Year 2025,
Volume: 9 Issue: 2, 174 - 184
Emine Elçin Oruç-emre
,
Adil Özbay
References
-
Abeysinghe, A. A. D. T., Deshapriya, R. D. U. S., & Udawatte, C. (2020). Alzheimer's disease: a review of the pathophysiological basis and therapeutic interventions. Life Sciences, 256, 117996. https://doi.org/10.1016/j.lfs.2020.117996
-
Abu Mohsen, U., Koçyiğit-Kaymakçıoğlu, B., Oruç-Emre, E. E., Kaplancıklı, Z. A., & Rollas, S. (2015). Studies on hydrazide–hydrazones derivatives as acetylcholinesterase inhibitors. Clinical and Experimental Health Sciences, 5(1),10–14. https://doi.org/10.5455/musbed.20141117035707
-
Aktar, B. S. K., Sıcak, Y., Tok, T. T., Oruç-Emre, E. E., Yağlıoğlu, A. S., Iyidoğlan, A. K., Öztürk, M., & Demirtaş, I. (2020). Designing heterocyclic chalcones, benzoyl/sulfonyl hydrazones: An insight into their biological activities and molecular docking study. Journal of Molecular Structure, 1211, 128059. https://doi.org/10.1016/j.molstruc.2020.128059
-
Aktar, B. S., Sıcak, Y., Tatar, G., & Emre, E. E. (2022). Synthesis of benzoyl hydrazones having 4-hydroxy-3,5-dimethoxy phenyl ring, their biological activities, and molecular modeling studies on enzyme inhibition activities. Turkish Journal of Chemistry, 46(1), 236–252. https://doi.org/10.3906/kim-2107-7
-
Aktar, B. S. K., Sıcak, Y., & Oruç-emre, E. E. (2022). Synthesis and biological activities of new hybrid chalcones with a benzoic acid ring. International Journal of Chemistry and Technology, 6(1), 7-14.
-
Alawode, D. O., Hansson, O., Smith, R., Strandberg, O., & Westman, E. (2021). Association of antioxidant markers with Alzheimer's disease biomarkers. *Free Radical Biology and Medicine, 177*, 123–132. https://doi.org/10.1016/j.freeradbiomed.2021.03.007
-
Alzheimer's Association. (2025). 2025 Alzheimer's disease facts and figures. Alzheimer's & Dementia, 21(4), e70235. https://doi.org/10.1002/alz.70235
-
Angelova, V. T., Valcheva, V., Vassilev, N. G., Buyukliev, R., Momekov, G., Dimitrov, I., Saso, L., Djukic, M., & Shivachev, B. (2017). Antimycobacterial activity of novel hydrazide-hydrazone derivatives with 2H-chromene and coumarin scaffold. Bioorganic & Medicinal Chemistry Letters, 27(2), 223–227. https://doi.org/10.1016/j.bmcl.2016.11.071
-
Aramjoo, H., Riahi-Zanjani, B., Farkhondeh, T., Forouzanfar, F., & Sadeghi, M. (2021). Modulatory effect of opioid administration on the activity of cholinesterase enzyme: A systematic review of mice/rat models. Environmental Science and Pollution Research International, 28(38), 52675–52688. https://doi.org/10.1007/s11356-021-16044-1
-
Bingul, M., Ercan, S., & Boga, M. (2020). The design of novel 4,6-dimethoxyindole-based hydrazide-hydrazones: Molecular modeling, synthesis and anticholinesterase activity. Journal of Molecular Structure, 1213, 128202. https://doi.org/10.1016/j.molstruc.2020.128202
-
Biovia, Dassault Systèmes. (2017). “Discovery studio visualizer.” San Diego, CA, USA 936.
