Year 2025,
Volume: 9 Issue: 2, 160 - 165
Hüsniye Aka Sağlıker
,
Mustafa Sevindik
,
Emine Serap Kızıl Aydemir
References
-
Akgül, H., Korkmaz, N., Dayangaç, A., & Sevindik, M. (2020). Antioxidant potential of endemic Salvia absconditiflora. Turkish Journal of Agriculture – Food Science and Technology, 8(10), 2222–2224.
https://doi.org/10.24925/turjaf.v8i10.2222-2224.3697
-
Akkaya, O. B., Çelik, İ. S., Ertaş, E., Çömlekçioğlu, N., & Aygan, A. (2024). In vitro antimicrobial, antioxidant activities and GC-MS profile of Sideritis libanotica subsp. kurdica. International Journal of Chemistry and Technology, 8(1), 73–82. https://doi.org/10.32571/ijct.1445857
-
Andersson, A. A. M., Merker, A., Nilsson, P., Sørensen, H., & Åman, P. (1999). Chemical composition of the potential new oilseed crops Barbarea vulgaris, Barbarea verna and Lepidium campestre. Journal of the Science of Food and Agriculture, 79(2), 179–186.
-
Baba, H., Sevindik, M., Doğan, M., & Akgül, H. (2020). Antioxidant, antimicrobial activities and heavy metal contents of some Myxomycetes. Fresenius Environmental Bulletin, 29(9), 7840–7846.
-
Başar, Y., Yenigün, S., Behçet, L., Ozen, T., & Demirtas, İ. (2024). Antibacterial and antioxidant molecule isolated from nepeta aristata Boiss Et Kotschy Ex Boiss plant: 1, 5, 9-Epideoxyloganic Acid. International Journal of Chemistry and Technology, 8(1), 27-31. https://doi.org/10.32571/ijct.1381998
-
Borchardt, J. R., Wyse, D. L., Sheaffer, C. C., Kauppi, K. L., Fulcher, R. G., Ehlke, N. J., Biesboer, D. D., & Bey, R. F. (2008). Antioxidant and antimicrobial activity of seed from plants of the Mississippi River Basin. Journal of Medicinal Plants Research, 2(4), 81–93.
-
Byrne, S. L., Erthmann, P. Ø., Agerbirk, N., Bak, S., Hauser, T. P., Nagy, I., Paina, C., & Asp, T. (2017). The genome sequence of Barbarea vulgaris facilitates the study of ecological biochemistry. Scientific Reports, 7, 40728. https://doi.org/10.1038/srep40728
-
Çolak, S., Çömlekçioğlu, N., Aygan, A., Kocabaş, Y. Z., & Çömlekçioğlu, U. (2025). Phytochemical properties and bioactive potential of various Astragalus spp. from Turkey. Food Bioscience, 64, 105901. https://doi.org/10.1016/j.fbio.2025.105901
-
Çömlekçioğlu, N., Aygan, A., Sevindik, M., & Çömlekçioğlu, U. (2024). Astragalus brachystachys DC.: biochemical composition, antioxidant, antimicrobial and anticholinesterase activities. Prospects in Pharmaceutical Sciences, 22(3), 62–68. https://doi.org/10.56782/pps.214
-
Ellman, G. L., Courtney, K. D., Andres, V., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88–95. https://doi.org/10.1016/0006-2952(61)90145-9
-
Erel, O. (2004). A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical Biochemistry, 37(4), 277–285. https://doi.org/10.1016/j.clinbiochem.2003.11.015
-
Erel, O. (2005). A new automated colorimetric method for measuring total oxidant status. Clinical Biochemistry, 38(12), 1103–1111. https://doi.org/10.1016/j.clinbiochem.2005.08.008
-
Ersoy, E., Boğa, M., Kaplan, A., Mataracı Kara, E., Eroğlu Özkan, E., & Demirci Kayıran, S. (2025). LC-HRMS profiling of phytochemicals with assessment of antioxidant, anticholinesterase, and antimicrobial potentials of Astragalus brachystachys DC. Chemistry & Biodiversity, 22(2), e202401853. https://doi.org/10.1002/cbdv.202401853
