Research Article
BibTex RIS Cite

Year 2025, Volume: 9 Issue: 2, 262 - 271
https://doi.org/10.32571/ijct.1596871

Abstract

References

  • Akbas E., & Aslanoglu F. (2006). Syntheses of some new 1H-pyrazole, pyridazin-3(2H)-one, and oxazin-4-one derivatives. Heteroatom Chemistry,17 (1), 8-12. https://doi.org/ 10.1002/ hc.20170
  • Akbas E., Berber I., Sener A., Hasanov B. (2005). Synthesis and antibacterial activity of 4-benzoyl-1-methyl-5- phenyl-1H- pyrazole -3- carboxylic acid and derivatives. II. Farmaco 60, 23– 26. https://doi.org/10.1016/j.farmac.2004.09.003
  • Akbas E., Berber I. (2005). Antibacterial and antifungal activities of new pyrazolo[3,4-d]pyridazin derivatives. European Journal of Medicinal Chemistry,40,401-405. https://doi.org/ 10.1016/j. ejmech. 2004.12.001
  • Akbas E., Ruzgar A., Sahin E., Levent A. (2025). Metal–Organic Framework MIL-101 as an Efficient Heterogeneous Catalyst for Clean Synthesis of Benzothiazoles and Single Crystal X-ray Diffraction, Quantum Chemical Studies, Electrochemical Performance, Molecular Docking and DNA Interactions. Chemistry Select, 10, 1-12. https:// doi. org/ 10.1002/slct. 202405888
  • Akbas, E., Levent, A., Gumus, S., Sumer, M. R., Akyazi, I. (2010). Synthesis of Some Novel Pyrimidine Derivatives and Investigation of their Electrochemical Behavior. Bulletin of the Korean Chemical Society, 31, 3632. https:// doi.org/ 10.5012/BKCS.2010.31.12.3632
  • Akbas, E., Akbas, B. C. Investigation of the adsorption of dacarbazine (DTIC), which is used as an anticancer drug, on graphene oxide by DFT calculation method. (2023). International Journal of Chemistry and Technology, 7(2), 197. http://dx.doi.org/10.32571/ijct.1272379
  • Ansari A., Ali A., Asif M., Shamsuzzaman. (2017). Review: biologically active pyrazole derivatives. New Journal of Chemistry, 41, 16–41. https:// doi.org/ 10.1039/C6NJ03181A
  • Bai J., Zhong X., Jiang S., Huang Y., Duan X. (2010). Graphene nanomesh. Nature Nanotechnology, 5(3), 190–194. https://doi.org/ 10.1038/NNANO. 2010.8
  • Becke A, D. (1993). Density‐ functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98, 5648–5652. https://doi.org/10.1063/1.464913
  • Burschka J., Kessler F., Nazeeruddin M. K., and Gratzel M. (2013). Co(III) Complexes as p-Dopants in Solid-State Dye-Sensitized Solar Cells. Chemistry of Materials, 25, 2986–2990. https:// doi.org/ 10.1021/cm400796u
  • Bratenko M. K., Chornous V. A., Panimarchuk O. I., Vovk M. V., Burdenyuk I. P. (2001). Synthesis and antimicrobial activity of N-benzyl-N-(4-pyrazolylmethyl)-benzenesulfamides. Pharma Chemistry, 35, 26–28. https://link.springer.com/ article/10.1007/s11094-006-0163-y
  • Eftekhari-Sis B., Zirak M., and Akbari A. (2013). Arylglyoxals in Synthesis of Heterocyclic Compounds. Chemistry Review, 113, 2958 –3043. https: // doi.org/ 10.1021/ cr300176g
  • El-Feky S. A. H., Abd El-Samii Z. K., Osman N. A., Lashine J., Kamel M. A., and Thabet H. K. (2015). Synthesis, molecular docking and anti-inflammatory screening of novel quinoline incorporated pyrazole derivatives using the Pfitzinger reaction II. Bioorganic Chemistry, 58, 104–116. https://doi.org/ 10.1016/j.bioorg. 2014. 12. 003
  • Fedotova А. K., Prischepa S. L., Fedotova J., et al. (2020). Effect of cobalt particle deposition on quantum corrections to Drude conductivity in twisted CVD grapheme. Physica E: Low-dimensional Systems and Nanostructures, 117, 113790. https:// doi.org/10.3897/ j.moem.5.4. 52068
  • Friedrich G., Rose T., Rissler K. J. (2002). Determination of lonazolac and its hydroxy and O-sulfated metabolites by on-line sample preparation liquid chromatography with fluorescence detection. Chromatography B., 766, 295–305. https:// doi.org/ 10.1016/s0378-4347 (01) 00514-x
  • Frisch, M. J., et al. (2009). Gaussian 09 (Revision D.01) [Computer software]. Gaussian Inc.e
  • Fu H., and Yao J. (2001). Size Effects on the Optical Properties of Organic Nanoparticles. Journal of the American Chemical Society, 123, 1434–1439. https: //doi.org/10.1021/ja0026298
  • Gordon E. M., Barrett R. W., Dower W. J., Fodor S. P. A., Gallop M. A. (1994). Applications of Combinatorial Technologies to Drug Discovery. 1. Background and Peptide Combinatorial Libraries. Journal of Medicinal Chemistry, 37, 1385–1401. https://doi.org/10.1021/ jm 00035 a 001
  • Hampp C., Hartzema A.G., Kauf T.L. (2008). Cost-Utility Analysis of Rimonabant in the Treatment of Obesity. Value Health, 11, 389–399. https:// doi.org/10.1111/j.1524-4733.2007.00281.x
