Research Article
BibTex RIS Cite

Year 2025, Volume: 9 Issue: 1, 134 - 139, 24.06.2025
https://doi.org/10.32571/ijct.1661831

Abstract

References

  • 1. Xiao, B.; Li, Y.C.; Yu, X.F.; Cheng, J.B. Sens. Actuat. B-Chem. 2016, 235, 103.
  • 2. Chen, J.; Chen, K.; Tong D.; Huang, Y.; Zhang, J.; Xue, J. Chem. Commun. 2015, 51, 314.
  • 3. Lukatskaya, M.R.; Mashtalir, O.; Ren, C.E.; Dall'Agnese, Y.; Rozier, P.; Taberna, P.L. Science 2013, 341, 1502.
  • 4. Reunchan, P.; Jhi, S.H. Appl. Phys. Lett. 2011, 98, 093103.
  • 5. Tang, Q.; Zhou, Z.; Shen, P.W. J. Am. Chem. Soc. 2012, 134, 16909.
  • 6. Anasori, B.; Lukatskaya, M.R.; Gogotsi, Y. Nat. Rev. Mater. 2017, 2, 16098.
  • 7. Hu, Q.K.; Wang, H.Y.; Wu, Q.H.; Ye, X.T.; Zhou, A.G.; Sun, D.D. Int. J. Hydrogen Energy 2014, 39, 10606
  • 8. Hu, Q.K.; Sun, D.D.; Wu, Q.H.; Wang, H.Y.; Wang, L. B.; Liu, B.Z. J. Phys. Chem. A 2013, 117, 14253-14260.
  • 9. Ling, C.; Shi, L.; Ouyang, Y.; Chen, Q.; Wang, J. Adv. Sci. 2016, 3, 1600180.
  • 10. Guo, Z.; Miao, N.; Zhou, J.; Sa, B.; Sun, Z. J. Mater. Chem. C 2017, 5, 978.
  • 11. Yang, J.; Luo, X.; Zhang, S.; Chen, L. Phys. Chem. Chem. Phys. 2016, 18, 12914.
  • 12. Yang, J.; Zhou, X.; Luo X.; Zhang, S. Chen L. Appl. Phys. Lett. 2016, 109, 203109.
  • 13. Yang, J.; Luo, X.; Zhou, X.; Zhang, S.; Liu, J.; Xie, Y. Comput. Mater. Sci. 2017, 139, 313-319.
  • 14. Zhang, L.; Qu, X; Lu., S.; et al. Int J Hydrogen Energy 2022, 47, 4211e21.
  • 15. Hu, T.; Li, Z.; Hu, M.; Wang, J.; Hu, Q.; Li Q.; Wang, X. J. Phys. Chem. C 2017, 121, 19254–19261.
  • 16. Li, L. Comput. Mater. Sci. 2016, 124, 8–14.
  • 17. Anasori, B.; Lukatskaya, M.R.; Gogotsi, Y. Nat Rev Mater 2017, 2, 16098.
  • 18. Alhabeb, M.; Maleski, K.; Anasori, B.; et al. Chem Mater. 2017, 29, 7633e44.
  • 19. Hu, M.; Hu, T.; Li, Z., et al. ACS Nano 2018, 12, 3578e86.
  • 20. Kamysbayev, V.; Filatov, AS.; Hu, H.; Rui, X.; Lagunas, F.; Wang, D.; Klie, R.F.; Talapin, D.V. Science, 2020, 369, 979–983.
  • 21. Weng, H.; Ranjbar, A.; Liang, Y.; Song, Z.; Khazaei, M.; Yunoki, S.; Arai, M.; Kawazoe, Y.; Fang, Z.; Dai, X. Phys. Rev. B: Condens. Matter Mater. Phys., 2015, 92, 075436.
  • 22. Fashandi, H.; Ivady, V.; Eklund, P.; Spetz, A.L.; Katsnelson, M.I.; Abrikosov, I.A. Phys. Rev. B: Condens. Matter Mater. Phys., 2015, 92, 155142.
  • 23. Bai, Y.; Zhou, K.; Srikanth, N.; Pang, J.H.; He, X.; Wang, R. RSC Adv., 2016, 6, 35731–35739.
  • 24. Khazaei, M.; Ranjbar, A.; Arai, M.; Sasaki, T.; Yunoki, S. J. Mater. Chem. C, 2017, 5, 2488–2503. 25. Zha, XH.; Zhou, J.; Zhou, Y.; Huang, Q.; He, J.; Francisco, J.S.; Luo, K.; Du, S. Nanoscale, 2016, 8, 6110-6117.
  • 26. Eames, C.; Islam, M.S. J. Am. Chem. Soc., 2014, 136, 16270–16276.