-
Butterfield, D. A., & Halliwell, B. (2019). Oxidative stress, dysfunctional glucose metabolism, and Alzheimer's disease. Nature Reviews Neuroscience, 20(3), 148–160. https://doi.org/10.1038/s41583-019-0132-6
-
de Oliveira, K. N., Costa, P., Santin, J. R., Mazzambani, L., Bürger, C., Mora, C., Nunes, R. J., & de Souza, M. M. (2011). Synthesis and antidepressant-like activity evaluation of sulphonamides and sulphonyl-hydrazones. Bioorganic & Medicinal Chemistry, 19(14), 4295-4306. https://doi.org/10.1016/j.bmc.2011.05.056
-
DeTure, M. A., & Dickson, D. W. (2019). The neuropathological diagnosis of Alzheimer's disease. Molecular Neurodegeneration, 14(1), 32. https://doi.org/10.1186/s13024-019-0333-5
-
Ellman, G. L., Courtney, K. D., Andres, V., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical pharmacology, 7, 88–95. https://doi.org/10.1016/0006-2952(61)90145-9
-
Francis, P. T., Palmer, A. M., Snape, M., & Wilcock, G. K. (1999). The cholinergic hypothesis of Alzheimer's disease: A review of progress. Journal of Neurology, Neurosurgery, and Psychiatry, 66(2), 137–147. https://doi.org/10.1136/jnnp.66.2.137
-
Gao, Z., Lv, M., Li, Q., & Xu, H. (2015). Synthesis of heterocycle-attached methylidenebenzenesulfonohydrazones as antifungal agents. Bioorganic & Medicinal Chemistry Letters, 25(22), 5092–5096. https://doi.org/10.1016/j.bmcl.2015.10.017
-
Grabowska, W., Bijak, M., Szelenberger, R., Gorniak, L., Podogrocki, M., Harmata, P., & Cichon, N. (2025). Acetylcholinesterase as a multifunctional target in amyloid-driven neurodegeneration: From dual-site inhibitors to anti-aggregation strategies. International Journal of Molecular Sciences, 26(17), 8726. https://doi.org/10.3390/ijms26178726
-
Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4(1), 17. https://doi.org/10.1186/1758-2946-4-17
-
Kabir, M. T., Uddin, M. S., Zaman, S., Begum, Y., Ashraf, G. M., Bin-Jumah, M. N., Bungau, S. G., Mousa, S. A., & Abdel-Daim, M. M. (2021). Molecular mechanisms of metal toxicity in the pathogenesis of Alzheimer's disease. Molecular Neurobiology, 58(1), 1–20. https://doi.org/10.1007/s12035-020-02096-w
-
Kaur, D., Behl, T., Sehgal, A., Singh, S., Sharma, N., Badavath, V. N., Ul Hassan, S. S., Hasan, M. M., Bhatia, S., Al-Harassi, A., Khan, H., & Bungau, S. (2022). Unraveling the potential neuroprotective facets of erythropoietin for the treatment of Alzheimer's disease. Metabolic Brain Disease, 37(1), 1–16. https://doi.org/10.1007/s11011-021-00820-6
-
Koelsch, G. (2017). BACE1 function and inhibition: Implications of intervention in the amyloid pathway of Alzheimer's disease pathology. Molecules, 22(10), 1723. https://doi.org/10.3390/molecules22101723
-
Kumar, S., Manoharan, A., Jayalakshmi, J., Abdelgawad, M. A., Mahdi, W. A., Alshehri, S., Ghoneim, M. M., Pappachen, L. K., Zachariah, S. M., Aneesh, T. P., & Mathew, B. (2023). Exploiting butyrylcholinesterase inhibitors through a combined 3-D pharmacophore modeling, QSAR, molecular docking, and molecular dynamics investigation. RSC Advances, 13(15), 9513-9529. https://doi.org/10.1039/D3RA00526G
-
Kursun Aktar, B. S. (2023). 4-İyodobenzohidrazitten türetilen yeni iyotlu hidrazon bileşiklerinin sentezi, antioksidan aktiviteleri ve in siliko çalışmaları. In *Proceedings of the 3rd International Congress of Engineering and Natural Sciences Studies* (pp. 366–374). [Oral presentation, Full-text paper].