-
Gok, M., Basar, Y., Yenigun, S., Ipek, Y., Behcet, L., Ozen, T., & Demirtas, I. (2025). Bioactive Apigenin‐7‐O‐β‐Glucoside and Rosmarinic Acid Molecules From Two Nepeta Species: Bioactivity‐Guided Isolation, In Vitro Evaluations, Pharmacokinetic and In Silico Approaches as Metabolic Enzyme Inhibition Agents. Phytochemical Analysis. https://doi.org/10.1002/pca.3536
-
Günther, J., Erthmann, P. Ø., Khakimov, B., & Bak, S. (2022). The origin and evolution of oxime-based defenses in plants. Plant Physiology, 188(3), 1483–1495. https://doi.org/10.1093/plphys/kiab570
-
Gürgen, A., Sevindik, M., & Krupodorova, T., Uysal, İ., & Ünal, O. (2024). Biological activities of Hypericum spectabile extract optimized using artificial neural network combined with genetic algorithm application. BMC Biotechnology, 24(1), 83. https://doi.org/10.1186/s12896-024-00914-w
-
Gürgen, A., & Sevindik, M. (2022). Application of artificial neural network coupling multiobjective particle swarm optimization algorithm to optimize Pleurotus ostreatus extraction parameters. Journal of Food Processing and Preservation, 46(11), e16949. https://doi.org/10.1111/jfpp.16949
-
Hussain, M., Debnath, B., Qasim, M., Bamisile, B. S., Islam, W., Hameed, M. S., Wang, L., & Qiu, D. (2019). Role of saponins in plant defense: A review. Molecules, 24(11), 2067. https://doi.org/10.3390/molecules24112067
-
Khakimov, B., Kuzina, V., Erthmann, P. Ø., Fukushima, E. O., Augustin, J. M., Olsen, C. E., Scholtalbers, J., Volpin, H., Andersen, S. B., Hauser, T. P., Muranaka, T., & Bak, S. (2015). Identification and mapping of defense compounds in Barbarea vulgaris by NMR-based metabolomics. The Plant Journal, 84(3), 478–490. https://doi.org/10.1111/tpj.13021
-
Koçer, O. (2025). Biological activity potential of Thalictrum orientale: antioxidant, anticholinesterase and antiproliferative effects. Artvin Çoruh University Journal of Forestry Faculty, 26(1), 222–229.
-
Korkmaz, N., Mohammed, F. S., Uysal, İ., & Sevindik, M. (2023). Antioxidant, antimicrobial and anticholinesterase activity of Dittrichia graveolens. Prospects in Pharmaceutical Sciences, 21(4), 48–53. https://doi.org/10.56782/pps.169
-
Korkmaz, N., Koçer, O., Fathi, S., Uysal, İ., & Sevindik, M. (2024). Branched horsetail (Equisetum ramosissimum): some biological activities and total phenolic and flavonoid contents. Prospects in Pharmaceutical Sciences, 22(3), 69–75. https://doi.org/10.56782/pps.209
-
Liu, T. J., Zhang, Y. J., Agerbirk, N., Wang, H. P., Wei, X. C., Song, J. P., He, H. J., Zhao, X. Z., Zhang, X. H., & Li, X. X. (2019). BGC transcriptomic landscape underlying insect resistance in Barbarea vulgaris. BMC Genomics, 20, 371. https://doi.org/10.1186/s12864-019-5765-1
-
Mohammed, F. S., Uysal, İ., Sevindik, M., Çesko, C., & Koraqi, H. (2024). Chemical composition, biological activities, uses, nutritional and mineral contents of cumin (Cuminum cyminum). Measurement: Food, 14, 100157. https://doi.org/10.1016/j.meafoo.2024.100157
-
Mohammed, F. S., Uysal, İ., & Sevindik, M. (2023). A review on antiviral plants effective against different virus types. Prospects in Pharmaceutical Sciences, 21(2), 1–21.