  • 27. Zhang, J.; Jia, S.; Kholmanov, I.; Dong, L.; Er, D.; Chen, W.; Guo, H.; Jin, Z.; Shenoy, V.B.; Shi, L. ACS Nano, 2017, 11, 8192–8198.
  • 28. Bölen, E. Boron 2024, 9(3), 129 – 134.
  • 29. Zhu, J.; Chroneos, A.; Eppinger, J.; Schwingenschlögl, U. Appl. Mater. Today, 2016, 5, 19-24.
  • 30. Li, Y.M.; Guo, Y.L.; Jiao, Z.-Y. Curr. Appl. Phys., 2020, 20, 310–319.
  • 31. Anasori, B.; Xie, Y.; Beidaghi, M. ACS Nano 2015, 9, 9507.
  • 32. Hong, W.; Wyatt, B.C.; Nemani, S.K.; Anasori, B. MRS Bull 2020, 45, 850.
  • 33. Wang, H.; Jing, Z.; Liu, H., et al. Nanoscale 2020, 12, 24510.
  • 34. Özcan, S.; Biel, B. Chem. Chem. Phys. 2023, 25 (3), 1881–1888.
  • 35. Lu, A.Y.; Zhu, H.; Xiao, J.; Chuu, C.P.; Han, Y.; Chiu, M.H.; Cheng, C.C.; Yang, C.W.; Wei, K.H.; Yang, Y.; et al. Nat. Nanotechnol. 2017, 12, 744–749.
  • 36. Wang, Y.; Wei, W.; Huang, B.; Dai, Y. Phys. Chem. Chem. Phys. 2019, 21 (1), 70–76.
  • 37. He, J.; Lyu, P.; Sun, L.Z.; Garcia, A.M.; Nachtigall, P. J. Mater. Chem. C 2016, 4, 6500–6509.
  • 38. Liu, M.-Z.; Li, X.-H.; Cui, X.-H.; Zhang, R.-Z.; Cui, H.-L. Vacuum 2023, 215, 112373.
  • 39. Kresse, G.; Hafner, J. Phys Rev B, 1993, 47, 558–561.
  • 40. Kresse, G.; Hafner, J. Phys Rev B, 1994, 49, 14251–14269.
  • 41. Kresse, G.; Furthmüller, J. Comput Mater Sci 1996, 6, 15–50.
  • 42. Kresse, G.; Furthmüller, J. Phys Rev B 1996, 54, 11169–11186.
  • 43. Kresse, G.; Joubert, D. Phys Rev B 1999, 59, 1758–1775. 44. Blöchl, P.E. Phys Rev B 1994, 50, 17953–17979.
  • 45. Perdew, J.P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett., 1996, 77, 3865–3868.
  • 46. Perdew, J.P.; Zunger, A. Phys. Rev. B: Condens. Matter Mater. Phys., 1981, 23, 5048-5079.
  • 47. Monkhorst, H.; Pack, J. Phys. Rev. B: Solid State, 1976, 13, 5188-5192.
  • 48.Page, Y.L.; Saxe, P. Phys. Rev. B: Condens. Matter Mater. Phys., 2002, 65, 104104.
  • 49. Li, N.; Zeng, Z.; Zhang, Y.; Chen, X.; Kong, Z.; Arramel, Li Y.; Zhang, P.; Nguyen, B.S. ACS Omega 2021, 6, 23676−23682.
  • 50. Born, M. Proc. Cambridge Philos. Soc. 1940, 36, 160–172.
  • 51. Thoma, S.; Ajith, K.M.; Lee, S.; Valsakumar, M.C. RSC Adv. 2018, 8, 27283-27292.
  • 52. Wei, X.; Fragneaud, B.; Marianetti, C.A.; Kysar, J.W. Phys. Rev. B: Condens. Matter Mater. Phys., 2009, 80, 205407.
  • 53. Andrew, R.C.; Mapasha, R.E.; Ukpong, A.M.; Chetty, N. Phys. Rev. B: Condens. Matter Mater. Phys., 2012, 85, 125428.
  • 54. Çakır, D.; Peeters, F.M.; Sevik, C. Appl. Phys. Lett., 2014, 104, 203110.
  • 55. John, R.; Merlin, B. Theory Appl., 2016, 5, 43–55.
  • 56. Geng, J.; Rucheng, W.; Haoyun, B.; Iat-Neng, C.; Kar, W.N.; Weng, F.I.; Hui, P. International journal of hydrogen energy 2024, 7, 18725-18737.