-
Lovell, M. A., & Markesbery, W. R. (2007). Oxidative DNA damage in mild cognitive impairment and late-stage Alzheimer’s disease. Nucleic Acids Research, 35(22), 7497–7504. https://doi.org/10.1093/nar/gkm821
-
Maccari, R., Ottanà, R., & Vigorita, M. G. (2005). In vitro advanced antimycobacterial screening of isoniazid-related hydrazones, hydrazides, and cyanoboranes: Part 14. Bioorganic & Medicinal Chemistry Letters, 15(10), 2509–2513. https://doi.org/10.1016/j.bmcl.2005.03.065
-
Macdonald, I. R., Martin, E., Rosenberry, T. L., & Darvesh, S. (2012). Probing the peripheral site of humanbutyrylcholinesterase. Biochemistry, 51(36), 7046–7053. https://doi.org/10.1021/bi300955k
-
Manna, P., Sinha, M., & Sil, P. C. (2008). Amelioration of cadmium-induced cardiac impairment by taurine. Chemico-Biological Interactions, 174(2), 88–97. https://doi.org/10.1016/j.cbi.2008.05.005
-
Markesbery, W. R. (1997). Oxidative stress hypothesis in Alzheimer’s disease. Free Radical Biology and Medicine, 23(1), 134–147. https://doi.org/10.1016/S0891-5849(96)00629-6
-
Marucci, G., Buccioni, M., Ben, D. D., Lambertucci, C., Volpini, R., & Amenta, F. (2021). Efficacy of acetylcholinesterase inhibitors in Alzheimer's disease. Neuropharmacology, 190, 108352. https://doi.org/10.1016/j.neuropharm.2020.108352
-
Merlani, M., Nadaraia, N., Amiranashvili, L., Petrou, A., Geronikaki, A., Ciric, A., Glamoclija, J., Carevic, T., & Sokovic, M. (2023). Antimicrobial activity of some steroidal hydrazones. Molecules, 28(3), 1167. https://doi.org/10.3390/molecules28031167
-
Moreira, N. C. D. S., Lima, J. E. B. F., Marchiori, M. F., Carvalho, I., & Sakamoto-Hojo, E. T. (2022). Neuroprotective effects of cholinesterase inhibitors: Current scenario in therapies for Alzheimer's disease and future perspectives. Journal of Alzheimer's Disease Reports, 6(1), 177–193. https://doi.org/10.3233/ADR-210061
-
Nunes, I. K. D. C., de Souza, E. T., Martins, I. R. R., Barbosa, G., Moraes Junior, M. O., Medeiros, M. M., Silva, S. W. D., Balliano, T. L., da Silva, B. A., Silva, P. M. R., Carvalho, V. F., Martins, M. A., & Lima, L. M. (2020). Discovery of sulfonyl hydrazone derivative as a new selective PDE4A and PDE4D inhibitor by lead-optimization approach on the prototype LASSBio-448: In vitro and in vivo preclinical studies. European Journal of Medicinal Chemistry, 204, 112492. https://doi.org/10.1016/j.ejmech.2020.112492
-
Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
-
Popiołek, Ł., & Biernasiuk, A. (2017). Synthesis and investigation of antimicrobial activities of nitrofurazone analogs containing hydrazide-hydrazone moiety. Saudi Pharmaceutical Journal, 25(7), 1097–1102. https://doi.org/10.1016/j.jsps.2017.05.006
-
Schrödinger, LLC. (2021). PyMOL molecular graphics system (Version 2.5) [Computer software].
Sıcak, Y., Oruç‐Emre, E. E., Öztürk, M., Taşkın‐Tok, T., & Karaküçük‐Iyidoğan, A. (2019). Novel fluorine‐containing chiral hydrazide‐hydrazones: Design, synthesis, structural elucidation, antioxidant and anticholinesterase activity, and in silico studies. Chirality, 31(8), 603–615. https://doi.org/10.1002/chir.23102
-
Silva, G. A., Costa, L. M., Brito, F. C., Miranda, A. L., Barreiro, E. J., & Fraga, C. A. (2004). New class of potent antinociceptive and antiplatelet 10H-phenothiazine-1-acylhydrazone derivatives. Bioorganic & Medicinal Chemistry, 12(12), 3149–3158. https://doi.org/10.1016/j.bmc.2004.04.009
-
Silva, M. V. F., Loures, C. M. G., Alves, L. C. V., de Souza, L. C., Borges, K. B. G., & Carvalho, M. D. G. (2019). Alzheimer's disease: Risk factors and potentially protective measures. Journal of Biomedical Science, 26(1), 33. https://doi.org/10.1186/s12929-019-0524-y
-
Sinha, N., Jain, S., Tilekar, A., Upadhayaya, R. S., Kishore, N., Jana, G. H., & Arora, S. K. (2005). Synthesis of isonicotinic acid N'-arylidene-N-[2-oxo-2-(4-aryl-piperazin-1-yl)-ethyl]-hydrazides as antituberculosis agents. Bioorganic & Medicinal Chemistry Letters, 15(6), 1573–1576. https://doi.org/10.1016/j.bmcl.2005.01.073
-
Sliwinska, A., Kwiatkowski, D., Czarny, P., et al. (2016). The levels of 7,8‑dihydrodeoxyguanosine (8‑oxoG) and 8‑oxoguanine DNA glycosylase 1 (OGG1)—A potential diagnostic biomarkers of Alzheimer's disease. *Journal of the Neurological Sciences, 368*, 155–159.