-
Mohammed, F. S., Günal, S., Şabik, A. E., Akgül, H., & Sevindik, M. (2020). Antioxidant and antimicrobial activity of Scorzonera papposa collected from Iraq and Turkey. Kahramanmaraş Sütçü İmam University Journal of Agriculture and Nature, 23(5), 1114–1118. https://doi.org/10.18016/ksutarimdoga.vi.699457
-
Mohammed, F. S., Günal, S., Pehlivan, M., Doğan, M., Sevindik, M., & Akgül, H. (2020). Phenolic content, antioxidant and antimicrobial potential of endemic Ferulago platycarpa. Gazi University Journal of Science, 33(4), 670–677. https://doi.org/10.35378/gujs.707555
-
Senatore, F., D'Agostino, M., & Dini, I. (2000). Flavonoid glycosides of Barbarea vulgaris L. (Brassicaceae). Journal of Agricultural and Food Chemistry, 48(7), 2659–2662. https://doi.org/10.1021/jf990625k
-
Sevindik, M. (2021). Anticancer, antimicrobial, antioxidant and DNA-protective potential of mushroom Leucopaxillus gentianeus (Quél.) Kotl. Indian Journal of Experimental Biology, 59(5), 310–315. https://doi.org/10.56042/ijeb.v59i05.50501
-
Sevindik, M., Gürgen, A., Khassanov, V. T., & Bal, C. (2024). Biological activities of ethanol extracts of Hericium erinaceus obtained as a result of optimization analysis. Foods, 13(10), 1560. https://doi.org/10.3390/foods13101560
-
Sevindik, M., Mohammed, F. S., & Uysal, İ. (2023). Autism: plants with neuro-psychopharmacotherapeutic potential. Prospects in Pharmaceutical Sciences, 21(3), 38–48. https://doi.org/10.56782/pps.143
-
Sevindik, M., Krupodorova, T., & Ünal, O. (2025). Elaeagnus angustifolia L.: A comprehensive review on general properties, biological activities, and therapeutic potential. Applied Fruit Science, 67(2), Article 70. https://doi.org/10.1007/s10341-025-01294-x
-
Sevindik, M., Gürgen, A., Krupodorova, T., Uysal, İ., & Koçer, O. (2024). A hybrid artificial neural network and multi-objective genetic algorithm approach to optimize extraction conditions of Mentha longifolia and biological activities. Scientific Reports, 14, 31403. https://doi.org/10.1038/s41598-024-31403-0
-
Şabik, A. E., Sevindik, M., Mohammed, F. S., & Doğan, M. (2024). A new natural source against A549 lung cancer cells: Anthemis cotula and its biological activities and phenolic contents. Pharmaceutical Chemistry Journal, 58(1), 1–7. https://doi.org/10.1007/s11094-024-03098-5
-
Şahin, H., Demir, S., Boğa, M., Sarı, A., Makbul, S., & Gültepe, M. (2023). Comparative phytochemical and bioactivity studies on two related Scorzonera L. species: A chemotaxonomic contribution. Biochemical Systematics and Ecology, 111, 104743. https://doi.org/10.1016/j.bse.2023.104743
-
Turkmen, D., Dursun, A. H. M., Çalışkan, O., Köksal Kavrak, M., & Güler, Z. (2023). Bioactive constituents of important medicinal plants: antioxidant, antimicrobial and anticholinesterase activities. Journal of Agricultural Science and Technology, 25(5), 1089–1099. https://doi.org/10.22034/jast.25.5.1089
-
Uysal, İ., Koçer, O., Mohammed, F. S., Lekesiz, Ö., Doğan, M., Şabik, A. E., & Sevindik, M. (2023). Pharmacological and nutritional properties of the genus Salvia: A review. Advances in Pharmacology and Pharmacy, 11(2), 140–155. https://doi.org/10.13189/app.2023.110206
-
Ünal, O., Eraslan, E. C., Uysal, İ., Muhammed, F. S., Sevindik, M., & Akgül, H. (2022). Biological activities and phenolic contents of Rumex scutatus collected from Turkey. Fresenius Environmental Bulletin, 31(7), 7341–7346.