Structural and Electronic Properties of Double Transition Metal Mo2MC2X (M = Mn, W; X = O2, S2, OS) MXenes

Year 2025, Volume: 9 Issue: 1, 134 - 139, 24.06.2025
https://doi.org/10.32571/ijct.1661831

Abstract

MXenes are gaining importance for their novel properties and interesting behaviors. In this study, based on the pseudopotential method and density functional theory, we present that the 35 feasible members of the Janus Mo2MC2X (M = Mn, W; X = O2, S2, OS) family with seven possible structural models (i) AA’, (ii) AB’, (iii) AC’, (iv) BB’, (v) BC’, (vi) CB’, (vii) CC’, are all stable. The calculation results of the structural and elastic properties (elastic constants, Poisson’s ratio, Young modulus, etc.) show that the Mo2MC2X is stronger than the other 2D monolayers such as graphene. The Mo2WC2S2 is a valuable candidate for flexible electronics and highly sensitive resonating mass sensors due to its very high Young’s modulus. The calculated electronic band structures of considered MXenes are metallic. Our findings are anticipated to encourage the development of MXene-based devices.

Thanks

TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources) is acknowledged for providing computational time and facilities.

References

  • 1. Xiao, B.; Li, Y.C.; Yu, X.F.; Cheng, J.B. Sens. Actuat. B-Chem. 2016, 235, 103.
  • 2. Chen, J.; Chen, K.; Tong D.; Huang, Y.; Zhang, J.; Xue, J. Chem. Commun. 2015, 51, 314.
  • 3. Lukatskaya, M.R.; Mashtalir, O.; Ren, C.E.; Dall'Agnese, Y.; Rozier, P.; Taberna, P.L. Science 2013, 341, 1502.
  • 4. Reunchan, P.; Jhi, S.H. Appl. Phys. Lett. 2011, 98, 093103.
  • 5. Tang, Q.; Zhou, Z.; Shen, P.W. J. Am. Chem. Soc. 2012, 134, 16909.
  • 6. Anasori, B.; Lukatskaya, M.R.; Gogotsi, Y. Nat. Rev. Mater. 2017, 2, 16098.
  • 7. Hu, Q.K.; Wang, H.Y.; Wu, Q.H.; Ye, X.T.; Zhou, A.G.; Sun, D.D. Int. J. Hydrogen Energy 2014, 39, 10606
  • 8. Hu, Q.K.; Sun, D.D.; Wu, Q.H.; Wang, H.Y.; Wang, L. B.; Liu, B.Z. J. Phys. Chem. A 2013, 117, 14253-14260.
  • 9. Ling, C.; Shi, L.; Ouyang, Y.; Chen, Q.; Wang, J. Adv. Sci. 2016, 3, 1600180.
  • 10. Guo, Z.; Miao, N.; Zhou, J.; Sa, B.; Sun, Z. J. Mater. Chem. C 2017, 5, 978.
  • 11. Yang, J.; Luo, X.; Zhang, S.; Chen, L. Phys. Chem. Chem. Phys. 2016, 18, 12914.
  • 12. Yang, J.; Zhou, X.; Luo X.; Zhang, S. Chen L. Appl. Phys. Lett. 2016, 109, 203109.
  • 13. Yang, J.; Luo, X.; Zhou, X.; Zhang, S.; Liu, J.; Xie, Y. Comput. Mater. Sci. 2017, 139, 313-319.
  • 14. Zhang, L.; Qu, X; Lu., S.; et al. Int J Hydrogen Energy 2022, 47, 4211e21.
  • 15. Hu, T.; Li, Z.; Hu, M.; Wang, J.; Hu, Q.; Li Q.; Wang, X. J. Phys. Chem. C 2017, 121, 19254–19261.
  • 16. Li, L. Comput. Mater. Sci. 2016, 124, 8–14.
  • 17. Anasori, B.; Lukatskaya, M.R.; Gogotsi, Y. Nat Rev Mater 2017, 2, 16098.
  • 18. Alhabeb, M.; Maleski, K.; Anasori, B.; et al. Chem Mater. 2017, 29, 7633e44.
  • 19. Hu, M.; Hu, T.; Li, Z., et al. ACS Nano 2018, 12, 3578e86.
  • 20. Kamysbayev, V.; Filatov, AS.; Hu, H.; Rui, X.; Lagunas, F.; Wang, D.; Klie, R.F.; Talapin, D.V. Science, 2020, 369, 979–983.
  • 21. Weng, H.; Ranjbar, A.; Liang, Y.; Song, Z.; Khazaei, M.; Yunoki, S.; Arai, M.; Kawazoe, Y.; Fang, Z.; Dai, X. Phys. Rev. B: Condens. Matter Mater. Phys., 2015, 92, 075436.