-
Sreenivasulu, R., Reddy, K. T., Sujitha, P., Kumar, C. G., & Raju, R. R. (2019). Synthesis, antiproliferative and apoptosis induction potential activities of novel bis(indolyl)hydrazide-hydrazone derivatives. Bioorganic & Medicinal Chemistry, 27(6), 1043–1055. https://doi.org/10.1016/j.bmc.2019.02.002
-
Şenkardeş, S., Kaushik-Basu, N., Durmaz, İ., Manvar, D., Basu, A., Atalay, R., & Küçükgüzel, Ş. G. (2016). Synthesis of novel diflunisal hydrazide–hydrazones as anti-hepatitis C virus agents and hepatocellular carcinoma inhibitors. European Journal of Medicinal Chemistry, 108, 301–308. https://doi.org/10.1016/j.ejmech.2015.10.041
-
Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
-
Verma, G., Marella, A., Shaquiquzzaman, M., Akhtar, M., Ali, M. R., & Alam, M. M. (2014). A review exploring biological activities of hydrazones. Journal of Pharmacy & Bioallied Sciences, 6(2), 69–80. https://doi.org/10.4103/0975-7406.129170
-
Yang, K., Yang, J. Q., Luo, S. H., Mei, W. J., Lin, J. Y., Zhan, J. Q., & Wang, Z. Y. (2021). Synthesis of N-2(5H)-furanonyl sulfonyl hydrazone derivatives and their biological evaluation in vitro and in vivo activity against MCF-7 breast cancer cells. Bioorganic Chemistry, 107, 104518. https://doi.org/10.1016/j.bioorg.2020.104518
-
Yılmaz, A. D., Coban, T., & Suzen, S. (2012). Synthesis and antioxidant activity evaluations of melatonin-based analog indole-hydrazide/hydrazone derivatives. Journal of Enzyme Inhibition and Medicinal Chemistry, 27(3), 428–436. https://doi.org/10.3109/14756366.2011.594048
-
Younus, H. A., Hameed, A., Mahmood, A., Khan, M. S., Saeed, M., Batool, F., Asari, A., Mohamad, H., Pelletier, J., Sévigny, J., Iqbal, J., & Al-Rashida, M. (2020). Sulfonylhydrazones: Design, synthesis and investigation of ectonucleotidase (ALP & e5'NT) inhibition activities. Bioorganic Chemistry, 100, 103827. https://doi.org/10.1016/j.bioorg.2020.103827
-
Zhao, Y., & Zhao, B. (2013). Oxidative stress and the pathogenesis of Alzheimer's disease. Oxidative medicine and cellular longevity, 2013, 316523. https://doi.org/10.1155/2013/316523
Investigation of In vitro and In Silico Anticholinesterase Activities of Hydrazones Bearing 4-Iodobenzohydrazide Scaffolds
Year 2025,
Volume: 9 Issue: 2, 174 - 184
Emine Elçin Oruç-emre
,
Adil Özbay
Abstract
The lack of a definitive treatment for Alzheimer's disease and the rapidly increasing prevalence of the disease have led to a crucial need for the development of new therapeutic agents that target key enzymes implicated in its pathogenesis. The inhibition of cholinesterase represents one of the important therapeutic strategies in the treatment of Alzheimer’s disease. Therefore, this present study investigated the in silico and in vitro cholinesterase inhibition activities of hydrazone derivatives, which have significant biological activity potential. This study revealed that molecule 7 displayed the most effective inhibition activity against cholinesterase enzymes, with an IC50 value of 1.95±0.20 µM for AChE and 6.08±0.42 µM for BChE. However, in silico studies revealed that molecule 6 exhibited the greatest affinity towards cholinesterase enzymes, while molecules 5 and 7 exhibited a moderate affinity. The in vitro results suggest that molecule 7 may be a promising scaffold for the development of new anticholinesterase candidates.