  • Hoseini-Ghahfarokhi M., Mirkiani S., Mozaffari N., Abdolahi Sadatlu M.A., Ghasemi A., Abbaspour S., Akbarian M., Farjadian F., Karimi M. (2020). Applications of Graphene and Graphene Oxide in Smart Drug/Gene Delivery: Is the World Still Flat?. International Journal of Nanomedicine, 15, 9469–9496. https://doi.org/10.2147/ IJN. S 265876
  • Issa, R. M., Awad, M. K., Atlam, F. M. (2008). Study of the inhibition of the corrosion of copper and zinc in HNO3 solution by electrochemical technique and quantum chemical calculations. Applied Surface Science, 255, 2433. https:// doi.org/ 10.1016/j.arabjc.2009.12.009
  • Janak J. F. (1978). Proof that 𝜕𝐸𝜕𝑛𝑖=𝜀 in density-functional theory. Physica Review, 18 (12), 7165-7168.52. https://doi.org/ 10.1103/Phys Rev B. 18.7165
  • Jiang J.H., Pi J., Jin H., Cai J. Y. (2018). Advances in Lung Cancer Treatment Using Nanomedicines. Arti Cells Nanomed Biotechnol, 46(3), 297–307. https://doi.org/10.1021/acsomega.2c04078
  • Ju Y., and Varma R. S. (2006). Aqueous N-Heterocyclization of Primary Amines and Hydrazines with Dihalides:  Microwave-Assisted Syntheses of N-Azacycloalkanes, Isoindole, Pyrazole, Pyrazolidine, and Phthalazine Derivatives. Journal of Organic Chemistry, 71, 135–141. https://doi.org/10.1021/jo051878h
  • Khalil S. M. E. (2003). Synthesis, Spectroscopic and Magnetic Studies on Metal Complexes of 5-Methyl-3-(2-Hydroxyphenyl)Pyrazole. Journal of Coordination Chemistry, 56, 1013–1024. https:// doi.org/10.1080/0095897031000135289
  • Kiyani H., Albooyeh F., and Fallahnezhad S. (2015). Synthesis of new pyrazolyl-1,3-diazabicyclo[3.1.0]hexe-3-ene derivatives. Journal of Molecular Structure, 1091, 163–169. https:// doi.org/10.1016/j.molstruc.2015.02.069
  • Kishore N., Nagarajan V., Chandiramouli R. (2017). Exploring the Structural Stability and Electronic Properties of VS2 Nanostructures – a DFT Study. Journal of Nano- and Electronic Physics, 9,3,03008(4pp). https://doi.org/ 10.21272/jnep. 9 (3). 03008
  • Koopman T. (1934). Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica, 1(1-6), 104-113. https://doi.org/10.1016/S0031-8914(34)90011-2
  • Krishnamoorthy K., Kim G.S., Kim S.J. (2013). Graphene nanosheets: Ultrasound assisted synthesis and characterization. Ultrasonics Sonochem, 20, 644–649. https://doi.org/10.1016/ j. ultsonch. 2012.09.007
  • Leeson P. D., and Springthorpe B. (2007). The influence of drug-like concepts on decision-making in medicinal chemistry. Nature Reviews Drug Discovery, 6, 881–890. https://doi.org/ 10. 1038/ nrd2445
  • Li Z., Fan J., Tong C., et al. (2019). A Smart Drug-Delivery Nanosystem Based on Carboxylated Graphene Quantum Dots for Tumor-Targeted Chemotherapy. Nanomedicine, 14(15), 2011–2025. https:// doi.org/10.2217/nnm-2018-0378
  • Li X., He L., Chen H., Wu W., and Jiang H. (2013). Copper-Catalyzed Aerobic C(sp2)–H Functionalization for C–N Bond Formation: Synthesis of Pyrazoles and Indazoles. Journal of Organic Chemistry, 78, 3636–3646. https:// doi. org/ 10.1021/jo400162d
  • Liu Z., Robinson J.T., Sun X., Dai H. (2008). PEGylated Nanographene Oxide for Delivery of Water-Insoluble Cancer Drugs. Journal of the American Chemical Society, 130(33), 10876–10877. https://doi.org/10.1021/ja803688x
  • Luttinger D., Hlasta D.J. (1987). Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Annual Reports in Medicinal Chemistry, 21– 30. https:// doi. org / 10.3390/ molecules23010134
  • Lv P.-C., Sun J., Luo Y., Yang Y., and Zhu H.-L. (2010). Bioorganic & Medicinal Chemistry Letters, 20, 4657–4660. 10.1016/ j.bmcl. 2010. 05.105
  • Mert S., Kasimogullari R., Ica T., Colak F., Altun A., and Ok S. (2014). Synthesis, structure–activity relationships, and in vitro antibacterial and antifungal activity evaluations of novel pyrazole carboxylic and dicarboxylic acid derivatives. European Journal of Medicinal Chemistry, 78, 86–96. https://doi.org/ 10.1016/j.ejmech. 2014. 03. 033
  • Mennucci B., Tomasi J., Cammi R., Cheeseman J. R. J., Frisch M. J., Devlin F. J., Gabriel S., Stephens P. (2002). Polarizable Continuum Model (PCM) Calculations of Solvent Effects on Optical Rotations of Chiral Molecules. The Journal of Physical Chemistry A, 106, 6102-6113. https:/ /doi.org/ 10.1021/jp020124t
  • Mouhat F., Coudert F. X., Bocquet L. M. (2020). Structure and chemistry of graphene oxide in liquid water from first principles. Nature Communications, 11(1),1566. https://doi.org/ 10. 1038 / s41467-020-15381-y