-
Ünal, O., Gürgen, A., Krupodorova, T., Sevindik, M., Kabaktepe, Ş., & Akata, I. (2025). Biological activities and phenolic contents of Muscari botryoides. BMC Complementary Medicine and Therapies,
-
Yazar, M., Sevindik, M., Polat, A. O., Koçer, O., Karatepe, H. K., & Uysal, İ. (2024). Luteolin: general properties, biosynthesis, pharmacological properties, biological activities and daily uses. Prospects in Pharmaceutical Sciences, 22(4), 146–154.
-
Yazar, M., Sevindik, M., Uysal, İ., & Polat, A. O. (2025). Effects of caffeic acid on human health: pharmacological and therapeutic effects, biological activity and toxicity. Pharmaceutical Chemistry Journal, 59(1), 49–55. https://doi.org/10.1007/s11094-025-03363-7
Antioxidant and Anticholinesterase Potential of Barbarea vulgaris
Year 2025,
Volume: 9 Issue: 2, 160 - 165
Hüsniye Aka Sağlıker
,
Mustafa Sevindik
,
Emine Serap Kızıl Aydemir
Abstract
Barbarea vulgaris is a wild plant belonging to the Brassicaceae family and attracts attention with its chemical structure rich in secondary metabolites. This study was carried out to evaluate the antioxidant and anticholinesterase activities of the aerial parts of B. vulgaris. Antioxidant capacity was determined by total antioxidant level (TAS), total oxidant level (TOS) and oxidative stress index (OSI) using Rel Assay diagnostic kits and was also supported by free radical scavenging (DPPH) and ferric reducing capacity (FRAP) methods. TAS value of the plant extract was measured as 7.317±0.081 mmol/L, TOS value as 13.524±0.070 µmol/L and OSI value as 0.185±0.001. In DPPH and FRAP tests, 82.377±1.646 mg TE/g and 112.547±1.370 mg TE/g values were reached, respectively. In cholinesterase enzyme inhibition evaluations, it was determined that B. vulgaris showed significant inhibition at 50.79±1.06 µg/mL for AChE and 73.07±2.00 µg/mL for BChE. Although the activity was lower when compared to positive control galantamine, it was found to be remarkable for a plant-derived extract. This anticholinesterase activity, reported for the first time in the literature, reveals that B. vulgaris may have not only antioxidant but also neuroprotective potential. The findings provide an important scientific basis for evaluating this plant among natural antioxidant and cholinesterase inhibitor sources.
References
-
Akgül, H., Korkmaz, N., Dayangaç, A., & Sevindik, M. (2020). Antioxidant potential of endemic Salvia absconditiflora. Turkish Journal of Agriculture – Food Science and Technology, 8(10), 2222–2224.
https://doi.org/10.24925/turjaf.v8i10.2222-2224.3697
-
Akkaya, O. B., Çelik, İ. S., Ertaş, E., Çömlekçioğlu, N., & Aygan, A. (2024). In vitro antimicrobial, antioxidant activities and GC-MS profile of Sideritis libanotica subsp. kurdica. International Journal of Chemistry and Technology, 8(1), 73–82. https://doi.org/10.32571/ijct.1445857
-
Andersson, A. A. M., Merker, A., Nilsson, P., Sørensen, H., & Åman, P. (1999). Chemical composition of the potential new oilseed crops Barbarea vulgaris, Barbarea verna and Lepidium campestre. Journal of the Science of Food and Agriculture, 79(2), 179–186.