Thanks
We would like to express our gratitude to Assoc. Prof. Bedriye Seda Kurşun Aktar and Assoc. Prof. Yusuf Sıcak for their invaluable research contributions.
References
-
Abeysinghe, A. A. D. T., Deshapriya, R. D. U. S., & Udawatte, C. (2020). Alzheimer's disease: a review of the pathophysiological basis and therapeutic interventions. Life Sciences, 256, 117996. https://doi.org/10.1016/j.lfs.2020.117996
-
Abu Mohsen, U., Koçyiğit-Kaymakçıoğlu, B., Oruç-Emre, E. E., Kaplancıklı, Z. A., & Rollas, S. (2015). Studies on hydrazide–hydrazones derivatives as acetylcholinesterase inhibitors. Clinical and Experimental Health Sciences, 5(1),10–14. https://doi.org/10.5455/musbed.20141117035707
-
Aktar, B. S. K., Sıcak, Y., Tok, T. T., Oruç-Emre, E. E., Yağlıoğlu, A. S., Iyidoğlan, A. K., Öztürk, M., & Demirtaş, I. (2020). Designing heterocyclic chalcones, benzoyl/sulfonyl hydrazones: An insight into their biological activities and molecular docking study. Journal of Molecular Structure, 1211, 128059. https://doi.org/10.1016/j.molstruc.2020.128059
-
Aktar, B. S., Sıcak, Y., Tatar, G., & Emre, E. E. (2022). Synthesis of benzoyl hydrazones having 4-hydroxy-3,5-dimethoxy phenyl ring, their biological activities, and molecular modeling studies on enzyme inhibition activities. Turkish Journal of Chemistry, 46(1), 236–252. https://doi.org/10.3906/kim-2107-7
-
Aktar, B. S. K., Sıcak, Y., & Oruç-emre, E. E. (2022). Synthesis and biological activities of new hybrid chalcones with a benzoic acid ring. International Journal of Chemistry and Technology, 6(1), 7-14.
-
Alawode, D. O., Hansson, O., Smith, R., Strandberg, O., & Westman, E. (2021). Association of antioxidant markers with Alzheimer's disease biomarkers. *Free Radical Biology and Medicine, 177*, 123–132. https://doi.org/10.1016/j.freeradbiomed.2021.03.007
-
Alzheimer's Association. (2025). 2025 Alzheimer's disease facts and figures. Alzheimer's & Dementia, 21(4), e70235. https://doi.org/10.1002/alz.70235
-
Angelova, V. T., Valcheva, V., Vassilev, N. G., Buyukliev, R., Momekov, G., Dimitrov, I., Saso, L., Djukic, M., & Shivachev, B. (2017). Antimycobacterial activity of novel hydrazide-hydrazone derivatives with 2H-chromene and coumarin scaffold. Bioorganic & Medicinal Chemistry Letters, 27(2), 223–227. https://doi.org/10.1016/j.bmcl.2016.11.071
-
Aramjoo, H., Riahi-Zanjani, B., Farkhondeh, T., Forouzanfar, F., & Sadeghi, M. (2021). Modulatory effect of opioid administration on the activity of cholinesterase enzyme: A systematic review of mice/rat models. Environmental Science and Pollution Research International, 28(38), 52675–52688. https://doi.org/10.1007/s11356-021-16044-1
-
Bingul, M., Ercan, S., & Boga, M. (2020). The design of novel 4,6-dimethoxyindole-based hydrazide-hydrazones: Molecular modeling, synthesis and anticholinesterase activity. Journal of Molecular Structure, 1213, 128202. https://doi.org/10.1016/j.molstruc.2020.128202
-
Biovia, Dassault Systèmes. (2017). “Discovery studio visualizer.” San Diego, CA, USA 936.