  • Mubarik A., Mahmood S., Rasool N., Hashmi M. A., Ammar M., Mutahir S., Ghulam Ali K., Bilal M., Akhtar M. N., Ashraf G. A. (2022). Computational Study of Benzothiazole Derivatives for Conformational, Thermodynamic and Spectroscopic Features and Their Potential to Act as Antibacterials. Crystals, 12, 912. https ://doi. org/ 10.3390/cryst12070912
  • O'Boyle N. M., Tenderholt A. L., Langner K. M. (2008). cclib: A library for package-independent computational chemistry algorithms. Journal of Computational Chemistry, 29, 839-845. https: // doi. org/10.1002/jcc.20823
  • Perdew J. P., Wang Y. (1992). Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B, 45, 13244–13249. https://doi.org/ 10.1103/Phys Rev B. 45.13244
  • Sánchez-González A., A. G. Bandeira N., Ortiz de Luzuriaga I., F. Martins F., Elleuchi S., Jarraya K., Lanuza J., Lopez X., José Calhorda M., Gil A. (2021). New Insights on the Interaction of Phenanthroline Based Ligands and Metal Complexes and Polyoxometalates with Duplex DNA and G-Quadruplexes. Molecules, 26, 4737. https://doi.org/10.3390/molecules26164737
  • Simos T. E., Tsitouras C., Kovalnogov V. N., Fedorov R. V. Generalov D. A. (2021). Real-Time Estimation of R0 for COVID-19 Spread. Mathematics (Basel), 9, 664. https://doi.org/ 10. 3390/math9060664
  • Sönmez M., Berber I., Akbas E. (2006). Synthesis, antibacterial and antifungal activity of some new pyridazinone metal complexes. European Journal of Medicinal Chemistry, 41, 101–105. https://doi.org/10.1016/j.ejmech.2005.10.003
  • Spitz I., Novis B., Ebert R., Trestian S., LeRoith D., Creutzfeld W. (1982). Betazole-induced GIP secretion is not mediated by gastric HCl. Metabolism, 31, 380–382. https://doi.org/ 10. 1016 /0026-0495(82)90114-7
  • Steinbach G., Lynch P.M., Robin K.S.P., Wallace M.H., Hawk E., Gordon G.B., Wakabayashi N., Saunders B., Shen Y., Fujimura T., Su L.-K., Levin A.B. (2000). The Effect of Celecoxib, a Cyclooxygenase-2 Inhibitor, in Familial Adenomatous Polyposis. The New England Journal Of Medicine, 342, 1946–1952. https://doi.org/10.1056/NEJM200006293422603
  • Şener A., Akbas E., Şener M.K. (2004). Synthesis and Some Reactions of 4-Benzoyl-5-Phenyl-1-Pyridin-2-yl-1H- Pyrazole-3-Carboxylic Acid. Turkish Journal of Chemistry, 28, 271-277. https://journals.tubitak.gov.tr/chem/vol28/iss3/2/
  • Tewari A. K., Mishra A. (2001). Synthesis and anti-inflammatory activities of N4,N5-disubstituted-3-methyl-1H-pyrazolo[3,4-c]pyridazines. Bio organic & Medicinal Chemistry, 9, 715–718. https://doi.org/10.1016/S0968-0896(00)00285-6
  • Tiwari J.N., Mahesh K., Le N.H., Timilsina K.C.K.R., Tiwari R.N., Kim K.S. (2013). Reduced graphene oxide-based hydrogels for the efficient capture of dye pollutants from aqueous solutions. Carbon, 56, 173–182. https://doi.org/ 10.1016/j.carbon.2013.01.001
  • Tu X., Hao W., Ye Q., Wang S., Jiang B., Li G., and Tu S. (2014). Four-Component Bicyclization Approaches to Skeletally Diverse Pyrazolo[3,4-b]pyridine DerivativesClick to copy article link. Journal of Organic Chemistry, 79, 11110–11118. https://doi.org/10.1021/jo502096t
  • Walsh C. T. (2015). Nature loves nitrogen heterocycles. Tetrahedron Letters, 56 (23), 3075– 3081. https ://doi.org/ 10.1016/j.tetlet.2014.11.046
  • Wang, H., Wang, X., Wang, H., Wang, L., Liu, A. (2007). DFT study of new bipyrazole derivatives and their potential activity as corrosion inhibitors. Journal of Molecular Modeling, 13, 147. https://doi.org/10.1007/s00894-006-0135-x
  • Valentini L., Bittolo Bon S., Giorgi G. (2020). Engineering Graphene Oxide/Water Interface from First Principles to Experiments for Electrostatic Protective Composites. Polymers (Basel), 12(7), 1596. https://doi.org/ 10. 3390 /polym12071596
  • Zárate- Zárate D., Aguilar R., Hernández-Benitez R. I., Labarrios E. M., Delgado F., Tamariz J. (2015). Synthesis of α-ketols by functionalization of captodative alkenes and divergent preparation of heterocycles and natural products. Tetrahedron, 71, 6961–6978. https://doi.org/ 10.1016/j.tet. 2015.07.010
  • Zhu J., Wei S., Gu H., Rapole S.B., Wang Q., Luo Z., Haldolaarachchige N., Young D.P., Guo Z. (2012). One-Pot Synthesis of Magnetic Graphene Nanocomposites Decorated with Core@Double-shell Nanoparticles for Fast Chromium Removal. Environmental Science & Technology, (2), 977–985. https://doi.org/ 10. 1021/ es2014133