  • 22. Fashandi, H.; Ivady, V.; Eklund, P.; Spetz, A.L.; Katsnelson, M.I.; Abrikosov, I.A. Phys. Rev. B: Condens. Matter Mater. Phys., 2015, 92, 155142.
  • 23. Bai, Y.; Zhou, K.; Srikanth, N.; Pang, J.H.; He, X.; Wang, R. RSC Adv., 2016, 6, 35731–35739.
  • 24. Khazaei, M.; Ranjbar, A.; Arai, M.; Sasaki, T.; Yunoki, S. J. Mater. Chem. C, 2017, 5, 2488–2503. 25. Zha, XH.; Zhou, J.; Zhou, Y.; Huang, Q.; He, J.; Francisco, J.S.; Luo, K.; Du, S. Nanoscale, 2016, 8, 6110-6117.
  • 26. Eames, C.; Islam, M.S. J. Am. Chem. Soc., 2014, 136, 16270–16276.
  • 27. Zhang, J.; Jia, S.; Kholmanov, I.; Dong, L.; Er, D.; Chen, W.; Guo, H.; Jin, Z.; Shenoy, V.B.; Shi, L. ACS Nano, 2017, 11, 8192–8198.
  • 28. Bölen, E. Boron 2024, 9(3), 129 – 134.
  • 29. Zhu, J.; Chroneos, A.; Eppinger, J.; Schwingenschlögl, U. Appl. Mater. Today, 2016, 5, 19-24.
  • 30. Li, Y.M.; Guo, Y.L.; Jiao, Z.-Y. Curr. Appl. Phys., 2020, 20, 310–319.
  • 31. Anasori, B.; Xie, Y.; Beidaghi, M. ACS Nano 2015, 9, 9507.
  • 32. Hong, W.; Wyatt, B.C.; Nemani, S.K.; Anasori, B. MRS Bull 2020, 45, 850.
  • 33. Wang, H.; Jing, Z.; Liu, H., et al. Nanoscale 2020, 12, 24510.
  • 34. Özcan, S.; Biel, B. Chem. Chem. Phys. 2023, 25 (3), 1881–1888.
  • 35. Lu, A.Y.; Zhu, H.; Xiao, J.; Chuu, C.P.; Han, Y.; Chiu, M.H.; Cheng, C.C.; Yang, C.W.; Wei, K.H.; Yang, Y.; et al. Nat. Nanotechnol. 2017, 12, 744–749.
  • 36. Wang, Y.; Wei, W.; Huang, B.; Dai, Y. Phys. Chem. Chem. Phys. 2019, 21 (1), 70–76.
  • 37. He, J.; Lyu, P.; Sun, L.Z.; Garcia, A.M.; Nachtigall, P. J. Mater. Chem. C 2016, 4, 6500–6509.
  • 38. Liu, M.-Z.; Li, X.-H.; Cui, X.-H.; Zhang, R.-Z.; Cui, H.-L. Vacuum 2023, 215, 112373.
  • 39. Kresse, G.; Hafner, J. Phys Rev B, 1993, 47, 558–561.
  • 40. Kresse, G.; Hafner, J. Phys Rev B, 1994, 49, 14251–14269.
  • 41. Kresse, G.; Furthmüller, J. Comput Mater Sci 1996, 6, 15–50.
  • 42. Kresse, G.; Furthmüller, J. Phys Rev B 1996, 54, 11169–11186.
  • 43. Kresse, G.; Joubert, D. Phys Rev B 1999, 59, 1758–1775. 44. Blöchl, P.E. Phys Rev B 1994, 50, 17953–17979.
  • 45. Perdew, J.P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett., 1996, 77, 3865–3868.
  • 46. Perdew, J.P.; Zunger, A. Phys. Rev. B: Condens. Matter Mater. Phys., 1981, 23, 5048-5079.
  • 47. Monkhorst, H.; Pack, J. Phys. Rev. B: Solid State, 1976, 13, 5188-5192.
  • 48.Page, Y.L.; Saxe, P. Phys. Rev. B: Condens. Matter Mater. Phys., 2002, 65, 104104.
  • 49. Li, N.; Zeng, Z.; Zhang, Y.; Chen, X.; Kong, Z.; Arramel, Li Y.; Zhang, P.; Nguyen, B.S. ACS Omega 2021, 6, 23676−23682.
  • 50. Born, M. Proc. Cambridge Philos. Soc. 1940, 36, 160–172.
  • 51. Thoma, S.; Ajith, K.M.; Lee, S.; Valsakumar, M.C. RSC Adv. 2018, 8, 27283-27292.
  • 52. Wei, X.; Fragneaud, B.; Marianetti, C.A.; Kysar, J.W. Phys. Rev. B: Condens. Matter Mater. Phys., 2009, 80, 205407.
  • 53. Andrew, R.C.; Mapasha, R.E.; Ukpong, A.M.; Chetty, N. Phys. Rev. B: Condens. Matter Mater. Phys., 2012, 85, 125428.
  • 54. Çakır, D.; Peeters, F.M.; Sevik, C. Appl. Phys. Lett., 2014, 104, 203110.
  • 55. John, R.; Merlin, B. Theory Appl., 2016, 5, 43–55.
  • 56. Geng, J.; Rucheng, W.; Haoyun, B.; Iat-Neng, C.; Kar, W.N.; Weng, F.I.; Hui, P. International journal of hydrogen energy 2024, 7, 18725-18737.
There are 54 citations in total.