-
Baba, H., Sevindik, M., Doğan, M., & Akgül, H. (2020). Antioxidant, antimicrobial activities and heavy metal contents of some Myxomycetes. Fresenius Environmental Bulletin, 29(9), 7840–7846.
-
Başar, Y., Yenigün, S., Behçet, L., Ozen, T., & Demirtas, İ. (2024). Antibacterial and antioxidant molecule isolated from nepeta aristata Boiss Et Kotschy Ex Boiss plant: 1, 5, 9-Epideoxyloganic Acid. International Journal of Chemistry and Technology, 8(1), 27-31. https://doi.org/10.32571/ijct.1381998
-
Borchardt, J. R., Wyse, D. L., Sheaffer, C. C., Kauppi, K. L., Fulcher, R. G., Ehlke, N. J., Biesboer, D. D., & Bey, R. F. (2008). Antioxidant and antimicrobial activity of seed from plants of the Mississippi River Basin. Journal of Medicinal Plants Research, 2(4), 81–93.
-
Byrne, S. L., Erthmann, P. Ø., Agerbirk, N., Bak, S., Hauser, T. P., Nagy, I., Paina, C., & Asp, T. (2017). The genome sequence of Barbarea vulgaris facilitates the study of ecological biochemistry. Scientific Reports, 7, 40728. https://doi.org/10.1038/srep40728
-
Çolak, S., Çömlekçioğlu, N., Aygan, A., Kocabaş, Y. Z., & Çömlekçioğlu, U. (2025). Phytochemical properties and bioactive potential of various Astragalus spp. from Turkey. Food Bioscience, 64, 105901. https://doi.org/10.1016/j.fbio.2025.105901
-
Çömlekçioğlu, N., Aygan, A., Sevindik, M., & Çömlekçioğlu, U. (2024). Astragalus brachystachys DC.: biochemical composition, antioxidant, antimicrobial and anticholinesterase activities. Prospects in Pharmaceutical Sciences, 22(3), 62–68. https://doi.org/10.56782/pps.214
-
Ellman, G. L., Courtney, K. D., Andres, V., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88–95. https://doi.org/10.1016/0006-2952(61)90145-9
-
Erel, O. (2004). A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical Biochemistry, 37(4), 277–285. https://doi.org/10.1016/j.clinbiochem.2003.11.015
-
Erel, O. (2005). A new automated colorimetric method for measuring total oxidant status. Clinical Biochemistry, 38(12), 1103–1111. https://doi.org/10.1016/j.clinbiochem.2005.08.008
-
Ersoy, E., Boğa, M., Kaplan, A., Mataracı Kara, E., Eroğlu Özkan, E., & Demirci Kayıran, S. (2025). LC-HRMS profiling of phytochemicals with assessment of antioxidant, anticholinesterase, and antimicrobial potentials of Astragalus brachystachys DC. Chemistry & Biodiversity, 22(2), e202401853. https://doi.org/10.1002/cbdv.202401853
-
Gok, M., Basar, Y., Yenigun, S., Ipek, Y., Behcet, L., Ozen, T., & Demirtas, I. (2025). Bioactive Apigenin‐7‐O‐β‐Glucoside and Rosmarinic Acid Molecules From Two Nepeta Species: Bioactivity‐Guided Isolation, In Vitro Evaluations, Pharmacokinetic and In Silico Approaches as Metabolic Enzyme Inhibition Agents. Phytochemical Analysis. https://doi.org/10.1002/pca.3536
-