Adsorption and Inhibition Mechanisms of Pyrazole Derivatives on Graphene Oxide Based on Theoretical Calculations

Year 2025, Volume: 9 Issue: 2, 262 - 271
https://doi.org/10.32571/ijct.1596871

Abstract

Nanomaterials are increasingly being applied across various industries, including food processing, cosmetics, gene technology, and smart medicine. Their role in enhancing medical diagnosis, treatment, and prevention strategies is particularly notable. Among these materials, Graphene Oxide (GO), a derivative of graphene, has gained significant attention due to its unique properties and potential applications in the medical field, particularly for drug delivery and imaging. Graphene Oxide (GO) is a form of graphene that has been oxidized, resulting in a nanoscale material with distinctive physicochemical properties, such as electric charge and a high surface area. These properties make it a promising candidate for use in medical applications. However, the biocompatibility of GO remains a crucial consideration for its clinical use. While it can interact with live cells, its toxicity is generally low, though it depends heavily on factors like dosage and administration method. To optimize GO for safe and effective medical use, it is essential to understand its interactions with drug molecules and biological structures. Computational modeling plays a key role in this process. In this study, Density Functional Theory (DFT) was employed to calculate the electrical characteristics of commercially available pyrazole derivatives and to analyze their adsorption behavior on a graphene oxide nanocage. This approach offers valuable molecular-level insights into how GO functions as a drug carrier, providing a foundation for its safe and effective application in medicine.

