A26) for their financial support.
References
-
Koçak, ÇC.; Koçak S. Electroanalysis. 2020, 32 (2) 358–366.
-
Barveen, NR.; Wang, TJ.; Chang, YH.; Rajakumaran, R. Mater Sci Eng B. 2022, 282, 115753.
-
Saleh-Ahammad AJ.; Sarker S.; Aminur Rahman M.; Lee JJ. Electroanalysis. 2010, 22(6), 694–700.
-
Karim-Nezhad, G.; Moghaddam, MH.; Khorablou, Z.; Dorraji, PS.; J Electrochem Soc. 2017,164(6), B193.
-
Lee, BL.; Ong, HY.; Shi. CY.; Ong, CN. J Chromatogr B Biomed Sci Appl. 1993, 619(2), 259–266.
-
Suvina, V.; Kokulnathan, T.; Wang, TJ.; Balakrishna, RG. Microchim Acta. 2020,187(3),1-7.
-
Berno, E.; Pereira-Marcondes, DF.; Ricci Gamalero, S.; Eandi, M. Ecotoxicol Environ Saf. 2004,n57 (2), 118–122.
-
Chandran, M.; Aswathy, E.; Shamna, I.; Vinoba, M.; Kottappara, R.; Bhagiyalakshmi, M. Mater Today Proc.2021, 46, 3136–3143.
-
Qu, J.; Lou, T.; Wang, Y.; Dong, Y.; Xing, H. Anal Lett. 2015, 48(12), 1842–1853.
-
Petrásková, L.; Káňová, K.; Brodsky, K. Int J Mol Sci. 2022, 23(10), 5743.
-
Wang, B.; Chen, Y.; Wu, Y.; Weng, B.; Liu, Y.; Lu, Z.; Li, CM.; Yu, C. Biosens Bioelectron. 2016, 8,23–30.
-
Lourenço, ELB.; Ferreira, A.; Pinto, E.; Yonamine, M.; Farsky, SHP. Chromatographia. 2006, 63(3–4), 175–179.
-
Unnikrishnan, B.; Ru, PL.; Chen, SM. Sensors Actuators B Chem. 2012, 169, 235–242.
-
Li, YX.; Sun, Y.; Baı, J.; Chen, SY.; Jia, X.; Huang, H.; Dong, J. Chinese J Anal Chem. 2023, 51(2), 100162.
-
Wang, H.; Wang, J.; Wang, J.; Zhu, R.; Shen, Y.; Xu, Q.; Hu, X. Sensors Actuators B Chem. 2017, 247, 146–154.
-
Gür, B.; Ayhan, ME.; Türkhan, A.; Gür, F.; Kaya, ED. Colloids Surfaces A Physicochem Eng Asp. 2019, 562, 179-185.
-
Liang, S.; Wu, XL.; Xiong, J.; Zong, MH.; Lou, WY. Coord Chem Rev. 2020, 406, 213149.
-
Zawistowskib, J.; Biliaderis, CG.; Eskin, NAM. 1991. Polyphenol oxidase. Oxidative Enzym foods. 1991, 217–273.
-
Martinez, MV.; Whitaker, JR. Trends Food Sci Technol. 1995, 6(6), 195–200.
-
Faccio, G.; Kruus, K.; Saloheimo, M.; Thöny-Meyer, L. Process Biochem. 2012, 47(12), 1749–1760.
-
Colak, A.; Özen, A.; Dincer, B.; Güner, S.; Ayaz, FA. Food Chem. 2005, 90(4), 801–807.
-
Han, E.; Yang, Y.; He, Z.; Cai, J.; Zhang, X.; Dong, X. Anal Biochem. 2015, 486, 102–106.
-
Harir, M.; Bellahcene, M.; Baratto, MC.; Pollini, S.; Rossolini, GM.; Trabalzini, L.; Fatarella, E.; Pogni, R. J Biotechnol. 2018, 265, 54–64.
-
Wu, L.; Yan, H.; Wang, J.; Liu, G.; Xie, W. J Electrochem Soc. 2019, 166(8), B562–B568.
-
Kazemi, SH.; Khajeh, K. J Iran Chem Soc. 2011, 8, 17–19.
-
An, J.; Li, G.; Zhang, Y.; Zhang, T.; Liu, X.; Gao, F.; Peng, M.; He, Y.; Fan, H. Catalysts. 2020, 10(3), 338.
-
Garnica-Romo, MG.; Romero-Arcos, M.; Martínez-Flores, HE. Mater Res Express. 2022, 9, 095005.
-
Gu, BX.; Xu, CX.; Zhu, GP.; Liu, SQ.; Chen, LY.; Li, XS. J Phys Chem B. 2009,113(1), 377–381.
-
Wu, L.; Deng, D.; Jin, J.; Lu, X.; Chen, J. Biosens Bioelectron. 2012, 35(1), 193–199.
-
Sakir, M.; Yilmaz, E.; Onses, MS. Microchem J. 2020, 154, 104628.