Günther, J., Erthmann, P. Ø., Khakimov, B., & Bak, S. (2022). The origin and evolution of oxime-based defenses in plants. Plant Physiology, 188(3), 1483–1495. https://doi.org/10.1093/plphys/kiab570
-
Gürgen, A., Sevindik, M., & Krupodorova, T., Uysal, İ., & Ünal, O. (2024). Biological activities of Hypericum spectabile extract optimized using artificial neural network combined with genetic algorithm application. BMC Biotechnology, 24(1), 83. https://doi.org/10.1186/s12896-024-00914-w
-
Gürgen, A., & Sevindik, M. (2022). Application of artificial neural network coupling multiobjective particle swarm optimization algorithm to optimize Pleurotus ostreatus extraction parameters. Journal of Food Processing and Preservation, 46(11), e16949. https://doi.org/10.1111/jfpp.16949
-
Hussain, M., Debnath, B., Qasim, M., Bamisile, B. S., Islam, W., Hameed, M. S., Wang, L., & Qiu, D. (2019). Role of saponins in plant defense: A review. Molecules, 24(11), 2067. https://doi.org/10.3390/molecules24112067
-
Khakimov, B., Kuzina, V., Erthmann, P. Ø., Fukushima, E. O., Augustin, J. M., Olsen, C. E., Scholtalbers, J., Volpin, H., Andersen, S. B., Hauser, T. P., Muranaka, T., & Bak, S. (2015). Identification and mapping of defense compounds in Barbarea vulgaris by NMR-based metabolomics. The Plant Journal, 84(3), 478–490. https://doi.org/10.1111/tpj.13021
-
Koçer, O. (2025). Biological activity potential of Thalictrum orientale: antioxidant, anticholinesterase and antiproliferative effects. Artvin Çoruh University Journal of Forestry Faculty, 26(1), 222–229.
-
Korkmaz, N., Mohammed, F. S., Uysal, İ., & Sevindik, M. (2023). Antioxidant, antimicrobial and anticholinesterase activity of Dittrichia graveolens. Prospects in Pharmaceutical Sciences, 21(4), 48–53. https://doi.org/10.56782/pps.169
-
Korkmaz, N., Koçer, O., Fathi, S., Uysal, İ., & Sevindik, M. (2024). Branched horsetail (Equisetum ramosissimum): some biological activities and total phenolic and flavonoid contents. Prospects in Pharmaceutical Sciences, 22(3), 69–75. https://doi.org/10.56782/pps.209
-
Liu, T. J., Zhang, Y. J., Agerbirk, N., Wang, H. P., Wei, X. C., Song, J. P., He, H. J., Zhao, X. Z., Zhang, X. H., & Li, X. X. (2019). BGC transcriptomic landscape underlying insect resistance in Barbarea vulgaris. BMC Genomics, 20, 371. https://doi.org/10.1186/s12864-019-5765-1
-
Mohammed, F. S., Uysal, İ., Sevindik, M., Çesko, C., & Koraqi, H. (2024). Chemical composition, biological activities, uses, nutritional and mineral contents of cumin (Cuminum cyminum). Measurement: Food, 14, 100157. https://doi.org/10.1016/j.meafoo.2024.100157
-
Mohammed, F. S., Uysal, İ., & Sevindik, M. (2023). A review on antiviral plants effective against different virus types. Prospects in Pharmaceutical Sciences, 21(2), 1–21.