References

  • Akbas E., & Aslanoglu F. (2006). Syntheses of some new 1H-pyrazole, pyridazin-3(2H)-one, and oxazin-4-one derivatives. Heteroatom Chemistry,17 (1), 8-12. https://doi.org/ 10.1002/ hc.20170
  • Akbas E., Berber I., Sener A., Hasanov B. (2005). Synthesis and antibacterial activity of 4-benzoyl-1-methyl-5- phenyl-1H- pyrazole -3- carboxylic acid and derivatives. II. Farmaco 60, 23– 26. https://doi.org/10.1016/j.farmac.2004.09.003
  • Akbas E., Berber I. (2005). Antibacterial and antifungal activities of new pyrazolo[3,4-d]pyridazin derivatives. European Journal of Medicinal Chemistry,40,401-405. https://doi.org/ 10.1016/j. ejmech. 2004.12.001
  • Akbas E., Ruzgar A., Sahin E., Levent A. (2025). Metal–Organic Framework MIL-101 as an Efficient Heterogeneous Catalyst for Clean Synthesis of Benzothiazoles and Single Crystal X-ray Diffraction, Quantum Chemical Studies, Electrochemical Performance, Molecular Docking and DNA Interactions. Chemistry Select, 10, 1-12. https:// doi. org/ 10.1002/slct. 202405888
  • Akbas, E., Levent, A., Gumus, S., Sumer, M. R., Akyazi, I. (2010). Synthesis of Some Novel Pyrimidine Derivatives and Investigation of their Electrochemical Behavior. Bulletin of the Korean Chemical Society, 31, 3632. https:// doi.org/ 10.5012/BKCS.2010.31.12.3632
  • Akbas, E., Akbas, B. C. Investigation of the adsorption of dacarbazine (DTIC), which is used as an anticancer drug, on graphene oxide by DFT calculation method. (2023). International Journal of Chemistry and Technology, 7(2), 197. http://dx.doi.org/10.32571/ijct.1272379
  • Ansari A., Ali A., Asif M., Shamsuzzaman. (2017). Review: biologically active pyrazole derivatives. New Journal of Chemistry, 41, 16–41. https:// doi.org/ 10.1039/C6NJ03181A
  • Bai J., Zhong X., Jiang S., Huang Y., Duan X. (2010). Graphene nanomesh. Nature Nanotechnology, 5(3), 190–194. https://doi.org/ 10.1038/NNANO. 2010.8
  • Becke A, D. (1993). Density‐ functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98, 5648–5652. https://doi.org/10.1063/1.464913
  • Burschka J., Kessler F., Nazeeruddin M. K., and Gratzel M. (2013). Co(III) Complexes as p-Dopants in Solid-State Dye-Sensitized Solar Cells. Chemistry of Materials, 25, 2986–2990. https:// doi.org/ 10.1021/cm400796u
  • Bratenko M. K., Chornous V. A., Panimarchuk O. I., Vovk M. V., Burdenyuk I. P. (2001). Synthesis and antimicrobial activity of N-benzyl-N-(4-pyrazolylmethyl)-benzenesulfamides. Pharma Chemistry, 35, 26–28. https://link.springer.com/ article/10.1007/s11094-006-0163-y
  • Eftekhari-Sis B., Zirak M., and Akbari A. (2013). Arylglyoxals in Synthesis of Heterocyclic Compounds. Chemistry Review, 113, 2958 –3043. https: // doi.org/ 10.1021/ cr300176g
  • El-Feky S. A. H., Abd El-Samii Z. K., Osman N. A., Lashine J., Kamel M. A., and Thabet H. K. (2015). Synthesis, molecular docking and anti-inflammatory screening of novel quinoline incorporated pyrazole derivatives using the Pfitzinger reaction II. Bioorganic Chemistry, 58, 104–116. https://doi.org/ 10.1016/j.bioorg. 2014. 12. 003
  • Fedotova А. K., Prischepa S. L., Fedotova J., et al. (2020). Effect of cobalt particle deposition on quantum corrections to Drude conductivity in twisted CVD grapheme. Physica E: Low-dimensional Systems and Nanostructures, 117, 113790. https:// doi.org/10.3897/ j.moem.5.4. 52068
  • Friedrich G., Rose T., Rissler K. J. (2002). Determination of lonazolac and its hydroxy and O-sulfated metabolites by on-line sample preparation liquid chromatography with fluorescence detection. Chromatography B., 766, 295–305. https:// doi.org/ 10.1016/s0378-4347 (01) 00514-x
  • Frisch, M. J., et al. (2009). Gaussian 09 (Revision D.01) [Computer software]. Gaussian Inc.e
  • Fu H., and Yao J. (2001). Size Effects on the Optical Properties of Organic Nanoparticles. Journal of the American Chemical Society, 123, 1434–1439. https: //doi.org/10.1021/ja0026298
  • Gordon E. M., Barrett R. W., Dower W. J., Fodor S. P. A., Gallop M. A. (1994). Applications of Combinatorial Technologies to Drug Discovery. 1. Background and Peptide Combinatorial Libraries. Journal of Medicinal Chemistry, 37, 1385–1401. https://doi.org/10.1021/ jm 00035 a 001
  • Hampp C., Hartzema A.G., Kauf T.L. (2008). Cost-Utility Analysis of Rimonabant in the Treatment of Obesity. Value Health, 11, 389–399. https:// doi.org/10.1111/j.1524-4733.2007.00281.x