Details

Primary Language English
Subjects Classical Physics (Other)
Journal Section Research Articles
Authors

Sibel Özcan 0000-0001-8746-8412

Early Pub Date June 24, 2025
Publication Date June 24, 2025
Submission Date March 20, 2025
Acceptance Date June 12, 2025
Published in Issue Year 2025 Volume: 9 Issue: 1

Cite

APA Özcan, S. (2025). Structural and Electronic Properties of Double Transition Metal Mo2MC2X (M = Mn, W; X = O2, S2, OS) MXenes. International Journal of Chemistry and Technology, 9(1), 134-139. https://doi.org/10.32571/ijct.1661831
AMA Özcan S. Structural and Electronic Properties of Double Transition Metal Mo2MC2X (M = Mn, W; X = O2, S2, OS) MXenes. Int. J. Chem. Technol. June 2025;9(1):134-139. doi:10.32571/ijct.1661831
Chicago Özcan, Sibel. “Structural and Electronic Properties of Double Transition Metal Mo2MC2X (M = Mn, W; X = O2, S2, OS) MXenes”. International Journal of Chemistry and Technology 9, no. 1 (June 2025): 134-39. https://doi.org/10.32571/ijct.1661831.
EndNote Özcan S (June 1, 2025) Structural and Electronic Properties of Double Transition Metal Mo2MC2X (M = Mn, W; X = O2, S2, OS) MXenes. International Journal of Chemistry and Technology 9 1 134–139.
IEEE S. Özcan, “Structural and Electronic Properties of Double Transition Metal Mo2MC2X (M = Mn, W; X = O2, S2, OS) MXenes”, Int. J. Chem. Technol., vol. 9, no. 1, pp. 134–139, 2025, doi: 10.32571/ijct.1661831.
ISNAD Özcan, Sibel. “Structural and Electronic Properties of Double Transition Metal Mo2MC2X (M = Mn, W; X = O2, S2, OS) MXenes”. International Journal of Chemistry and Technology 9/1 (June2025), 134-139. https://doi.org/10.32571/ijct.1661831.
JAMA Özcan S. Structural and Electronic Properties of Double Transition Metal Mo2MC2X (M = Mn, W; X = O2, S2, OS) MXenes. Int. J. Chem. Technol. 2025;9:134–139.
MLA Özcan, Sibel. “Structural and Electronic Properties of Double Transition Metal Mo2MC2X (M = Mn, W; X = O2, S2, OS) MXenes”. International Journal of Chemistry and Technology, vol. 9, no. 1, 2025, pp. 134-9, doi:10.32571/ijct.1661831.
Vancouver Özcan S. Structural and Electronic Properties of Double Transition Metal Mo2MC2X (M = Mn, W; X = O2, S2, OS) MXenes. Int. J. Chem. Technol. 2025;9(1):134-9.