-
Mohammed, F. S., Günal, S., Şabik, A. E., Akgül, H., & Sevindik, M. (2020). Antioxidant and antimicrobial activity of Scorzonera papposa collected from Iraq and Turkey. Kahramanmaraş Sütçü İmam University Journal of Agriculture and Nature, 23(5), 1114–1118. https://doi.org/10.18016/ksutarimdoga.vi.699457
-
Mohammed, F. S., Günal, S., Pehlivan, M., Doğan, M., Sevindik, M., & Akgül, H. (2020). Phenolic content, antioxidant and antimicrobial potential of endemic Ferulago platycarpa. Gazi University Journal of Science, 33(4), 670–677. https://doi.org/10.35378/gujs.707555
-
Senatore, F., D'Agostino, M., & Dini, I. (2000). Flavonoid glycosides of Barbarea vulgaris L. (Brassicaceae). Journal of Agricultural and Food Chemistry, 48(7), 2659–2662. https://doi.org/10.1021/jf990625k
-
Sevindik, M. (2021). Anticancer, antimicrobial, antioxidant and DNA-protective potential of mushroom Leucopaxillus gentianeus (Quél.) Kotl. Indian Journal of Experimental Biology, 59(5), 310–315. https://doi.org/10.56042/ijeb.v59i05.50501
-
Sevindik, M., Gürgen, A., Khassanov, V. T., & Bal, C. (2024). Biological activities of ethanol extracts of Hericium erinaceus obtained as a result of optimization analysis. Foods, 13(10), 1560. https://doi.org/10.3390/foods13101560
-
Sevindik, M., Mohammed, F. S., & Uysal, İ. (2023). Autism: plants with neuro-psychopharmacotherapeutic potential. Prospects in Pharmaceutical Sciences, 21(3), 38–48. https://doi.org/10.56782/pps.143
-
Sevindik, M., Krupodorova, T., & Ünal, O. (2025). Elaeagnus angustifolia L.: A comprehensive review on general properties, biological activities, and therapeutic potential. Applied Fruit Science, 67(2), Article 70. https://doi.org/10.1007/s10341-025-01294-x
-
Sevindik, M., Gürgen, A., Krupodorova, T., Uysal, İ., & Koçer, O. (2024). A hybrid artificial neural network and multi-objective genetic algorithm approach to optimize extraction conditions of Mentha longifolia and biological activities. Scientific Reports, 14, 31403. https://doi.org/10.1038/s41598-024-31403-0
-
Şabik, A. E., Sevindik, M., Mohammed, F. S., & Doğan, M. (2024). A new natural source against A549 lung cancer cells: Anthemis cotula and its biological activities and phenolic contents. Pharmaceutical Chemistry Journal, 58(1), 1–7. https://doi.org/10.1007/s11094-024-03098-5
-
Şahin, H., Demir, S., Boğa, M., Sarı, A., Makbul, S., & Gültepe, M. (2023). Comparative phytochemical and bioactivity studies on two related Scorzonera L. species: A chemotaxonomic contribution. Biochemical Systematics and Ecology, 111, 104743. https://doi.org/10.1016/j.bse.2023.104743
-
Turkmen, D., Dursun, A. H. M., Çalışkan, O., Köksal Kavrak, M., & Güler, Z. (2023). Bioactive constituents of important medicinal plants: antioxidant, antimicrobial and anticholinesterase activities. Journal of Agricultural Science and Technology, 25(5), 1089–1099. https://doi.org/10.22034/jast.25.5.1089
-
Uysal, İ., Koçer, O., Mohammed, F. S., Lekesiz, Ö., Doğan, M., Şabik, A. E., & Sevindik, M. (2023). Pharmacological and nutritional properties of the genus Salvia: A review. Advances in Pharmacology and Pharmacy, 11(2), 140–155. https://doi.org/10.13189/app.2023.110206
-
Ünal, O., Eraslan, E. C., Uysal, İ., Muhammed, F. S., Sevindik, M., & Akgül, H. (2022). Biological activities and phenolic contents of Rumex scutatus collected from Turkey. Fresenius Environmental Bulletin, 31(7), 7341–7346.
-
Ünal, O., Gürgen, A., Krupodorova, T., Sevindik, M., Kabaktepe, Ş., & Akata, I. (2025). Biological activities and phenolic contents of Muscari botryoides. BMC Complementary Medicine and Therapies,
-
Yazar, M., Sevindik, M., Polat, A. O., Koçer, O., Karatepe, H. K., & Uysal, İ. (2024). Luteolin: general properties, biosynthesis, pharmacological properties, biological activities and daily uses. Prospects in Pharmaceutical Sciences, 22(4), 146–154.
-
Yazar, M., Sevindik, M., Uysal, İ., & Polat, A. O. (2025). Effects of caffeic acid on human health: pharmacological and therapeutic effects, biological activity and toxicity. Pharmaceutical Chemistry Journal, 59(1), 49–55. https://doi.org/10.1007/s11094-025-03363-7