  • Hoseini-Ghahfarokhi M., Mirkiani S., Mozaffari N., Abdolahi Sadatlu M.A., Ghasemi A., Abbaspour S., Akbarian M., Farjadian F., Karimi M. (2020). Applications of Graphene and Graphene Oxide in Smart Drug/Gene Delivery: Is the World Still Flat?. International Journal of Nanomedicine, 15, 9469–9496. https://doi.org/10.2147/ IJN. S 265876
  • Issa, R. M., Awad, M. K., Atlam, F. M. (2008). Study of the inhibition of the corrosion of copper and zinc in HNO3 solution by electrochemical technique and quantum chemical calculations. Applied Surface Science, 255, 2433. https:// doi.org/ 10.1016/j.arabjc.2009.12.009
  • Janak J. F. (1978). Proof that 𝜕𝐸𝜕𝑛𝑖=𝜀 in density-functional theory. Physica Review, 18 (12), 7165-7168.52. https://doi.org/ 10.1103/Phys Rev B. 18.7165
  • Jiang J.H., Pi J., Jin H., Cai J. Y. (2018). Advances in Lung Cancer Treatment Using Nanomedicines. Arti Cells Nanomed Biotechnol, 46(3), 297–307. https://doi.org/10.1021/acsomega.2c04078
  • Ju Y., and Varma R. S. (2006). Aqueous N-Heterocyclization of Primary Amines and Hydrazines with Dihalides:  Microwave-Assisted Syntheses of N-Azacycloalkanes, Isoindole, Pyrazole, Pyrazolidine, and Phthalazine Derivatives. Journal of Organic Chemistry, 71, 135–141. https://doi.org/10.1021/jo051878h
  • Khalil S. M. E. (2003). Synthesis, Spectroscopic and Magnetic Studies on Metal Complexes of 5-Methyl-3-(2-Hydroxyphenyl)Pyrazole. Journal of Coordination Chemistry, 56, 1013–1024. https:// doi.org/10.1080/0095897031000135289
  • Kiyani H., Albooyeh F., and Fallahnezhad S. (2015). Synthesis of new pyrazolyl-1,3-diazabicyclo[3.1.0]hexe-3-ene derivatives. Journal of Molecular Structure, 1091, 163–169. https:// doi.org/10.1016/j.molstruc.2015.02.069
  • Kishore N., Nagarajan V., Chandiramouli R. (2017). Exploring the Structural Stability and Electronic Properties of VS2 Nanostructures – a DFT Study. Journal of Nano- and Electronic Physics, 9,3,03008(4pp). https://doi.org/ 10.21272/jnep. 9 (3). 03008
  • Koopman T. (1934). Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica, 1(1-6), 104-113. https://doi.org/10.1016/S0031-8914(34)90011-2
  • Krishnamoorthy K., Kim G.S., Kim S.J. (2013). Graphene nanosheets: Ultrasound assisted synthesis and characterization. Ultrasonics Sonochem, 20, 644–649. https://doi.org/10.1016/ j. ultsonch. 2012.09.007
  • Leeson P. D., and Springthorpe B. (2007). The influence of drug-like concepts on decision-making in medicinal chemistry. Nature Reviews Drug Discovery, 6, 881–890. https://doi.org/ 10. 1038/ nrd2445
  • Li Z., Fan J., Tong C., et al. (2019). A Smart Drug-Delivery Nanosystem Based on Carboxylated Graphene Quantum Dots for Tumor-Targeted Chemotherapy. Nanomedicine, 14(15), 2011–2025. https:// doi.org/10.2217/nnm-2018-0378
  • Li X., He L., Chen H., Wu W., and Jiang H. (2013). Copper-Catalyzed Aerobic C(sp2)–H Functionalization for C–N Bond Formation: Synthesis of Pyrazoles and Indazoles. Journal of Organic Chemistry, 78, 3636–3646. https:// doi. org/ 10.1021/jo400162d
  • Liu Z., Robinson J.T., Sun X., Dai H. (2008). PEGylated Nanographene Oxide for Delivery of Water-Insoluble Cancer Drugs. Journal of the American Chemical Society, 130(33), 10876–10877. https://doi.org/10.1021/ja803688x
  • Luttinger D., Hlasta D.J. (1987). Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Annual Reports in Medicinal Chemistry, 21– 30. https:// doi. org / 10.3390/ molecules23010134
  • Lv P.-C., Sun J., Luo Y., Yang Y., and Zhu H.-L. (2010). Bioorganic & Medicinal Chemistry Letters, 20, 4657–4660. 10.1016/ j.bmcl. 2010. 05.105
  • Mert S., Kasimogullari R., Ica T., Colak F., Altun A., and Ok S. (2014). Synthesis, structure–activity relationships, and in vitro antibacterial and antifungal activity evaluations of novel pyrazole carboxylic and dicarboxylic acid derivatives. European Journal of Medicinal Chemistry, 78, 86–96. https://doi.org/ 10.1016/j.ejmech. 2014. 03. 033
  • Mennucci B., Tomasi J., Cammi R., Cheeseman J. R. J., Frisch M. J., Devlin F. J., Gabriel S., Stephens P. (2002). Polarizable Continuum Model (PCM) Calculations of Solvent Effects on Optical Rotations of Chiral Molecules. The Journal of Physical Chemistry A, 106, 6102-6113. https:/ /doi.org/ 10.1021/jp020124t
  • Mouhat F., Coudert F. X., Bocquet L. M. (2020). Structure and chemistry of graphene oxide in liquid water from first principles. Nature Communications, 11(1),1566. https://doi.org/ 10. 1038 / s41467-020-15381-y