-
Butterfield, D. A., & Halliwell, B. (2019). Oxidative stress, dysfunctional glucose metabolism, and Alzheimer's disease. Nature Reviews Neuroscience, 20(3), 148–160. https://doi.org/10.1038/s41583-019-0132-6
-
de Oliveira, K. N., Costa, P., Santin, J. R., Mazzambani, L., Bürger, C., Mora, C., Nunes, R. J., & de Souza, M. M. (2011). Synthesis and antidepressant-like activity evaluation of sulphonamides and sulphonyl-hydrazones. Bioorganic & Medicinal Chemistry, 19(14), 4295-4306. https://doi.org/10.1016/j.bmc.2011.05.056
-
DeTure, M. A., & Dickson, D. W. (2019). The neuropathological diagnosis of Alzheimer's disease. Molecular Neurodegeneration, 14(1), 32. https://doi.org/10.1186/s13024-019-0333-5
-
Ellman, G. L., Courtney, K. D., Andres, V., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical pharmacology, 7, 88–95. https://doi.org/10.1016/0006-2952(61)90145-9
-
Francis, P. T., Palmer, A. M., Snape, M., & Wilcock, G. K. (1999). The cholinergic hypothesis of Alzheimer's disease: A review of progress. Journal of Neurology, Neurosurgery, and Psychiatry, 66(2), 137–147. https://doi.org/10.1136/jnnp.66.2.137
-
Gao, Z., Lv, M., Li, Q., & Xu, H. (2015). Synthesis of heterocycle-attached methylidenebenzenesulfonohydrazones as antifungal agents. Bioorganic & Medicinal Chemistry Letters, 25(22), 5092–5096. https://doi.org/10.1016/j.bmcl.2015.10.017
-
Grabowska, W., Bijak, M., Szelenberger, R., Gorniak, L., Podogrocki, M., Harmata, P., & Cichon, N. (2025). Acetylcholinesterase as a multifunctional target in amyloid-driven neurodegeneration: From dual-site inhibitors to anti-aggregation strategies. International Journal of Molecular Sciences, 26(17), 8726. https://doi.org/10.3390/ijms26178726
-
Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4(1), 17. https://doi.org/10.1186/1758-2946-4-17
-
Kabir, M. T., Uddin, M. S., Zaman, S., Begum, Y., Ashraf, G. M., Bin-Jumah, M. N., Bungau, S. G., Mousa, S. A., & Abdel-Daim, M. M. (2021). Molecular mechanisms of metal toxicity in the pathogenesis of Alzheimer's disease. Molecular Neurobiology, 58(1), 1–20. https://doi.org/10.1007/s12035-020-02096-w
-
Kaur, D., Behl, T., Sehgal, A., Singh, S., Sharma, N., Badavath, V. N., Ul Hassan, S. S., Hasan, M. M., Bhatia, S., Al-Harassi, A., Khan, H., & Bungau, S. (2022). Unraveling the potential neuroprotective facets of erythropoietin for the treatment of Alzheimer's disease. Metabolic Brain Disease, 37(1), 1–16. https://doi.org/10.1007/s11011-021-00820-6
-
Koelsch, G. (2017). BACE1 function and inhibition: Implications of intervention in the amyloid pathway of Alzheimer's disease pathology. Molecules, 22(10), 1723. https://doi.org/10.3390/molecules22101723
-
Kumar, S., Manoharan, A., Jayalakshmi, J., Abdelgawad, M. A., Mahdi, W. A., Alshehri, S., Ghoneim, M. M., Pappachen, L. K., Zachariah, S. M., Aneesh, T. P., & Mathew, B. (2023). Exploiting butyrylcholinesterase inhibitors through a combined 3-D pharmacophore modeling, QSAR, molecular docking, and molecular dynamics investigation. RSC Advances, 13(15), 9513-9529. https://doi.org/10.1039/D3RA00526G
-
Kursun Aktar, B. S. (2023). 4-İyodobenzohidrazitten türetilen yeni iyotlu hidrazon bileşiklerinin sentezi, antioksidan aktiviteleri ve in siliko çalışmaları. In *Proceedings of the 3rd International Congress of Engineering and Natural Sciences Studies* (pp. 366–374). [Oral presentation, Full-text paper].