-
Sakir, M.; Pekdemir, S.; Karatay, A.; Küçüköz, B.; Ipekci, HH.; Elmali, A.; Demirel, G.; Onses, MS. ACS Appl Mater Interfaces. 2017, 9(45), 39795-39803
-
Espín, JC.; Morales M.; Varón, R.; Tudela, J.; García‐Cánovas, F. Journal of Food Science. 1996, 61(6), 1177–1182.
-
Galeazzi, MAM.; Sgarbieri, VC.; Constantinides, SM. J Food Sci. 1981, 46(1), 150–155.
-
Türkhan, A.; Faiz, O.; Kaya, ED.; Kocyiğit, A. Fresenius Environ Bull. 2018, 27, 4844–4856.
-
Hou, C.; Wang, Y.; Zhu, H.; Wei, H. Chem Eng J. 2016, 283, 397–403.
-
Kolcuoǧlu, Y. Process Biochem. 2012, 47(12), 2449–2454.
-
Arica, MY.; Bayramoǧlu, G.; Biçak, N. Process Biochem. 2004, 39(12), 2007–2017.
-
Yavaşer, R.; Aktaş-Uygun, D.; Karagözler AA. Catal Lett. 2023, 153(5), 1265-1277
-
Önal, A.; Sagirli, O. Spectrochim Acta A. 2009, 72(1), 68-71.
-
Pekdemir, S.; Torun, I.; Sakir, M.; Ruzi, M.; Rogers, JA.; Onses, MS. ACS nano. 2020, 14(7), 8276-8286.
-
Wang, F., Guo, C.; Liu, HZ.; Liu, CZ. J Chem Technol Biotechnol. 2008, 83(1), 97–104.
-
Denizli, A.; Yavuz, H.; Garipcan, B.; Arica, MY. J Appl Polym Sci. 2000, 76(2), 115–124.
-
Wang, Q.; Cui, J.; Li, G.; Zhang, J.; Huang, F.; Wei, Q. Polymers (Basel). 2014, 6(9), 2357–2370.
-
Gu, YJ.; Zhu, ML.; Li, YL.; Xiong, CH. Int J Biol Macromol. 2018, 112, 1175–1182.
-
John-Kennedy, L.; Selvi, PK.; Padmanabhan, A.; Hema, KN.; Sekaran, G. Chemosphere. 2007,69(2),262-270.
-
Abdollahi, K.; Yazdani, F.; Panahi, R. Int J Biol Macromol. 2017, 94, 396-405.
-
Amjad, R.; Mubeen, B.; Ali, SS.; Imam, SS.; Alshehri, S.; Ghoneim, MM, Alzarea, SI.; Rasool, R.; Ullah, I.; Nadeem, MS.; Kazmi, I. Polymers. 2021, 13(24), 4364.
-
Türkhan, A.; Kaya, ED.; Koçyiğit, A. Appl Biochem Biotech 2020, 192, 432-442.
-
Dinçer, A.; Becerik, S.; Aydemir, T. Int J Biol Macromol. 2012, 50(3), 815-820.
-
Almulaiky, YQ.; Almaghrabi, O. Catal Lett. 2022, 152(10), 3089-3099.
-
Yildiz, HB.; Kiralp, S.; Toppare, L.; Yagci, Y. Reac Funct Polym. 2005, 63(2), 155-161.
-
Camurlu, P.; Kayahan, SK.; Toppare, L. J Macromol Sci Part A Pure Appl Chem. 2008, 45(12), 1009–1014.
-
Uzunoğlu, SB.; Uzunoğlu, T.; Koçsuz, S. Cell Mol Biol 2021, 67(2), 50-55.
-
Zhao, C.; Sha, Y.; Zhuang, W.; Rao, Y.; Zhang, J.; Wu, J.; Shen, T.; Tan, Z.; Zhu, C.; Zhang, H.; Ying, H Process Biochem. 2023, 131, 144–153.
-
Eş, I.; Vieira, JDG.; Amaral, AC. Appl Microbial Biot. 2015, 99, 2065-2082.
-
Şahin, F.; Demirel, G.; Tümtürk, H. Int l J Biol Macromol. 2005, 37(3), 148-153.
-
Lai, YC.; Lin, SC. A Process Bioche. 2005, 40(3-4), 1167-1174.
-
Leboukh, S.; Gouzi, H.; Coradin, T.; Yahi H. J of Sol-Gel Sci Techn. 2018, 86, 675-681.
-
Arkan, E., Karami, C.; Rafipur, R. JBIC Journal of Biological Inorganic Chemistry. 2019, 24, 961-969.
-
Singh, S.; Jain, DVS.; Singla, ML. Sensor Actuat B-Chem. 2013, 182, 161-169.
-
Oriero, DA.; Gyan, IO.; Bolshaw, BW.; Cheng, IF.; Aston, DE. Microchem J. 2015, 118, 166-175.
-
Tembe, S.; Inamdar, S.; Haram, S.; Karve, M.; D'Souza, SF. J Biotechnol. 2007, 128(1), 80-85.
-
Pérez‐López, B.; Merkoçi, A. Adv Funct Mater. 2011, 21(2), 255-260