  • Mubarik A., Mahmood S., Rasool N., Hashmi M. A., Ammar M., Mutahir S., Ghulam Ali K., Bilal M., Akhtar M. N., Ashraf G. A. (2022). Computational Study of Benzothiazole Derivatives for Conformational, Thermodynamic and Spectroscopic Features and Their Potential to Act as Antibacterials. Crystals, 12, 912. https ://doi. org/ 10.3390/cryst12070912
  • O'Boyle N. M., Tenderholt A. L., Langner K. M. (2008). cclib: A library for package-independent computational chemistry algorithms. Journal of Computational Chemistry, 29, 839-845. https: // doi. org/10.1002/jcc.20823
  • Perdew J. P., Wang Y. (1992). Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B, 45, 13244–13249. https://doi.org/ 10.1103/Phys Rev B. 45.13244
  • Sánchez-González A., A. G. Bandeira N., Ortiz de Luzuriaga I., F. Martins F., Elleuchi S., Jarraya K., Lanuza J., Lopez X., José Calhorda M., Gil A. (2021). New Insights on the Interaction of Phenanthroline Based Ligands and Metal Complexes and Polyoxometalates with Duplex DNA and G-Quadruplexes. Molecules, 26, 4737. https://doi.org/10.3390/molecules26164737
  • Simos T. E., Tsitouras C., Kovalnogov V. N., Fedorov R. V. Generalov D. A. (2021). Real-Time Estimation of R0 for COVID-19 Spread. Mathematics (Basel), 9, 664. https://doi.org/ 10. 3390/math9060664
  • Sönmez M., Berber I., Akbas E. (2006). Synthesis, antibacterial and antifungal activity of some new pyridazinone metal complexes. European Journal of Medicinal Chemistry, 41, 101–105. https://doi.org/10.1016/j.ejmech.2005.10.003
  • Spitz I., Novis B., Ebert R., Trestian S., LeRoith D., Creutzfeld W. (1982). Betazole-induced GIP secretion is not mediated by gastric HCl. Metabolism, 31, 380–382. https://doi.org/ 10. 1016 /0026-0495(82)90114-7
  • Steinbach G., Lynch P.M., Robin K.S.P., Wallace M.H., Hawk E., Gordon G.B., Wakabayashi N., Saunders B., Shen Y., Fujimura T., Su L.-K., Levin A.B. (2000). The Effect of Celecoxib, a Cyclooxygenase-2 Inhibitor, in Familial Adenomatous Polyposis. The New England Journal Of Medicine, 342, 1946–1952. https://doi.org/10.1056/NEJM200006293422603
  • Şener A., Akbas E., Şener M.K. (2004). Synthesis and Some Reactions of 4-Benzoyl-5-Phenyl-1-Pyridin-2-yl-1H- Pyrazole-3-Carboxylic Acid. Turkish Journal of Chemistry, 28, 271-277. https://journals.tubitak.gov.tr/chem/vol28/iss3/2/
  • Tewari A. K., Mishra A. (2001). Synthesis and anti-inflammatory activities of N4,N5-disubstituted-3-methyl-1H-pyrazolo[3,4-c]pyridazines. Bio organic & Medicinal Chemistry, 9, 715–718. https://doi.org/10.1016/S0968-0896(00)00285-6
  • Tiwari J.N., Mahesh K., Le N.H., Timilsina K.C.K.R., Tiwari R.N., Kim K.S. (2013). Reduced graphene oxide-based hydrogels for the efficient capture of dye pollutants from aqueous solutions. Carbon, 56, 173–182. https://doi.org/ 10.1016/j.carbon.2013.01.001
  • Tu X., Hao W., Ye Q., Wang S., Jiang B., Li G., and Tu S. (2014). Four-Component Bicyclization Approaches to Skeletally Diverse Pyrazolo[3,4-b]pyridine DerivativesClick to copy article link. Journal of Organic Chemistry, 79, 11110–11118. https://doi.org/10.1021/jo502096t
  • Walsh C. T. (2015). Nature loves nitrogen heterocycles. Tetrahedron Letters, 56 (23), 3075– 3081. https ://doi.org/ 10.1016/j.tetlet.2014.11.046
  • Wang, H., Wang, X., Wang, H., Wang, L., Liu, A. (2007). DFT study of new bipyrazole derivatives and their potential activity as corrosion inhibitors. Journal of Molecular Modeling, 13, 147. https://doi.org/10.1007/s00894-006-0135-x
  • Valentini L., Bittolo Bon S., Giorgi G. (2020). Engineering Graphene Oxide/Water Interface from First Principles to Experiments for Electrostatic Protective Composites. Polymers (Basel), 12(7), 1596. https://doi.org/ 10. 3390 /polym12071596
  • Zárate- Zárate D., Aguilar R., Hernández-Benitez R. I., Labarrios E. M., Delgado F., Tamariz J. (2015). Synthesis of α-ketols by functionalization of captodative alkenes and divergent preparation of heterocycles and natural products. Tetrahedron, 71, 6961–6978. https://doi.org/ 10.1016/j.tet. 2015.07.010
  • Zhu J., Wei S., Gu H., Rapole S.B., Wang Q., Luo Z., Haldolaarachchige N., Young D.P., Guo Z. (2012). One-Pot Synthesis of Magnetic Graphene Nanocomposites Decorated with Core@Double-shell Nanoparticles for Fast Chromium Removal. Environmental Science & Technology, (2), 977–985. https://doi.org/ 10. 1021/ es2014133
There are 55 citations in total.