-
Lovell, M. A., & Markesbery, W. R. (2007). Oxidative DNA damage in mild cognitive impairment and late-stage Alzheimer’s disease. Nucleic Acids Research, 35(22), 7497–7504. https://doi.org/10.1093/nar/gkm821
-
Maccari, R., Ottanà, R., & Vigorita, M. G. (2005). In vitro advanced antimycobacterial screening of isoniazid-related hydrazones, hydrazides, and cyanoboranes: Part 14. Bioorganic & Medicinal Chemistry Letters, 15(10), 2509–2513. https://doi.org/10.1016/j.bmcl.2005.03.065
-
Macdonald, I. R., Martin, E., Rosenberry, T. L., & Darvesh, S. (2012). Probing the peripheral site of humanbutyrylcholinesterase. Biochemistry, 51(36), 7046–7053. https://doi.org/10.1021/bi300955k
-
Manna, P., Sinha, M., & Sil, P. C. (2008). Amelioration of cadmium-induced cardiac impairment by taurine. Chemico-Biological Interactions, 174(2), 88–97. https://doi.org/10.1016/j.cbi.2008.05.005
-
Markesbery, W. R. (1997). Oxidative stress hypothesis in Alzheimer’s disease. Free Radical Biology and Medicine, 23(1), 134–147. https://doi.org/10.1016/S0891-5849(96)00629-6
-
Marucci, G., Buccioni, M., Ben, D. D., Lambertucci, C., Volpini, R., & Amenta, F. (2021). Efficacy of acetylcholinesterase inhibitors in Alzheimer's disease. Neuropharmacology, 190, 108352. https://doi.org/10.1016/j.neuropharm.2020.108352
-
Merlani, M., Nadaraia, N., Amiranashvili, L., Petrou, A., Geronikaki, A., Ciric, A., Glamoclija, J., Carevic, T., & Sokovic, M. (2023). Antimicrobial activity of some steroidal hydrazones. Molecules, 28(3), 1167. https://doi.org/10.3390/molecules28031167
-
Moreira, N. C. D. S., Lima, J. E. B. F., Marchiori, M. F., Carvalho, I., & Sakamoto-Hojo, E. T. (2022). Neuroprotective effects of cholinesterase inhibitors: Current scenario in therapies for Alzheimer's disease and future perspectives. Journal of Alzheimer's Disease Reports, 6(1), 177–193. https://doi.org/10.3233/ADR-210061
-
Nunes, I. K. D. C., de Souza, E. T., Martins, I. R. R., Barbosa, G., Moraes Junior, M. O., Medeiros, M. M., Silva, S. W. D., Balliano, T. L., da Silva, B. A., Silva, P. M. R., Carvalho, V. F., Martins, M. A., & Lima, L. M. (2020). Discovery of sulfonyl hydrazone derivative as a new selective PDE4A and PDE4D inhibitor by lead-optimization approach on the prototype LASSBio-448: In vitro and in vivo preclinical studies. European Journal of Medicinal Chemistry, 204, 112492. https://doi.org/10.1016/j.ejmech.2020.112492
-
Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
-
Popiołek, Ł., & Biernasiuk, A. (2017). Synthesis and investigation of antimicrobial activities of nitrofurazone analogs containing hydrazide-hydrazone moiety. Saudi Pharmaceutical Journal, 25(7), 1097–1102. https://doi.org/10.1016/j.jsps.2017.05.006
-
Schrödinger, LLC. (2021). PyMOL molecular graphics system (Version 2.5) [Computer software].
Sıcak, Y., Oruç‐Emre, E. E., Öztürk, M., Taşkın‐Tok, T., & Karaküçük‐Iyidoğan, A. (2019). Novel fluorine‐containing chiral hydrazide‐hydrazones: Design, synthesis, structural elucidation, antioxidant and anticholinesterase activity, and in silico studies. Chirality, 31(8), 603–615. https://doi.org/10.1002/chir.23102
-
Silva, G. A., Costa, L. M., Brito, F. C., Miranda, A. L., Barreiro, E. J., & Fraga, C. A. (2004). New class of potent antinociceptive and antiplatelet 10H-phenothiazine-1-acylhydrazone derivatives. Bioorganic & Medicinal Chemistry, 12(12), 3149–3158. https://doi.org/10.1016/j.bmc.2004.04.009
-
Silva, M. V. F., Loures, C. M. G., Alves, L. C. V., de Souza, L. C., Borges, K. B. G., & Carvalho, M. D. G. (2019). Alzheimer's disease: Risk factors and potentially protective measures. Journal of Biomedical Science, 26(1), 33. https://doi.org/10.1186/s12929-019-0524-y
-
Sinha, N., Jain, S., Tilekar, A., Upadhayaya, R. S., Kishore, N., Jana, G. H., & Arora, S. K. (2005). Synthesis of isonicotinic acid N'-arylidene-N-[2-oxo-2-(4-aryl-piperazin-1-yl)-ethyl]-hydrazides as antituberculosis agents. Bioorganic & Medicinal Chemistry Letters, 15(6), 1573–1576. https://doi.org/10.1016/j.bmcl.2005.01.073
-
Sliwinska, A., Kwiatkowski, D., Czarny, P., et al. (2016). The levels of 7,8‑dihydrodeoxyguanosine (8‑oxoG) and 8‑oxoguanine DNA glycosylase 1 (OGG1)—A potential diagnostic biomarkers of Alzheimer's disease. *Journal of the Neurological Sciences, 368*, 155–159.
-
Sreenivasulu, R., Reddy, K. T., Sujitha, P., Kumar, C. G., & Raju, R. R. (2019). Synthesis, antiproliferative and apoptosis induction potential activities of novel bis(indolyl)hydrazide-hydrazone derivatives. Bioorganic & Medicinal Chemistry, 27(6), 1043–1055. https://doi.org/10.1016/j.bmc.2019.02.002
-
Şenkardeş, S., Kaushik-Basu, N., Durmaz, İ., Manvar, D., Basu, A., Atalay, R., & Küçükgüzel, Ş. G. (2016). Synthesis of novel diflunisal hydrazide–hydrazones as anti-hepatitis C virus agents and hepatocellular carcinoma inhibitors. European Journal of Medicinal Chemistry, 108, 301–308. https://doi.org/10.1016/j.ejmech.2015.10.041
-
Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
-
Verma, G., Marella, A., Shaquiquzzaman, M., Akhtar, M., Ali, M. R., & Alam, M. M. (2014). A review exploring biological activities of hydrazones. Journal of Pharmacy & Bioallied Sciences, 6(2), 69–80. https://doi.org/10.4103/0975-7406.129170
-
Yang, K., Yang, J. Q., Luo, S. H., Mei, W. J., Lin, J. Y., Zhan, J. Q., & Wang, Z. Y. (2021). Synthesis of N-2(5H)-furanonyl sulfonyl hydrazone derivatives and their biological evaluation in vitro and in vivo activity against MCF-7 breast cancer cells. Bioorganic Chemistry, 107, 104518. https://doi.org/10.1016/j.bioorg.2020.104518
-
Yılmaz, A. D., Coban, T., & Suzen, S. (2012). Synthesis and antioxidant activity evaluations of melatonin-based analog indole-hydrazide/hydrazone derivatives. Journal of Enzyme Inhibition and Medicinal Chemistry, 27(3), 428–436. https://doi.org/10.3109/14756366.2011.594048
-
Younus, H. A., Hameed, A., Mahmood, A., Khan, M. S., Saeed, M., Batool, F., Asari, A., Mohamad, H., Pelletier, J., Sévigny, J., Iqbal, J., & Al-Rashida, M. (2020). Sulfonylhydrazones: Design, synthesis and investigation of ectonucleotidase (ALP & e5'NT) inhibition activities. Bioorganic Chemistry, 100, 103827. https://doi.org/10.1016/j.bioorg.2020.103827
-
Zhao, Y., & Zhao, B. (2013). Oxidative stress and the pathogenesis of Alzheimer's disease. Oxidative medicine and cellular longevity, 2013, 316523. https://doi.org/10.1155/2013/316523