Details

Primary Language English
Subjects Chemical Engineering (Other)
Journal Section Research Article
Authors

Esvet Akbaş 0000-0001-6260-5556

Begüm Çağla Akbaş 0000-0002-1926-9873

Early Pub Date November 25, 2025
Publication Date November 27, 2025
Submission Date December 5, 2024
Acceptance Date October 20, 2025
Published in Issue Year 2025 Volume: 9 Issue: 2

Cite

APA Akbaş, E., & Akbaş, B. Ç. (2025). Adsorption and Inhibition Mechanisms of Pyrazole Derivatives on Graphene Oxide Based on Theoretical Calculations. International Journal of Chemistry and Technology, 9(2), 262-271. https://doi.org/10.32571/ijct.1596871
AMA Akbaş E, Akbaş BÇ. Adsorption and Inhibition Mechanisms of Pyrazole Derivatives on Graphene Oxide Based on Theoretical Calculations. Int. J. Chem. Technol. November 2025;9(2):262-271. doi:10.32571/ijct.1596871
Chicago Akbaş, Esvet, and Begüm Çağla Akbaş. “Adsorption and Inhibition Mechanisms of Pyrazole Derivatives on Graphene Oxide Based on Theoretical Calculations”. International Journal of Chemistry and Technology 9, no. 2 (November 2025): 262-71. https://doi.org/10.32571/ijct.1596871.
EndNote Akbaş E, Akbaş BÇ (November 1, 2025) Adsorption and Inhibition Mechanisms of Pyrazole Derivatives on Graphene Oxide Based on Theoretical Calculations. International Journal of Chemistry and Technology 9 2 262–271.
IEEE E. Akbaş and B. Ç. Akbaş, “Adsorption and Inhibition Mechanisms of Pyrazole Derivatives on Graphene Oxide Based on Theoretical Calculations”, Int. J. Chem. Technol., vol. 9, no. 2, pp. 262–271, 2025, doi: 10.32571/ijct.1596871.
ISNAD Akbaş, Esvet - Akbaş, Begüm Çağla. “Adsorption and Inhibition Mechanisms of Pyrazole Derivatives on Graphene Oxide Based on Theoretical Calculations”. International Journal of Chemistry and Technology 9/2 (November2025), 262-271. https://doi.org/10.32571/ijct.1596871.
JAMA Akbaş E, Akbaş BÇ. Adsorption and Inhibition Mechanisms of Pyrazole Derivatives on Graphene Oxide Based on Theoretical Calculations. Int. J. Chem. Technol. 2025;9:262–271.
MLA Akbaş, Esvet and Begüm Çağla Akbaş. “Adsorption and Inhibition Mechanisms of Pyrazole Derivatives on Graphene Oxide Based on Theoretical Calculations”. International Journal of Chemistry and Technology, vol. 9, no. 2, 2025, pp. 262-71, doi:10.32571/ijct.1596871.
Vancouver Akbaş E, Akbaş BÇ. Adsorption and Inhibition Mechanisms of Pyrazole Derivatives on Graphene Oxide Based on Theoretical Calculations. Int. J. Chem. Technol. 2025;9(2):262-71.